
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.” 

 



D-Optimal Design for Information Driven
Identification of Static Nonlinear Elements

Nalika Ulapane
Swinburne University of Technology
Hawthorn, Victoria, 3122, Australia

aulapane@swin.edu.au
nalika.ulapane@gmail.com

Karthick Thiyagarajan
UTS Robotics Institute

University of Technology Sydney
Ultimo, Sydney, New South Wales, 2007, Australia

karthick.thiyagarajan@uts.edu.au

Sarath Kodagoda
UTS Robotics Institute

University of Technology Sydney
Ultimo, Sydney, New South Wales, 2007, Australia

Sarath.Kodagodauts.edu.au

Linh Nguyen
School of Engineering, IT and Physical Sciences

Federation University Australia
Churchill, Victoria, 3842, Australia

l.nguyen@federation.edu.au

Abstract—Identification of static nonlinear elements (i.e., non-
linear elements whose outputs depend only on the present value
of inputs) is crucial for the success of system identification tasks.
Identification of static nonlinear elements though can pose several
challenges. Two of the main challenges are: (1) mathematical
models describing the elements being unknown and thus re-
quiring black-box identification; and (2) collection of sufficiently
informative measurements. With the aim of addressing the two
challenges, we propose in this paper a method of predetermining
informative measurement points offline (i.e., prior to conducting
experiments or seeing any measured data), and using those
measurements for online model calibration. Since we deal with
an unknown model structure scenario, a high order polynomial
model is assumed. Over fit and under fit avoidance are achieved
via checking model convergence via an iterative means. Model
dependent information maximization is done via a D-optimal de-
sign of experiments strategy. Due to experiments being designed
offline and being designed prior to conducting measurements,
this method eases off the computation burden at the point of
conducting measurements. The need for in-the-loop information
maximization while conducting measurements is avoided. We
conclude by comparing the proposed D-optimal design method
with a method of in-the-loop information maximization and point
out the pros and cons. The method is demonstrated for the
single-input-single-output (SISO) static nonlinear element case.
The method can be extended to MISO systems as well.

Index Terms—Black box, design of experiments, DoE, D-
Optimal, estimation, nonlinear systems, optimal design, optimiza-
tion, over-fitting, system identification

I. INTRODUCTION

System identification of static nonlinear elements (i.e., non-
linear elements whose outputs depend only on the present
value of inputs) is crucial for identifying accurate models for
control applications of dynamical systems [1]. A commonly
encountered type of such systems include linear dynamics
and static nonlinear elements [2]. Identification of some static
elements is known to be time consuming, especially in auto-
mobile engine calibration [3]. This is typically down to having
to take measurements when system responses have reached a

steady state. Furthermore, some identification tasks of static
nonlinear elements warrant black-box identification as explicit
model structures may be unknown. Due to such challenges it
is desirable to reduce the time spent on measurement-taking.
A possible way to accomplish this is by enabling the collection
of a limited amount of data that is maximally informative in
some sense for the calibration of a particular model. Our paper
contributes to this space. This paper combines D-Optimal
design of experiments to calculate informative measurements
and efficient in-the-loop polynomial model calibration.

Previous work attempting information maximization fo-
cused efficient measurement taking have often relied on Fisher
Information [4], [5] driven design of experiments [1], [4], [6],
and so-called Active Learning strategies that have adopted
techniques like ‘query by committee’ [7] and Gaussian Process
(GP) [8] based uncertainty reduction [9], [10]. From such
approaches, some quite powerful ones are the in-the-loop
information maximization methods [9]. What such methods
often do, is for any given prior set of measurements, they
calculate the ‘next best measurement’ via information max-
imization in-the-loop with simultaneous measurement-taking
and model calibration [9]. Although such methods have shown
to accomplish the task of optimizing measurement-taking
while identification of adequate models, they can add signif-
icant computation and real-time data interfacing challenges
for the measurement-taking process [9]. The reason behind
computation cost of such methods attribute to factors like the
use of techniques like GP, or more generally, taking leads from
Bayesian Optimization.

