
“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.”

Binary Spectrum Feature for Improved Classifier Performance

Nalika Ulapane1, Karthick Thiyagarajan 2 and Sarath Kodagoda2

Abstract— Classification has become a vital task in modern
machine learning and Artificial Intelligence applications, in-
cluding smart sensing. Numerous machine learning techniques
are available to perform classification. Similarly, numerous
practices, such as feature selection (i.e., selection of a subset
of descriptor variables that optimally describe the output), are
available to improve classifier performance. In this paper, we
consider the case of a given supervised learning classification
task that has to be performed making use of continuous-valued
features. It is assumed that an optimal subset of features has
already been selected. Therefore, no further feature reduction,
or feature addition, is to be carried out. Then, we attempt to
improve the classification performance by passing the given
feature set through a transformation that produces a new
feature set which we have named the “Binary Spectrum”. Via
a case study example done on some Pulsed Eddy Current
sensor data captured from an infrastructure monitoring task,
we demonstrate how the classification accuracy of a Support
Vector Machine (SVM) classifier increases through the use of
this Binary Spectrum feature, indicating the feature transfor-
mation’s potential for broader usage.

I. INTRODUCTION

Supervised learning in regards to classification builds
models of the distribution of given class labels in terms of
given predictor variables (or features). The learned models
(known as Classifiers) can then serve to assign class labels to
provided testing instances where the predictor variable values
(or features) are known, but the class labels are unknown
[1]. Performing classification in such manner has become a
common and vital component in the modern-day use of Arti-
ficial Intelligence. Many techniques such as Decision Trees,
Discriminant Analysis, Perceptron-based techniques (e.g.,
Neural Networks), Logistic Regression, Bayesian Networks,
Instance based learning (e.g., Nearest Neighbour Classifiers),
Ensemble Classifiers, and Support Vector Machines (SVM)
have been developed to learn and perform classification [1],
[2], [3], [4]. More recently, deep learning based classification
techniques too have been developed [5].

Over-fitting, lack of accuracy, and computation cost are
some of the commonly encountered challenges when devel-
oping classifiers. It can be understood that over-fitting and
computation cost become issues especially when working
with high dimensional data. Feature selection (or feature

1Nalika Ulapane is with the Department of Electrical and
Electronic Engineering, The University of Melbourne, Parkville VIC
3010, Australia. nalika.ulapane@unimelb.edu.au &
nalika.ulapane@gmail.com

2Karthick Thiyagarajan and Sarath Kodagoda are with the UTS
Robotics Institute, University of Technology Sydney, Ultimo NSW
2007, Australia. Karthick.Thiyagarajan@uts.edu.au,
Sarath.Kodagoda@uts.edu.au

Corresponding Author: Karthick Thiyagarajan

reduction) is a commonly followed practice to overcome the
curse of dimensionality. That practice in return does on occa-
sions help alleviate some of over-fitting and accuracy-related
issues as well. Following literature, one can categorize the
methods available for feature reduction to be three-fold: (1)
Filter methods; (2) Wrapper methods; and (3) Embedded
methods [6], [7]. In our paper, we consider the case where an
optimal feature selection has already been carried out. That
means, we focus on a supervised learning classification task
that has to be performed with a given set of features, with no
further feature reduction or feature addition being allowed.
We assume the features to be real and continuous-valued for
this paper. Now suppose there is some benchmark accuracy
that can be achieved by using the feature set as it is. Then, we
ask the question, whether that benchmark accuracy can be
overtaken by performing some transformation to the existing
feature set. We contribute in this paper by answering that
question, via introducing a feature transformation we name
the “Binary Spectrum feature transformation”.

Derivation of the Binary Spectrum feature is presented in
detail in this paper. Following derivation, we demonstrate
the effectiveness of this Binary Spectrum transformation by
benchmarking accuracy, and overtaking that benchmarked
accuracy of an SVM-based classification task. Classification
is performed on some Pulsed Eddy Current (PEC) sensor
data. This dataset has been collected from an automated
infrastructure monitoring exercise performed on a ferromag-
netic critical water pipe [8], [9]. The class labels are reflective
of the thickness of the pipe wall on points where sensing
has been done. Descriptor variables happen to be some real
continuous-valued features extracted from the corresponding
PEC signals [8], [9], [10], [11].

