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Abstract—The paper discusses the sensor selection problem
in estimating spatial fields. It is demonstrated that selecting
a subset of sensors depends on modelling spatial processes. It
is first proposed to exploit Gaussian process (GP) to model a
univariate spatial field and multivariate GP (MGP) to jointly
represent multivariate spatial phenomena. A Matérn cross-
covariance function is employed in the MGP model to guarantee
its cross-covariance matrices to be positive semi-definite. We then
consider two corresponding univariate and multivariate sensor
selection problems in effectively monitoring multiple spatial
random fields. The sensor selection approaches were implemented
in the real-world experiments and their performances were
compared. Difference of results obtained by the univariate and
multivariate sensor selection techniques is insignificant; that is,
either of the methods can be efficiently used in practice.

Index Terms—Sensor selection, multivariate, univariate, spatial
fields, Gaussian process, multimodal sensing, multivariable

I. INTRODUCTION

Sensor selection for estimating spatial fields, which we call
spatial sensor selection, is a fundamental but critical problem
in various monitoring applications [1]. In practice, spatial
sensors, monitoring spatial phenomena, can be excessively de-
ployed in a sensing task partly due to their low cost, which may
lead to an over-sampling issue in a system. The over-sampling
problem is defined as multiple sensors deployed maximally
recording quite similar data causing redundancy in sensor
measurements. The redundancy is operationally expensive
since it requires more memory, computation, communication,
maintenance and energy resources while redundant data does
not contribute any additional information to a sensing system.
Therefore, selecting the most informative sensors out of all
possible ones is an important problem to address.

The critical crux in the spatial sensor selection is that
selected sensors are able to not only effectively observe
spatial phenomena but also efficiently predict the fields at any
unmeasured locations of interest [2]. In other words, selected
sensors are equipped by a spatial process model to represent

spatial fields and to predict the fields at unobserved locations.
The argument leads to the spatial sensor selection problem
that selects the most informative sensors through minimizing
prediction uncertainties at predicted locations. Thus, spatial
modelling is important in the spatial sensor selection formu-
lation.

Single or univariate spatial process, e.g. indoor temperature,
can be mathematically modelled through a statistical model
such as Gaussian process (GP) [3]. And, the sensor selection
problem in monitoring a univariate spatial field, which is also
called the univariate sensor selection, has been well studied
[4]. In cases there exist multiple or multivariate spatial pro-
cesses in the same environment, e.g. indoor temperature and
humidity, they may have cross-correlation [5]. If those spatial
phenomena are simultaneously observed, presence of their
cross-correlation may influence on results of the spatial sensor
selection for monitoring multivariate spatial fields, which here
we define as the multivariate sensor selection. Since, to the
best of our knowledge, the multivariate sensor selection has
not been well studied yet, does it outperform the univariate
sensor selection? In this paper, we discuss comparison of
spatial prediction results correspondingly obtained by both the
approaches.

We first exploit GP to model a univariate spatial field. To
represent multivariate spatial phenomena we employ multi-
variate Gaussian process (MGP) [6] with a Matérn cross-
covariance function that was proved to produce valid cross-
correlation between multiple spatial processes [7]. The spatial
sensor selection approaches were implemented in the real-life
experiments where the obtained results demonstrate their ef-
fectiveness. The remaining of the paper is arranged as follows.
We introduce the univariate and multivariate models in Section
II before discussing the spatial sensor selection problems in
Section III. Section IV summarizes our experimental results
with discussions before conclusions are drawn in Section V.



II. UNIVARIATE AND MULTIVARIATE MODELS

In order to formulate the multivariate and univariate sensor
selection problems for finding the most informative sensor
nodes in efficiently estimating spatial fields, this section in-
troduces the corresponding multivariate and univariate models
that can be employed to represent spatial processes given a
limited number of sensor measurements and then predict them
at unmeasured locations of interest.