Drawing niche from there, our paper is attempting to
relax the computation burden such in-the-loop methods pose.
To accomplish this, we try to avoid in-the-loop information
maximization. Instead, we try to design informative input
sequences offline, prior to taking measurements and seeing
any data. As such, we will have predetermined informative
input sequences at hand for measurement taking, and when



taking measurements, we only try to calibrate an easy-to-
calibrate polynomial model, and check the convergence of
model parameter estimates.

The structure of the paper is as follows: Section II
presents the relevant problem formulation mathematically;
Section III describes step-by-step the algorithmic workflow
that has to be followed to accomplish informative input design,
measurement-taking, and model convergence; Section IV dis-
cusses the implication of the results, and Section V concludes
this paper identifying the merits and demerits of the proposed
method.

II. PROBLEM FORMULATION

Suppose there is a static nonlinear SISO element in the
form of y = f(x) + ε where x ∈ R is the input, y ∈ R
is the output and ε ∈ R is noise. For example, suppose this
element is a component of a real-world dynamical system from
which certain inputs and outputs can be measured. The specific
assumptions and constraints regarding the element and noise
are given in the subsequent sections.

Now, although the input x and the output y are accessible,
the structure of the mathematical function f performing the
operation of the element remains unknown. Thus, to facilitate
modeling of such an element, the problem at hand becomes
to find a model of the form ŷ = fθ(x), such that the
model adequately describes the element in question. Here,
θ ∈ Rm,m ∈ Z+ is the set of model parameters. Since the
structure of f is unknown, determining a model fθ becomes
an empirical task, and thus it essentially becomes a black-box
identification task.

The strategy we adopt in this paper to solve this problem can
be summarized as follows. First, decide on a model architec-
ture fθ. Second, determine a sequence of inputs x1, x2, ..., xN
such that the vector x̃N is given by

x̃N = [x1, x2, ..., xN ]T (1)

for x̃N ∈ RN , that is maximally informative in some sense
with respect to the selected model (D-optimal design-based
information maximization [1], [4] is adopted in this paper).
One constraint that has to be respected, is that once con-
structed, the order of elements in x̃N should not be changed
since the elements of x̃N are arranged in an order of informa-
tiveness. Third, conduct an adequate amount of measurements
{(x1, y1), (x2, y2), ..., (xn, yn)} such that

x̃n = [x1, x2, ..., xn]T (2)

for x̃n ∈ Rn, x̃n ⊂ x̃N , [......]T denoting matrix transpose,
and

ỹn = [y1, y2, ..., yn]T (3)

for ỹn ∈ Rn that results in the convergence of θ estimates
calculated as follows.

θ∗ = arg min
θ

1

n
(ỹn − fθ(x̃n))T (ỹn − fθ(x̃n)) (4)

The solution θ∗ obtained in that manner would yield the
model fθ that represents the system f , completing the system

identification objective that was set out initially. Section III
describes the methodology proposed to achieve the aforesaid
goal.

III. METHODOLOGY

As set out in the Introduction, the methodology presented
in this section covers a SISO static nonlinear element case.
The methodology is composed of the steps presented as sub-
sections withing this section. These steps should be followed
sequentially.

A. Step 1: Know the element variables

The first step is to know what the inputs and outputs are to
the element and whether they are measurable. With respect to
the SISO case focused in this paper, we would know that the
element is in the form

y = f(x) + ε (5)

where x ∈ R is the input, y ∈ R is the output and ε ∈ R is
noise. The caveat is that the structure of the function f will be
unknown at this stage. Thus, for modeling purposes, black-box
identification becomes warranted.

The element in question will have to satisfy the following
constraints in order to enable model identification as proposed
in this paper.

1) x and y are measurable.
2) y is a continuous and smooth function of x, but the

structure of the function f(.) is unknown.
3) x has a range xmin < x < xmax, where

xmin, xmax ∈ R, and the values of xmin and xmax
are known.