The Binary Spectrum feature transformation happens to
transform a given set of real continuous-valued features to
a set containing both continuous-valued and discrete-valued
categorical-like data (i.e., binary data). This categorical-like
data subset is derived from the original continuous-valued
dataset. The rationale behind the evident improvement in
classification accuracy resulting from this transformation
can be argued to be the effect of this combination of two
data-types: (1) The natural continuous-valued features; (2)
Categorical-like component derived from the natural features.

The structure of the paper is as follows: Section II mathe-
matically formulates the problem of improving the accuracy
of a given classifier, or a classification task; Section III
presents the derivation of the Binary Spectrum feature trans-
formation and presents an algorithm to find best performing
classifiers; Section IV presents the effectiveness of the pro-
posed method via a demonstrative example performed on

PEC sensing data, and Section V concludes the paper by
discussing the implications of the results, limitations of this
study, and potential avenues for future work.

II. PROBLEM FORMULATION

We consider a binary classification (i.e., two-class classi-
fication) supervised learning problem that has to be solved
making use of continuous-valued features. As such, let there
be a given binary classifier, trained by the training data
Xt ∈ Ra×b and Yt ∈ Ba where Ba denotes an a× 1 vector
of binary digits. We make the following assumption about
the training data.

Assumption 1: The training features (i.e., Xt) is an optimal
subset of training features, i.e., no further feature reduction
or feature addition is to be done.

Assumption 2: The two classes in the set of training
labels (i.e., Yt) are evenly (or equally) populated, i.e., there
is approximately a 50:50 population ratio between the two
classes.

The vector Yt ∈ Ba containing training labels (or the
training targets) is given by

Yt =
[
yt1 yt1 . . . yt1 yt2 yt2 . . . yt2

]T
1×a (1)

where yt1 = 0, yt2 = 1, and [∗]T denotes matrix transpose.
The corresponding training features contained in Xt(∈Ra×b)
are given by

Xt =


xt11 xt12 . . . xt1 j . . . xt1b

...
...

. . .
...

. . .
...

xti1 xti2 . . . xti j . . . xtib
...

...
. . .

...
. . .

...
xta1 xta2 . . . xta j . . . xtab


a×b

(2)

where i, j ∈ Z+ are generic subscript notations where
1 ≤ i ≤ a and 1≤ j ≤ b.

Similarly, the testing dataset on which the classifier is to
make predictions, is given by the corresponding matrices
Xte ∈ Rc×b and Yte ∈ Bc.

Yte =
[
yte1 yte1 . . . yte1 yte2 yte2 . . . yte2

]T
1×c (3)

Here, yte1 = 0, yte2 = 1.

Xte =


xte11 xte12 . . . xte1 j . . . xte1b

...
...

. . .
...

. . .
...

xtei1 xtei2 . . . xtei j . . . xteib
...

...
. . .

...
. . .

...
xtec1 xtec2 . . . xtec j . . . xtecb


c×b

(4)

i, j ∈ Z+ here are generic subscript notations where
1 ≤ i ≤ c and 1≤ j ≤ b.

With this data, we define the following operations
o(Xt) = Xtu and o(Xte) = Xteu with respect to u ∈ Rb×b. u
here is an orthonormal basis of Xt .

Now suppose, a classifier trained with the above de-
fined data (i.e., o(Xt),Yt) is given, and it is denoted as
C, C : Rd×b→ Bd . This classifier would predict the classes

(i.e., 0 or 1) for the testing data Xte. The prediction output
will come in a vector Ŷte ∈ Bc given as follows.