A. Univariate Spatial Prediction

In univariate scenarios, we only consider a single spatial
random phenomenon, e.g. temperature [8]. It is assumed that
n sensors positioned at locations s = (sT1 , ..., sTn )T ∈ Rn×d,
where d is dimension of the environment, are used to measure
that spatial process at their locations. A measurement yi
collected by an ith sensor can be mathematically modelled
by

yi = x(si)β + w(si) + ε(si), (1)

where x(si) is a vector of the spatially referenced covariates
while β is a vector of the trend parameters. The x(si)β presents
trend of the spatial phenomenon at locations si. The spatial
trend can be constant, first or second orders and chosen by
users. For instance, if we select the second order trend, then
x(si) and β are a 1×6 and a 6×1 vectors, respectively. w(si) is
a latent random function that is proposed to be represented by
a zero-centred Gaussian process (GP) while ε(si) is a normally
distributed independent and identically distributed noise with
a zero mean and an unknown variance τ2.

Let y = (y1, ..., yn)T , w(s) = (w(s1), ..., w(sn))T and
x(s) = (s(s1)T , ..., x(sTn ))T . If it is assumed that there are
p unobserved locations of interest in the environment z =
(zT1 , ..., zTp )T ∈ Rp×d, then their corresponding variables can
be predicted through a posterior normal distribution where its
posterior mean and covariance matrix can be computed by,

µz|s = x(z)β + Σzs(Σ + τ2I)−1(y− x(s)β), (2)

Σz|s = Σzz − Σzs(Σ + τ2I)−1ΣTzs, (3)

where x(z) is a covariate matrix corresponding to z while I
is an n × n identity matrix. Both Σ and Σzz are covariance
matrices of random variables at locations s and z, respectively.
Σzs is an p × n cross-covariance matrix between random
variables of a single spatial process presented at z and s. It
is noted that the covariance and cross-covariance matrices Σ,
Σzz and Σzs can be calculated by the use of a covariance
function such as the squared exponential function [2], where its
hyperparameters can be estimated by the maximum likelihood
method [9] given collected sensor measurements.

B. Multivariate Spatial Prediction

In some practical scenarios, several spatial phenomena
are monitored simultaneously [5]. Though each spatially
distributed process can be modelled individually, cross-
correlation between them is ubiquitous [10]. In those cases,
we expect to model multiple spatial fields jointly.

It is assumed that we have m different types of sensors
to monitor m spatial phenomena that the different types of
sensors are co-located. n sensors for each type are positioned
at locations s, and all the collected measurements are mathe-
matically modelled by

Y = X(s)β + W(s) + ε(s), (4)

where Y = (yT1 , ..., yTm)T , β = (βT1 , ..., β
T
m)T and

X(s) =


x1(s) 0 · · · 0

0 x2(s) · · · 0
...

...
. . .

...
0 0 · · · xm(s)

 .
The measurement noises are now modelled by a multivariate
normal distribution ε ∼ MVN(0,Ψ), where the dispersion
matrix Ψ is arranged by

Ψ =


τ21 I 0 · · · 0

0 τ22 I · · · 0
...

...
. . .

...
0 0 · · · τ2mI

 ∈ Rmn×mn

W(s) = (wT (s1) · · ·wT (sn))T , which is jointly modelled
by a MVP W(s) ∼ MGP (0,Σm). The multivariate cross-
covariance matrix Σm is given by

Σm =


C11 C12 · · · C1m

C21 C22 · · · C2m

...
...

. . .
...

Cm1 Cm2 · · · Cmm

 ∈ Rmn×mn,

where Cii is a univariate covariance matrix computed from
only a single ith spatial field. Cij is a cross-covariance matrix
calculated between any two ith and jth spatial phenomena,
where 1 ≤ i 6= j ≤ m. Computing the univariate covariance
matrix Cii is widely known [2]; however, working out the
cross-covariance matrix Cij is not completely straightforward
due to its ill-famed requirement of positive semi-definite. To
this end, Gneiting et al. in [7] proposed a colocated correlation
coefficient ρij to account for cross-correlation between spatial
process components. That is, the cross-covariance matrix can
be calculated as follows,

Cij = Cji = ρijCOV(h | θ),

where COV(h | θ) is a covariance function, θ is a vector
of its hyperparameters and h ∈ Rd is a separation vector
between any two locations s. The authors of [7] proposed to
use the Matérn covariance function and proved a valid ρ12 for
two spatial processes so that a cross-covariance matrix Cij is
guaranteed to be positive semi-definite, which demonstrates in
the following theorem.



(a) Multivariate prediction of temperature (b) Univariate prediction of temperature (c) Multivariate univariate temperature prediction
difference

(d) Multivariate prediction of humidity (e) Univariate prediction of humidity (f) Multivariate univariate humidity prediction dif-
ference

Fig. 1: Comparison of multivariate versus univariate prediction of temperature (top row) and humidity (bottom row). Each
prediction is obtained by the 20 measurements collected by the 20 sensors.