4) The output remains bounded ∀x in xmin < x < xmax;
implying that |y| < ymax,∀y, where |∗| denotes absolute
value and ymax ∈ R+; however the value of ymax may
be unknown.

5) Noise ε is zero mean white noise where |ε| < εmax,∀ε,
and εmax ∈ R+; however, the value of εmax may be
unknown.

6)
εmax
ymax

< γ where γ ∈ R+, γ << 1, however, the value

of γ may be unknown.

B. Step 2: Select a model structure

The problem in focus deals with an unknown model struc-
ture. An element providing input-output relationship of the
form f , f : R→ R has to be modeled (see (5)).

The Weierstrass Approximation Theorem states that a con-
tinuous real-valued function defined on a real interval can be
uniformly approximated as closely as desired by a polynomial
function [11]. Following that theorem, we choose a polynomial
fθ, fθ : R→ R of the following form

ŷ = fθ(x) (6)

where

fθ(x) =

m∑
i=0

θmx
m (7)



to model the element in question. When the set of model
parameters is denoted as

θ = [θ0, θ1, ..., θm]T (8)

where θ ∈ Rm+1, m ∈ Z+, and a set of output estimates is
denoted as

ˆ̃y = [ŷ1, ŷ2, ...]
T (9)

the aforesaid model can be expressed in matrix form in the
following manner

ˆ̃y = Xθ (10)

where X is a matrix of which a generic ith row denoted by
X̄i is given as follows.

X̄i = [1, xi, x
2
i , ..., x

m
i ] (11)

When using the proposed method, the order of the model,
i.e., m, m ∈ Z+ has to be chosen by the user based on some
a priori knowledge or some reasonable judgment about the
expected complexity of the element. A safe approach to follow
is to select a ‘high’ order model to start with. The parameter
estimation steps described in the coming subsections will
overcome any likely over-fitting. However, the authors are not
able to prescribe a particular number that is reflective of ‘high’
order at this stage. As said before, this becomes a number that
should be decided by the user based on any a priori knowledge
and sensible judgment about the anticipated complexity of the
element in question.

C. Step 3: Compute informative measurement points

This computation of informative measurements is an iter-
ative process done offline prior to taking any measurements
and seeing any measured data. The model structure of adequate
order (i.e., fθ) selected as per subsection III-B will be the sole
guide for this computation. In addition to that, the constraints
and the relevant knowledge about the element as mentioned
in subsection III-A will have to be satisfied.

To start with, we define a value N , N ∈ Z+, and a sequence
given by x̃N = [x1, x2, ..., xN ]T as in (1), that contains
ALL possible measurement points xi that can be measured,
where xi ∈ R, and xmin ≤ xi ≤ xmax ∀xi ∈ x̃N . This
means, if we do not have time or any other constraints, an ideal
and maximally informative measurement task would involve
measuring the whole sequence x̃N .

For the benefit of subsequent computations, we impose
each element in x̃N to be unique (i.e., xi 6= xj for i 6= j
∀xi, xj ∈ x̃N ). Furthermore, we impose x̃N to be in ascending
order, such that x1 = xmin, xN = xmax, and xi < xi+1

∀xi, xi+1 ∈ x̃N . Also, we impose all adjacent elements to be
equally spaced (i.e., |xi−1−xi| = |xi−xi+1| ∀xi−1, xi, xi+1 ∈
x̃N ).

Now suppose, limitation of time or another constraint is pro-
hibiting us from measuring the full sequence x̃N . Therefore,
we would like to measure a subset of x̃N , that is maximally
informative. Constructing such a maximally informative subset
is the next immediate task at hand. The following approach is
proposed to construct such an informative subset.

Select k, k ∈ Z+, k << N arbitrary measurement points
from x̃N as prior measurements, and construct an arbitrary
sequence x̃k given by

x̃k = [x1, x2, ..., xk]T (12)

where x̃k ⊂ x̃N . The value for k here can be decided upon
the user’s discretion and the number can be as low as k = 1.