Ŷte =C(o(Xte)) (5)

The vector err is then defined in order to compute the
classification accuracy.

err = Ŷte−Yte (6)

Locations of err corresponding to instances of a correct
prediction having been made would carry zeros. Therefore,
we define the total number of zeros in err as sum0. With that
we define the classification accuracy acc in the following
manner.

acc =
sum0

c
×100% (7)

As such, acc can be represented as a function in the
following manner.

acc = g(Xt ,Yt ,Xte,Yte) (8)

The objective now will be to increase the classification
accuracy (i.e., to increase acc) using the same set of features
Xt and Xte without any reduction or addition of features re-
specting Assumption 1. Accomplishing this objective under
Assumption 1 is the reason for this paper introducing the
Binary Spectrum feature transformation.

III. DERIVING THE BINARY SPECTRUM FEATURE

Binary Spectrum transformation is performed by applying
a function f , f : Re×b → Be×bn, n ∈ Z+ to features Xt and
Xte in the following manner.

Xtb =
[
Xt f (Xt ,n)

]
(9)

f (Xt ,n) =


f (xt11,n) . . . f (xt1 j,n) . . . f (xt1b,n)

...
. . .

...
. . .

...
f (xti1,n) . . . f (xti j,n) . . . f (xtib,n)

...
. . .

...
. . .

...
f (xta1,n) . . . f (xta j,n) . . . f (xtab,n)


(10)

Xteb =
[
Xte f (Xte,n)

]
(11)

f (Xte,n) =


f (xte11,n) . . . f (xte1 j,n) . . . f (xte1b,n)

...
. . .

...
. . .

...
f (xtei1,n) . . . f (xtei j,n) . . . f (xteib,n)

...
. . .

...
. . .

...
f (xtec1,n) . . . f (xtec j,n) . . . f (xtecb,n)


(12)

Here, the matrix sizes come as a× b(n+ 1) for Xtb and
c× b(n+ 1) for Xteb. Also, f (xti j,n) and f (xtei j,n) for any
xti j ∈ R or xtei j ∈ R, is defined as

f (xi, j,n) =
[
.

]
1×n (13)

where f does some scaling to xi, j and rounds it off to the
nearest integer (discussed in the remainder of this section),
and produces

[
.

]
, which is the binary value of the

scaled and rounded xi, j given to n bits.

To perform the transformation done by f for a prescribed
number of bits (i.e., n), we first scale xi, j values to remain
within the two bounds llow and lup defined as follows.

llow = 0 (14)

lup = 2n−1 (15)

Now consider the example where the training data point
xti j is to be scaled. To scale xti j, governed by the column
subscript of xti j, we select the jth column of the correspond-
ing training feature matrix Xt . The jth column symbolized as
Xt j| ∈ Ra comes as follows.

Xt j|=
[
xt1 j . . . xti j . . . xta j

]T
1×a (16)

The minimum and maximum values contained within Xt j|
are denoted as min(Xt j|) and max(Xt j|) respectively. With
those, we define the scaling of any training feature value xti j
as follows:

xti js = llow +
xti j−min(Xt j|)

max(Xt j|)−min(Xt j|)
(lup− llow) (17)

where xti js is the scaled value of xti j.
Now consider the case of scaling testing feature values

in Xte. To scale any testing feature value xtei j, we consider
the same min(Xt j|) and max(Xt j|) coming from Xt j|. This
selection is governed by the column subscript of xtei j.

With those, we define the scaling of any testing feature
value xtei j as follows:

xtei js = llow +
xtei j−min(Xt j|)

max(Xt j|)−min(Xt j|)
(lup− llow) (18)

where xtei js is the scaled value of xtei j.
When scaling testing feature values using (18), there is

a chance of some scaled values lying outside the bounds
specified by llow and lup. That is a limitation in this scaling
method and to alleviate some of the adversity caused by
outliers, for all i, j where xtei js < llow we assign

xtei js← llow (19)

and for all i, j where xtei js > lup we assign as follows.

xtei js← lup (20)

Following the assignments of (19) and (20), all training
and testing feature values in Xt and Xte would have been
scaled to map within the lower and upper bounds prescribed
by llow and lup in (14) and (15).

Rounding the scaled training feature (xti js) and testing
feature (xtei js) values to their nearest integers, and converting
the rounded numbers to binary, and representing the binary
values in n bits is how the Binary Spectrum vectors sym-
bolized by

[
.