Theorem 1: [7] If ν12 = 1
2 (ν1+ν2) and κ12 ≥ max(κ1, κ2),

the colocated correlation coefficient ρ12 is computed by

ρ12 =
1

2

(
κ1
κ12

)ν1 ( κ2
κ12

)ν2√Γ(ν1 + 0.5d)Γ(ν2 + 0.5d)√
Γ(ν1)Γ(ν2)

(5)

× Γ(0.5(ν1 + ν2))

Γ(0.5(ν1 + ν2 + d))
,

where νi and κi are the Matérn smoothness and spatial scale
parameters of a component process, respectively, while Γ(·)
denotes a gamma function.

Similar to the univariate modelling presented in Section
II-A, multiple spatial phenomena at unmeasured locations
z can also be predicted by the use of (2) and (3) with
some updates. Both y and x(s) are replaced by Y and X(s),
respectively. Σ is replaced by Σm while τ2I is altered by Ψ.

X(z) =


x1(z) 0 · · · 0

0 x2(z) · · · 0
...

...
. . .

...
0 0 · · · xm(z)

 .
Both a covariance matrix Σzz ∈ Rmp×mp and a cross-
covariance matrix Σzs ∈ Rmp×mn can be computed as Σm.
It is noted that these covariance and cross-covariance matrices
are accounted for multiple spatial fields.

C. Comparison of Multivariate and Univariate Modelling
In order to demonstrate how well the univariate and multi-

variate modelling can model and then predict spatial processes,

we conducted the experiments with the temperature and hu-
midity sensors to monitor the indoor climate. There were 20
temperature and 20 humidity sensors utilized in the experi-
ments. The experiment set-up and the data collection will be
discussed in detail in Section IV. In this section, we present
difference of two predictions, for each spatial phenomenon of
temperature and humidity, in the whole experimented environ-
ment, obtained by the univariate and multivariate models. In
other words, given the 20 temperature measurements and the
20 humidity measurements, we built two univariate models as
presented in Section II-A separately. Each built model was
then employed to predict its corresponding spatial process at
the 2500 unmeasured locations on a grid uniformly distributed
in the space. The obtained results are visualized in Figures
1b for the temperature and 1e for the humidity, respectively.
Moreover, we also used the 40 temperature and humidity mea-
surements to jointly build a multivariate model as presented
in Section II-B, which was then exploited to concomitantly
estimate the temperature and humidity at the similar 2500
unobserved locations. The predicted results are depicted in
Figures 1a and 1d correspondingly. Qualitatively, a pair of
Figures 1a and 1b (likewise 1d and 1e) are highly comparable.
More importantly, to quantify difference in each pair, we
computed difference of the predictions at each of the 25000
locations and summarized all the differences in histograms as
shown in Figures 1c and 1f, for the temperature and humidity,
respectively. Interestingly, there is no difference between the
predictions obtained by the multivariate and univariate models



in the temperature scenario. However, the difference occurs
in the humidity example though the different values are very
small, less than 1%, quite uniformly ranging from -0.8% to
0.7%.

III. SPATIAL SENSOR SELECTION

Spatial sensor selection is a fundamental problem in various
applications [1]. The critical crux of a sensor selection problem
is to select the most informative subset of sensor nodes out
of all possible ones, which can be utilized to efficiently
predict spatial fields at any unmeasured positions of interest.
In equivalent words, the sensor selection problem requires
an incorporated spatial modelling representation such as the
univariate or multivariate models introduced in Section II. It
is noticed that in multivariate scenarios, different types of
sensors are assumed to be colocated. For instance, to monitor
temperature and humidity spatial processes, two temperature
and humidity sensors are embedded on a single device and
deployed at one location.