The matrix Xk should then be constructed using the set x̃k.
Xk come as

Xk =


1 x1 x21 x31 . . . xm1
1 x2 x22 x32 . . . xm2
...

...
...

...
. . .

...
1 xk x2k x3k . . . xmk

 (13)

from which the set of model output estimates ˆ̃yk corresponding
to the set of input points x̃k can be written as

ˆ̃yk = Xkθ (14)

for a set of model parameters θ, θ ∈ Rm+1, m ∈ Z+ (as given
in (8)) that has to be estimated.

For a given x̃k and a corresponding matrix Xk, we would
now like to find the next most informative measurement point
xk+1 where xk+1 ∈ x̃N\x̃k, such that

˜xk+1 := [x̃k
T , xk+1]T (15)

becomes maximally informative in some sense for calibrating
the selected fθ model. Since a polynomial model structure is
dealt with, D-optimal design [1], [4] is adopted as the strategy
for maximizing information.

For an available set x̃k and the corresponding matrix Xk, the
next most informative measurement point x∗k+1 is calculated
as

x∗k+1 = arg max
xk+1

1

k + 1
|XT

k+1Xk+1| (16)

where | ∗ | in (16) denotes the matrix determinant and the
matrix Xk+1 is given by

Xk+1 =

[
Xk

1 xk+1 x2k+1 x3k+1 . . . xmk+1

]
(17)

for any xk+1 ∈ x̃N\x̃k. The solution for (16) becomes the
solution for the D-optimal design problem [1], [4].

By studying equations (12) to (16) it can be seen that
by starting at any available sequence x̃k, the process can
be incremented to find a corresponding ˜xk+1. Thus, the
process is iterative, and can be continued until k reaches its
maximum allowable value N as was specified before. Thus
the integer N would act as a stopping criteria for the iterative
generation of informative measurement points. In a different
perspective, if continued until k reaches N , this process can
be understood as a rearrangement of the points in x̃N in an
order of informativeness with respect to the selected model
fθ. The rearranged version of x̃N constructed in that manner
will henceforth be denoted as x̃N ∗.



D. Step 4: Collecting measurements while calibrating model

Having computed N informative measurement points as
described in subsection III-C and being made available in the
arrangement of x̃N ∗, the objective now should be to collect a
subset of those measurements. This subset should lead to some
convergence of parameter (i.e., θ) estimates with respect to the
selected model (i.e., fθ).

It should be noted that when collecting a subset of measure-
ments, the order of elements in the arranged sequence x̃N ∗

cannot be changed. Collecting a subset of measurements now
implies that starting measuring from the first element of x̃N ∗

and proceeding sequentially through to the last element of x̃N ∗

until model convergence in achieved. The following strategy
is proposed to perform this task.

It is proposed to select three constants p, q, and r such that
N

p
= q +

r

p
(18)

where p, q, r ∈ Z+ and r is the remainder when N is divided
by p. Here, p is a batch size. This means, when conducting
measurements, p sequential and distinct measurements will
be collected at a stretch. A set of p measurements collected
likewise is known as a batch of measurements.

To account for noise, authors propose each measurement in
a batch of p being repeated s, s ∈ Z+ times, and the mean of
the s repetitions being taken as a single measurement as done
in [9].

The values of p and s have do be decided by the user. It
makes sense to select p to be

p << N (19)

as this will make number of possible batches (i.e., q) larger.
The choice for the value of s will often depend on how much
time can be afforded for collecting measurements.

The idea now is to iterate along collecting batches of
measurements. According to (18) it will be possible to measure
q batches at maximum. We will next define a stopping criteria
that will enable stopping measurements at fewer batches while
guaranteeing a degree of satisfactory model calibration.

E. Stopping criteria

Suppose q0, q0 ∈ Z+, 1 < q0 < q, batches of measurements
have been collected. In this subsection we will inquire what the
stopping criteria will be if the measurement taking is to stop at
q0 batches while guaranteeing a degree of model convergence.
If in any way the defined stopping criteria cannot be reached,
measurement-taking is set to proceed until all measurements
in x̃N ∗ are taken.