]
in (13) are formed. Substituting the

Binary Spectrum vectors constructed in that manner in (10),
(12) and (9), (11) would yield the Binary Spectrum matrices
Xtb and Xteb.

With this data, we define the following operations
o(Xtb) = Xtbv and o(Xteb) = Xtebv with respect to
v ∈ Rb(n+1)×b(n+1). v here is an orthonormal basis of Xtb.

A new classifier Cn of the form Cn,Cn : Rd×b(n+1) → Bd

can now be trained with the training dataset o(Xtb) and Yt .
This classifier would predict the classes for the testing data
Xteb. The prediction output will come in a vector ˆYteb ∈ Bc

given as follows.

ˆYteb =Cn(o(Xteb)) (21)

The vector errb can then be defined in order to compute
the classification accuracy.

errb = ˆYteb−Yte (22)

Similar to the vector err in (6), locations of errb corre-
sponding to instances of a correct prediction having been
made would carry zeros. Therefore, we define the total
number of zeros in errb as sumb0. With that we define the
classification accuracy accb in the following manner.

accb =
sumb0

c
×100% (23)

As such, accb can be represented as a function in the
following manner, similar to the function representation of
acc shown in (8).

accb = g
([

Xt f (Xt ,n)
]
,Yt ,
[
Xte f (Xte,n)

]
,Yte
)

(24)

Now suppose a classifier Cn for some n ∈ Z+ can be
found such that the condition accb > acc is satisfied. Then,
our objective of increasing the classifier accuracy will be
accomplished, without removing any features from or adding
new features to the feature sets Xt and Xte, i.e., by satisfying
Assumption 1. As opposed to reducing or increasing the
feature sets Xt and Xte, what enables superior classification
accuracy in the proposed method will be the Binary Spectrum
transformation of existing features.

Recall now the function representation of acc and accb
given in (8) and (24) respectively. With those, the ultimate
solution one can seek following this method can be expressed
in the following manner

[n∗,Cn∗] = argmax
n

(accb−acc) (25)

subject to the constraints accb > acc and n < nmax, where
nmax ∈ Z+ is some meaningful maximum number of bits to
be allowed. The selection of an ideal value for nmax is an
open question for the time being, and users of this method
have freedom to experiment. An initial constraint some might
hypothesize for nmax may be

nmax <
a
b
−1 (26)

with the objective of keeping the Binary Spectrum training
feature matrix Xtb in (9) a tall and skinny matrix, assuming
a > b provided the training dataset in original form (i.e., Xt
in (2)) has a instances and b features.

Finding an optimal solution n∗ by solving (25) will result
in an optimal Binary Spectrum transformation f (Xt ,n∗) and
a classifier Cn∗ trained from o(Xtb) and Yt , that performs
superior to the classifier C trained from sets o(Xt) and Yt .
Thus, the objective of increasing classification accuracy will

be accomplished via the Binary Spectrum transformation. As
a preliminary effort, we propose Algorithm 1 to find n∗ and
corresponding Cn∗ iteratively.

Algorithm 1: Find n∗ and Cn∗ iteratively.
Result: n∗, Cn∗

n∗← 0;
Cn∗ ←C, C is trained with o(Xt), Yt ;
Ŷte←C(o(Xte));
acc← acc, calculate acc of C from (7);
n← 1;
nmax← nmax(∈ Z+), nmax > 1;
while n≤ nmax do

Xtb←
[
Xt f (Xt ,n)

]
;

train Cn with o(Xtb), Yt ;
Xteb←

[
Xte f (Xte,n)

]
;

ˆYteb←Cn(o(Xteb));
calculate accb of Cn from (23);
if accb > acc then

acc← accb;
n∗← n;
Cn∗ ←Cn;

end
n← n+1;

end

IV. DEMONSTRATIVE EXAMPLE, EXPERIMENTS &
RESULTS

In this section we demonstrate how the proposed Binary
Spectrum feature (or transformation) improves classification
performance. We consider a Support Vector Machines (SVM)
binary (or two-class) classifier working with two features (or
descriptor variables), i.e., X ∈ Rh×2, Y ∈ Bh.