A. Problem and Solution

In order to effectively predict spatial phenomena observed
by selected sensors as expectation of the spatial sensor se-
lection problem, uncertainty at prediction results must be
minimized. It is required to minimize predicted variances at
unmeasured locations of interest given measurements gathered
by selected sensors. If the multivariate and univariate models
are employed, a predicted covariance matrix can be calculated
by (3) for a single field or a similar calculation for a multivari-
ate as discussed in Section II-B. Then all predicted variances
of predicted locations z lie along a diagonal of the covariance
matrix. Therefore, if P denotes a set of all possible sensors
and C denotes a selected subset of sensors, then a spatial
sensor selection problem can be formulated as an optimization
problem as follows,

Copt = argmin
C ⊂ P

tr(Σz|sC ), (6)

Fig. 2: Values of the objective functions in the sensor selection
problems. The red solid curve was obtained from the multi-
variate temperature and humidity jointly while the blue solid
curve was added from the univariate temperature and humidity
separately.

where tr(Σz|sC ) is trace of a covariance matrix Σz|sC , and sC
is locations of the selected sensors in the subset C. Mathemat-
ically, it is quite straightforward to prove that (6) is NP-hard
[2]. Although solving (6) in polynomial time is intractable, the
spatial sensor selection optimization problem can be efficiently
and near-optimally addressed by an approximate algorithm,
e.g. greedy. Interested readers are referred to [2] for more
detail about the algorithm.

B. Selection Comparison

To show how the spatial sensor selection works and compare
influence of the multivariate and univariate spatial modelling
on sensor selection results, we continue the experiments we
briefly mentioned in Section II-C. It is supposed that we expect
to select 1 to 10 most informative sensors out of 20 potential
ones in both the temperature and humidity cases. Given the
measurements, we first built two univariate models and one
multivariate model. We then run the greedy algorithm [2]
to solve the optimization problem (6) three times, given the
univariate temperature model, the univariate humidity model
and the multivariate model, respectively. The values of the
objective function in (6) corresponding to the selected subset
of the sensors were summarized and are demonstrated in Fig.
2. More specifically, the red solid curve presents the objective
function values when the algorithm selected 1 to 10 most infor-
mative sensor nodes given the multivariate model. Likewise,
the blue curve is a sum of all the predicted variances in both
the temperature and humidity fields, obtained by two separate
algorithm runs for two univariate corresponding models. It can
be clearly seen that difference between the optimization values
under the multivariate and univariate modelling is trivial,
slightly increased when a number of the selected sensors
increase.

Moreover, locations of the 10 selected sensor nodes are
illustrated in Fig. 3, where the blue circles are locations
jointly selected by the multivariate sensor selection method for
both the temperature and humidity sensors. In considerations
of the univariate sensor selection, the 10 most informative
temperature sensors are located at the red stars in Fig. 3a
while those for measuring the humidity are positioned at the
red triangles in Fig. 3b. In both the scenarios, the selections
obtained by the multivariate and univariate algorithms are
concurrent up to 9 out of 10 sensor nodes.

IV. EXPERIMENTAL RESULTS

The section demonstrates in more detail how effectively
a subset of sensor nodes selected by the multivariate and
univariate sensor selection techniques can monitor spatial
fields. We implemented the methods in the experiments using
two networks of two different types of temperature and hu-
midity sensors to observe the indoor climate at the Nanyang
Technological University campus, Singapore.

A. Experimental Data Collection

The experiments were conducted at the room S2.1.B4.01,
which is 19.80 m in length and 14.86 m in width, on the 25th



(a) Temperature sensor node selection (b) Humidity sensor node selection

Fig. 3: Selecting the 10 most informative sensor nodes out of 20 potential ones, obtained by the multivariate sensor selection
approach (blue circles) and the univariate sensor selection method (temperature sensors - red stars) - (humidity sensors - red
triangles).

(a) Multivariate temperature mean (b) Multivariate temperature std (c) Multivariate humidity mean (d) Multivariate humidity std

(e) Univariate temperature mean (f) Univariate temperature std (g) Univariate humidity mean (h) Univariate humidity std

Fig. 4: Column-wise comparison of predicted temperature and humidity fields (mean and stand deviation (std)) obtained by
the 10 most informative sensor nodes that are selected by the multivariate and univariate sensor selection approaches. The
corresponding selected sensor nodes are demonstrated by the white circles.

of April, 2016. In the experiments, 20 Libelium temperature
and 20 Libelium humidity sensors were utilized to observe the
indoor temperature and relative humidity. Due to the Libelium
sensor board design, a pair of the temperature and humidity
sensors are integrated in the same device. That is, when we
deployed the sensors, that pair was colocated. We formed
the 40 sensors into two separate networks monitoring two
separate spatial random fields. In each network, the sensors
were wirelessly communicated and deployed at 20 predefined
locations in the room. The collected measurements at each
sensor were transmitted to a base station through a wireless
router [11]. As the collected data can be used to evaluate
human comfort in a building, we deliberately deployed all the
sensors on the same plane at a sitting level.