Consider the case of having measured q0, 1 < q0 < q
batches. The total number of measurements available then will
be u, u ∈ Z+ given as follows.

u = p× q0 (20)

The corresponding measurement sets x̃u and ỹu will be
given in the following form.

x̃u = [x1, x2, ..., xu]T (21)

ỹu = [y1, y2, ..., yu]T (22)

The first v rows, v ∈ Z+, v < u, of the vectors x̃u and ỹu,
or conversely, the first v informative measurements, are then
isolated into the vectors x̃v and ỹv given as follows.

x̃v = [x1, x2, ..., xv]
T (23)

ỹv = [y1, y2, ..., yv]
T (24)

The values u and v will yield a fraction δ given by

δ =
v

u
(25)

where δ < 1. A value for δ has to be chosen by the user and
a rationale for the choice of value is discussed later in this
subsection.

Following (13), the matrices Xu and Xv should then be
constructed from the sets x̃u and x̃v . The corresponding sets
of parameters θu and θv are then estimated as follows (recall
the shape of θ from (8)).

θu = arg min
θ

1

u
(ỹu −Xuθ)

T (ỹu −Xuθ) (26)

θv = arg min
θ

1

v
(ỹv −Xvθ)

T (ỹv −Xvθ) (27)

θu and θv are denoted as follows.

θu = [θ(0)u , θ(1)u , ..., θ(m)
u ]T (28)

θv = [θ(0)v , θ(1)v , ..., θ(m)
v ]T (29)

Now, we define a cost functions Diff(u) such that

Diff(u) =
1

m+ 1

m∑
j=0

|θ(j)u − θ(j)v |
|θ(j)u |

(30)

which is defined for θ(j)u 6= 0. | ∗ | in (30) denotes the absolute
value.

The stopping criteria is defined for measurement-taking to
stop when the condition in (31)

Diff(u) ≤ d (31)

becomes satisfied for a threshold value d, d ∈ R+, d << 1
specified by the user, subject to

u ≥ m+ 1 (32)

given that the order of the assumed model is m (recall model
order from (7)).

The intuition of this stopping criteria is that the parameter
set θv estimated from the first v informative measurements, is
on average within 100d% of the parameter set θu estimated
from the first u informative measurements (recall that u > v
from (25)). Thus, the stopping criteria indicates the conver-
gence of the estimated model parameter values. Smaller the
value of d, greater the convergence will be, and the harder to
achieve.

The value of δ (in (25)) that has to be set by the user,
indicates what fraction v will be with respect to u. A popular



choice can be δ = 0.7, following the common 70:30 (which
is sometimes exploited as 70:100) training and testing data
split regularly practiced in machine learning exercises [12].
Generally, a range of 0.5 < δ < 1 should be adequate. But,
one would want to avoid getting too close to 0.5 and too close
to 1. Thus, around the ∼ 0.7 mark can be considered a sensible
choice.

When the stopping criteria is reached either by way of
Diff(u) ≤ d or the measurement count reaching N , the re-
sulting identified model can be expressed as a set of parameters
in the following manner.

θ = θu (33)

This parameter set θ would yield a model fθ (recall its shape
from (7)) that represents the nonlinear element f in question,
accomplishing the system identification task.

IV. RESULTS

A. The static nonlinear element

The methodology was experimented by trying to identify
a model for the static nonlinear element given in (34). The
element’s properties are given in Table I.

y = exp(−2x) sin(7πx) + exp(−3x) + 0.5 + ε. (34)

TABLE I
THE IMPORTANT PROPERTIES OF THE ELEMENT IN (34).

Parameter Symbol Value
Minimum of x xmin 0
Maximum of x xmax 1
Noise Threshold γ 0.05

B. Computing informative measurements

The parameters set for computing informative measure-
ments are given in Table II.