A. The Dataset

The dataset used for this work consists 8,400 Pulsed Eddy
Current (PEC) signal measurements captured on different
wall thickness values of grey cast iron. The dataset has been
collected through works [8], [9], [10], [12], [13], [14]. The
class labels (in Y) are decided based on the wall thickness
(measured in mm). To respect Assumption 2 (i.e., to have
approximately 50:50 population split for the two classes in
the training dataset), the cut off thickness value was chosen
to be 23.3 mm after examining the data. Thickness values
less than or equal to 23.3 mm are considered as Class 1
having class label ‘0’. Class 1 has 4,169 instances accounting
to 49.63% of the total population. Thickness values greater
than 23.3 mm are considered as Class 2 having class label
‘1’. Class 2 has 4,231 instances accounting to 50.37% of
the total population. The thickness histogram (in percentage
frequency) of this total dataset is shown in Fig. 1.

The input set (i.e., X) has two real-valued feature vectors.
That means the domain of X becomes X ∈ Rh×2 to be
corresponding to the vector of labels Y ∈ Bh. These features
have been extracted from time domain PEC signals [10],

Fig. 1. Thickness histogram of the total data population, in percentage
frequency.

[8], [9]. Shown in Fig. 2 is a scatter of the two features
corresponding to all 8,400 measurements (or instances) in
the total dataset. The two classes (i.e., Class 1 and Class 2)
are colour coded in Fig. 2.

Fig. 2. Scatter between the two features in X corresponding to the full
dataset (i.e., 8,400 instances), with Class 1 and Class 2 colour coded.

B. Splitting Training and Testing Sets

Authors assumed that only 30% of the total dataset will
be available for training. To start with, authors performed
random nonstratified partitioning of the 8,400 measurements,
to a 30:70 split, 100 times. This means, the authors would
have, 100 subsets of 30% of the total dataset, and 100
corresponding subsets of 70% of the total dataset. This 100-
fold splitting, would provide authors with 100 trials to assess
classifier performance. The authors’ intention was to test the
100 trials separately. That is, to learn 100 classifiers, and
perform 100 corresponding validations. If the 100 classifiers
and the accuracy of the 100 corresponding validations sta-
tistically exhibit some convergence, that would imply the
success (or the unsuccessfulness) of the work of this paper.

As an example, Fig. 3 shows the thickness histogram (with
percentage frequency) of the training set (i.e. 30% subset)
of the 100th trial (or partitioning). This dataset has 2,520
instances, and the histogram is comparable to the thickness
histogram (with percentage frequency) of the total population
(i.e., 100% of the data) shown in Fig. 1. Having comparable
distributions as such is expected for model training / testing
exercises, and it appeared that with the availability of a total
of 8,400 measurements (or instances), random nonstratified

partitions of 30% would usually have distributions compara-
ble with the total population. This observation was common
among all the obtained partitions.

Fig. 3. Training data (i.e., 2,520 instances), thickness histogram of the
100th trial, in percentage frequency.

Shown in Fig. 4 is a scatter of the two features correspond-
ing to the 2,520 measurements (or instances) in the training
dataset that came from the 100th trial (or partitioning). The
two classes (i.e., Class 1 and Class 2) are colour coded in
Fig. 4. The distribution of instances in Fig. 4 is comparable
to that of Fig. 2, indicating that the training dataset has a
distribution that is comparable with the total population. This
observation was common among all the obtained partitions.
Further, this training dataset in Fig. 4 had 1,273 instances
(i.e., 50.52%) in Class 1, and 1,247 instances (i.e., 49.48%)
in Class 2, indicating that the training sample is in accor-
dance with Assumption 2 (i.e., the training dataset having
approximately a 50:50 split among the two classes). This
compliance with Assumption 2 as well, was common among
all the obtained partitions.

Fig. 4. Training data (i.e., 2,520 instances) of the 100th trial, scatter between
the two training features, with Class 1 and Class 2 colour coded.