B. Results and Discussion

We now investigate to see how well the 10 most informative
sensor nodes selected by the method as presented in Section
III can monitor the spatial phenomena. Note that one may
select 6, 12 or any number of sensors that suit to a particular
application. For reasons of space, in this work, we demonstrate
the results corresponding to the 10 selected nodes only.

Let us remind that there are two subsets of the 10 se-
lected temperature (likewise, humidity) sensor nodes obtained
by both the multivariate and univariate sensor selection ap-
proaches as discussed in Section III. In the multivariate
scenario, since the 10 most informative sensor nodes were
jointly selected by the multivariate sensor selection approach,
we employed all the 10 corresponding temperature and 10
corresponding humidity measurements to build a multivariate
model and then utilized the model to simultaneously predict
two spatial processes at the 2500 unmeasured locations as



(a) Temperature difference (b) Humidity difference

Fig. 5: Differences between the spatial field predictions ob-
tained by all 20 sensors and 10 selected sensors that are ob-
tained by the either multivariate or univariate sensor selection
approaches.

introduced in Section II-C. The results of the predicted fields
and variances are depicted in Figures 4a and 4b for the
temperature and Figures 4c and 4d, respectively. In contrast, in
the univariate scenarios, for each subset of the selected sensors,
we developed a univariate model from the 10 corresponding
measurements. That is, we have two univariate models, one for
the temperature and one for the humidity. By the use of two the
univariate models separately, we also independently predicted
the spatial phenomena at the 2500 unobserved positions.
The predicted results in the univariate scenario are shown
in Figures 4e, 4f, 4g and 4h. In each column of Fig. 4,
we can now compare the results corresponding obtained by
the multivariate versus univariate sensor selection approaches.
Visually, difference in each column is trivial. Furthermore,
though only the 10 sensors were used to take the measure-
ments, the prediction uncertainty, in both the scenarios, is
quite low, which is highly practical in building monitoring
applications [11].

TABLE I: Quantiles of Prediction Errors

Spatial Fields Quantiles
5% 50% 95%

Temperature (Multivariate) -0.44 0.04 0.57
Temperature (Univariate) -0.43 0.01 0.50
Humidity (Multivariate) -2.47 -1.22 1.21
Humidity (Univariate) -2.04 -0.90 0.86

More specifically, we quantified errors between the predic-
tions obtained by the selected subsets of the sensor nodes
and those obtained by all the 20 sensors. In other words,
we computed errors between the predictions shown in Fig. 4a
against Fig. 1a and Fig. 4c against Fig. 1d for the multivariate
scenarios, and likewise Fig. 4e against Fig. 1b and Fig. 4g
against Fig. 1e for the univariate scenarios. Those errors were
summarized in the box plots as illustrated in Fig. 5. It can be
clearly seen that the errors in both the scenarios are relatively
small, which demonstrate effectiveness of the spatial sensor
selection methods. Furthermore, we statistically summarize

quantiles of these prediction errors in Table I. The quantile
results show that 90% of the temperature errors between the
predictions obtained by the multivariate and univariate sensor
selection techniques are within about 0.5 oC while those in
the humidity scenarios range at most from -2.47% to 1.21%
though the univariate sensor selection occurs slightly better.

V. CONCLUSIONS

Two spatial sensor selection problems utilizing univariate
and multivariate models in effectively monitoring spatial ran-
dom processes have been considered in the paper. Spatial mod-
elling is required in the spatial sensor selection problems as it
provides selected sensors with ability to predict spatial fields at
unmeasured locations. Therefore, GP and MGP are exploited
to model a univariate and multivariate spatial phenomena,
respectively, which also allows selecting the most informative
sensor nodes through minimizing prediction uncertainty. The
efficient greedy algorithm [2] was used to solve the sensor
selection optimization problems, where its implementation and
the corresponding results obtained in the real-life experiments
of monitoring the indoor temperature and relative humidity
validated effectiveness of the selection methods. Compari-
son of the prediction results obtained by the univariate and
multivariate sensor selection techniques was also made with
insignificant difference shown.
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