TABLE II
THE PARAMETERS SET FOR COMPUTING INFORMATIVE MEASUREMENTS

Parameter Symbol Value
Model order m 15
Maximum number of measure-
ments

N 1,001

C. Taking measurements

Table III provides the parameters set for measurement-
taking and termination. Once the informative input se-
quence was computed, the termination of the corresponding
measurement-taking process was investigated with noisy mea-
surements. The number of measurements taken to reach the
termination criteria across 50 repetitions of this measurement-
taking process are plotted as a histogram in Figure 1.

TABLE III
PARAMETERS SET FOR MEASUREMENT-TAKING AND TERMINATION

Parameter Symbol Value
Model order m 15
Maximum number of measure-
ments

N 1,000

Batch size p 5
Number of batches q 200
Model convergence data ratio δ 0.7
Termination threshold d 0.01

Fig. 1. Histogram over 50 trials from the work of this paper showing the
number of measurements taken for the model to converge, mean = 114
measurements, std = 70 measurements.

Fig. 2. Histogram over 50 trials from [9], showing the number of measure-
ments taken for the model to converge, mean = 164 measurements, std = 76
measurements.

Figure 2 (taken from [9]) provides a histogram similar to
that of Figure 1. The histogram of Figure 2 shows the number
of measurements taken to reach the termination criteria across
50 repetitions of identifying a model for the same element
in (34), via an in-the-loop information maximization method
that uses computationally intensive Gaussian Process (GP)
regression [8], [13]. The work of [9] and the results of Figure 2
also stem from a termination criteria of 0.01 indicative of
model convergence (similar to the value of d in this work,
see Table III).

A downside of the in-the-loop information maximization
method of [9], is the repetitive use of GP while taking
measurements. This poses a computation and data interfacing
burden to measurement-taking, as on one side GP is com-
putationally intensive, and on the other side access to data



is required in real-time to calculate next best informative
measurement points. Unlike that method in [9], the method
proposed in our present paper does the informative input
design offline before conducting any measurements or seeing
any data. Therefore, an advantage of the present method is its
ability to reduce the computation and interfacing burden that
prevail with in-the-loop methods like in [9].

Although the advantage of reducing computation and in-
terfacing burden remains with the present method, it has a
weakness in not being able to produce models as ideal as
what an in-the-loop method can produce. This is evident
from Figure 3 (showing a model produced from in-the-loop
information maximization in [9]) and 4 (showing a model
produced from the present method). On closely observing
Figure 4, it can be seen how the identified model subtly
deviates from the general trend of data while the model in
Figure 3 almost never does so. Authors suspect the reason
behind this could be the limitation of the present method
doing information maximization offline using only x data,
while in-the-loop methods (like in [9]) might be doing superior
information maximization as they can exploit both x and y
data streams.

Fig. 3. Behavior of an estimated model in [9] alongside the noisy system.

Fig. 4. Behavior of an estimated model in the present paper alongside the
noisy system.

V. CONCLUSIONS

An information driven measurement taking and system iden-
tification method was presented for identifying static nonlinear

elements. The method involves computing informative mea-
surement points offline via D-optimal design information max-
imization, and taking measurements on those calculated points
while performing fast in-the-loop calibration of a polynomial
model. D-optimal design criteria for computing informative
measurement points, and progressing (and termination) criteria
for measurement-taking were proposed. The key benefit of this
method is its ability to reduce the burden of in-the-loop com-
putation when taking measurements, as information maximiza-
tion and designing of input points is done offline prior to taking
any measurements, or seeing any data. This method showed
ability to converge faster (i.e., in fewer measurements) than
a previously presented in-the-loop information maximization
method [9] that operated on comparable model convergence
constraints. However, this method showed a disadvantage in
the identified model being less ideal than what could be
identified via in-the-loop information maximization as done
in [9]. Therefore, it will be useful to further improve offline
information maximization methods to become able to perform
equivalent to in-the-loop information maximization methods,
while preserving the advantage of computational simplicity.
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