In all the 100 trials, the 100% of the data (i.e., the
total population) was used as the testing dataset. Assessing
classifier performance in that manner on a single large
dataset makes the performance of each classifier statistically
comparable.

C. Benchmarking Classification Accuracy with Features’
Original Form

SVM is used for classification. The objective is to first
benchmark the performance of an SVM classifier over the

100 trials (described in subsection IV-B) with the features
in their original decimal form (i.e., prior to performing
Binary Spectrum transformation). The subsequent intention
is to assess the performance of an SVM classifier trained
by Binary Spectrum features over the same 100 trials. In
this subsection, we present the former analysis, i.e., bench-
marking performance of an SVM classifier trained with the
original form of the features over the 100 trials.

Given the non-linear nature of the data, the Gaussian
kernel was chosen for SVM classification. The commonly
known hyper-parameters named the Box Constraint and the
Kernel Scale were set to be optimized at training (done
with the 30% splits explained in subsection IV-B). The o(X)
features (or the predictor variables) were made to standardize
before being fed to the classifier. On every trial, the initial
value given to both those parameters (i.e., Box Constraint and
Kernel Scale) was 1. The optimized classifier resulting from
every trial was then evaluated with the testing data (i.e., the
100%, or the total dataset as mentioned in subsection IV-B).
The acc value (recall from (7)) for each of the 100 trials was
recorder to serve as the metric for performance evaluation.
Depicted by the broken black line in Fig. 5 are the acc values
resulting from the 100 trials of training a classifier with the
raw values of features.

D. Evaluating Classification Accuracy with Binary Spectrum
Features

The accb value (recall from (23)) of the best performing
classifier (i.e., Cn∗ identified from Algorithm 1) for each of
the 100 trials (the same ones benchmarked in subsection IV-
C) was recorder. These accb values would serve as the metric
for performance evaluation of the Binary Spectrum feature.
Depicted by the solid black line in Fig. 5 are the accb
values recorded likewise from the corresponding 100 trials.
As for the preliminary work reported in this paper, nmax
(recall from Algorithm 1) was set to 10. Greater nmax values
as well can be evaluated. Selection of SVM kernel, hyper-
parameter initialization, and the training procedure (now
considering the Binary Spectrum feature), were identical to
those described in subsection IV-C).

As evident from Fig. 5, it was possible to achieve supe-
riorly performing classifiers on every single trial by using
the Binary Spectrum feature. On average, an improvement
of 1.46% in classification accuracy (calculated as the average
of (accb− acc)/acc× 100%) was observed across the 100
trials. The maximum improvement of classification accuracy
was 3.49% in the 59th trial. Minimum observed improvement
of classification accuracy was 0.1% in the 9th trial.

Depicted in Fig. 6 is the variation of the accb of all 100
trails across the 10 bits (i.e. nmax = 10 for the work reported
in this paper). There are 100 line graphs in Fig. 6 spanning
across 1 through 10. Each line graph corresponds to a trial
and illustrates the variation of the trial’s accb. It can be
observed that there is a clear trend of reduction of accuracy
past around the 5∼ 7 bit mark. Whether this downward trend
persists for greater number of bits was not investigated at
this stage. What we intend to report as a finding, is the fact

Fig. 5. Variation of classification accuracy over the 100 trials.

that it is possible to increase the classification accuracy of
a given supervised learned classifier with a given fixed set
of continuous-valued features, by using the proposed Binary
Spectrum feature (or transformation).

Fig. 6. Variation of accb% classification accuracy of all trials across 10
bits (i.e., nmax set to 10).

V. CONCLUSIONS

The case of improving classification accuracy for a given
supervised learning classification task that has to be per-
formed with a given reduced set of continuous-valued fea-
tures was considered. The case imposes that further reduction
of features or addition of new features is not possible. All the
provided features have to be used. It was shown via a demon-
strative binary classification (i.e., two-class classification)
example, that it is possible to increase classification accuracy
within the considered premise, via a feature transformation
that produces a novel feature set the authors have named
the “Binary Spectrum feature”. An increase of classification
accuracy by about 1.46%(≈ 1.5%) was observed for the con-
sidered example following Binary Spectrum transformation.
The derivation of the Binary Spectrum feature was presented
in detail along with a preliminary algorithm to identify
best performing classifiers. The findings indicate potential
for broader usage of the Binary Spectrum feature and may
provoke interest for further investigation.

Limitations of this study include the following: (1) Only
a binary classification task was examined (i.e., multi-class
classification was not examined); (2) The descriptor variables
were imposed to be continuous-valued (i.e., the more general
case of both continuous-valued and categorical descriptor
variables being present was not considered); (3) Class popu-
lations were imposed to be even (i.e., the case of uneven class

populations was not examined); (4) The feature set of the
case study included only two feature vectors (i.e., a higher
dimensional example was not examined). As such, future
work can investigate on relaxing some of the assumptions
imposed on this work. Performance evaluation of the Binary
Spectrum transformation on more sophisticated classification
tasks that involve multiple classes and higher dimensional
data also remains unchecked.

REFERENCES

[1] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine
learning: A review of classification techniques,” Emerging artificial
intelligence applications in computer engineering, vol. 160, no. 1, pp.
3–24, 2007.

[2] S. Pang, S. Ozawa, and N. Kasabov, “Incremental linear discriminant
analysis for classification of data streams,” IEEE transactions on
Systems, Man, and Cybernetics, part B (Cybernetics), vol. 35, no. 5,
pp. 905–914, 2005.

[3] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative clas-
sifiers: A comparison of logistic regression and naive bayes,” in
Advances in neural information processing systems, 2002, pp. 841–
848.

[4] J. Kodovsky, J. Fridrich, and V. Holub, “Ensemble classifiers for
steganalysis of digital media,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 2, pp. 432–444, 2011.

[5] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based
classification of hyperspectral data,” IEEE Journal of Selected topics
in applied earth observations and remote sensing, vol. 7, no. 6, pp.
2094–2107, 2014.

[6] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and
V. Vapnik, “Feature selection for svms,” in Advances in neural
information processing systems, 2001, pp. 668–674.

[7] S. Maldonado and J. López, “Dealing with high-dimensional class-
imbalanced datasets: Embedded feature selection for svm classifica-
tion,” Applied Soft Computing, vol. 67, pp. 94–105, 2018.

[8] N. Ulapane, A. Alempijevic, T. Vidal Calleja, and J. Valls Miro,
“Pulsed eddy current sensing for critical pipe condition assessment,”
Sensors, vol. 17, no. 10, p. 2208, 2017.

[9] N. Ulapane, A. Alempijevic, J. V. Miro, and T. Vidal-Calleja, “Non-
destructive evaluation of ferromagnetic material thickness using pulsed
eddy current sensor detector coil voltage decay rate,” NDT & E
International, vol. 100, pp. 108–114, 2018.

[10] A. M. N. N. B. Ulapane, “Nondestructive evaluation of ferromagnetic
critical water pipes using pulsed eddy current testing,” Ph.D. disserta-
tion, University of Technology Sydney, 2016.

[11] N. Ulapane and L. Nguyen, “Review of pulsed-eddy-current signal
feature-extraction methods for conductive ferromagnetic material-
thickness quantification,” Electronics, vol. 8, no. 5, p. 470, 2019.

[12] J. V. Miro, D. Hunt, N. Ulapane, and M. Behrens, “Towards automatic
robotic ndt dense mapping for pipeline integrity inspection,” in Field
and Service Robotics. Springer, 2018, pp. 319–333.

[13] J. Valls Miro, N. Ulapane, L. Shi, D. Hunt, and M. Behrens, “Robotic
pipeline wall thickness evaluation for dense nondestructive testing
inspection,” Journal of Field Robotics, vol. 35, no. 8, pp. 1293–1310,
2018.

[14] N. Ulapane, K. Thiyagarajan, D. Hunt, and J. Valls Miro, “Quantifying
the relative thickness of conductive ferromagnetic materials using
detector coil-based pulsed eddy current sensors,” J. Vis. Exp. (155),
e59618, 2020.

