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Abstract—The paper addresses the multimodal sensor selection
problem where selected colocated sensor nodes are employed
to effectively monitor and efficiently predict multiple spatial
random fields. It is first proposed to exploit multivariate Gaussian
processes (MGP) to model multiple spatial phenomena jointly.
By the use of the Matérn cross-covariance function, cross-
covariance matrices in the MGP model are sufficiently positive
semi-definite, concomitantly providing efficient prediction of all
multivariate processes at unmeasured locations. The multimodal
sensor selection problem is then formulated and solved by an
approximate algorithm with an aim to select the most informative
sensor nodes so that prediction uncertainties at all the fields are
minimized. The proposed approach was validated in the real-life
experiments with promising results.

Index Terms—Multimodal sensing, sensor selection, multi-
variate, multiple spatial fields, multivariate Gaussian process,
multivariable

I. INTRODUCTION

In the data era with strong support from the increas-
ingly booming Internet of things, a fundamental but critical
question is how to efficiently collect sensor measurements.
Given advancement of low-cost sensor technology, a large
number of sensors may be excessively used in a specific
sensing task. Technologically, if sensors are deployed within
vicinity of other counterparts, they may record similar data
samples, which is called an over-sampling issue. The over-
sampling problem practically causes redundancy in sensor
measurements, which does not contribute to any additional
information. Moreover, in a long run, the over-sampling is
operationally expensive due to unnecessary sensors, data col-
lection and analysis with increased maintenance responsibility
and higher energy depletion. Therefore, in fact, it is expected
to select the most informative sensor nodes out of all possible
ones, which are technically sufficient to serve in a sensing
task. This is called sensor selection [1].

In this work, we focus on the sensor selection problem
where sensors are employed to monitor spatial fields. More

specifically, selected sensors are required to not only effec-
tively observe spatial phenomena but also efficiently predict
the fields at any unmeasured locations of interest [2]. In fact,
the sensor selection problem in monitoring a single/univariate
spatial field, e.g. indoor temperature, has been well considered
[2]. Nevertheless, selecting the optimal sensor nodes for effi-
ciently monitoring multiple/multivariate spatial fields, here we
call multimodal sensor selection, is not yet considered. This
work provides detailed discussion about the multimodal sensor
selection for reconstructing multiple spatial phenomena.

There are some critical crux about multimodal sensor se-
lection for spatial fields in practice. The first fact is that tech-
nological development in micro-electro-mechanical systems
enables different types of sensors, e.g. temperature, humidity,
gas, air pollution ..., to be embedded in a single small-size low-
cost integrated electronic circuit board. That is, an individual
sensor node device can take multiple types of environmental
data. The second fact is that spatial parameters may present
cross-correlation. For instance, changing temperature in a
room also causes change of humidity in that room. In the
work [3], Mastrantonio et al. exploited multivariate spatio-
temporal Bayesian hierarchical framework to examine the
extreme temperature and precipitation jointly. The third fact is
that addressing the spatial sensor selection problem requires to
model spatial fields as the selected sensor nodes are expected
to effectively predict the fields at unobserved positions of
interest. If a spatial phenomenon is modelled and predicted,
then a subset of sensor nodes is selected if it can minimize
prediction uncertainty. In literature, modelling a univariate
spatial field has been widely considered with a lot of success.
For instance, in our previous work [2], we successfully em-
ployed a widely-used machine-learning-based Gaussian pro-
cess (GP) to model a spatio-temporal process. Nonetheless,
incorporating multivariate spatial phenomena into a single
model is not straightforward since each spatial process exhibits
different statistical characteristics. More importantly, if a GP



is employed to represent multiple spatial random fields, its
covariance structure plays a critical role in quantifying cross-
correlation among the fields. In other words, cross-covariance
matrices in a multivariate Gaussian process (MGP) [4] are re-
quired to be positive semi-definite so that the statistical model
can provide efficient prediction. There are some approaches
proposed to develop cross-covariance functions for multiple
spatial random fields [5]; and among those, Gneiting et al. [6]
built and proved the Matérn covariance functions to compute
valid cross-correlation between any two of multivariate spatial
phenomena.

In this paper we first exploit MGP with a Matérn cross-
covariance function to model multiple spatial fields and em-
ploy the model to predict the phenomena at unmeasured
locations. We then propose an efficient approach to address the
multimodal sensor selection problem. The proposed method
was implemented in the real-life experiments where the ob-
tained results demonstrate its effectiveness. The remaining of
the paper is arranged as follows. We introduce the multimodal
sensing in Section II before discuss the multimodal sensor
selection problem in Section III. Section IV summarizes our
experimental results with discussions before conclusions are
drawn in Section V.

II. MULTIMODAL SENSING

This section introduces the multimodal sensing that can
be efficiently employed to simultaneously monitor multiple
spatial fields such as temperature, humidity and air pollutants.
In this work, it is assumed that all types of sensors are
embedded on the same board when taking measurements. That
is, when deployed in monitoring tasks, these types of sensors
are co-located.

A. Multivariate Modelling

Let us recall the sensing model for a single type of sensors
monitoring a specific spatial phenomenon [7], e.g. temperature
in ocean. If there are n sensors positioned at locations s =
(sT1 , ..., sTn )T ∈ Rn×d, where d is dimension of the deploying
space, the collective measurements gathered by all the sensors
can be denoted by y = (y1, ..., yn)T , which can be modelled
by

y = x(s)β + w(s) + ε(s), (1)

where x(s) is a matrix of the spatially referenced covariates
and β is a vector of the trend parameters. It is noted that
x(s)β presents trend, i.e. constant, first or second orders, of
the spatial field at locations s. Hence, dimensions of x and
β depend on the trend selected. For instance, the first order
trend leads to a n× 3 matrix x and a 3× 1 vector β. w(s) is
a n× 1 vector of latent random variables that are favourably
modelled by a zero-centred Gaussian process (GP) while ε(s)
is a n × 1 vector of independent and identically distributed
noises following a normal distribution with a zero mean and
an unknown variance τ2.

Now let us consider m spatial phenomena monitored by m
different types of sensors that are co-located and each type has
n sensors. All the sensors are positioned at locations s, and

all the collected measurements are mathematically represented
by

Y = X(s)β + W(s) + ε(s), (2)

where Y = (yT1 , ..., yTm)T and β = (βT1 , ..., β
T
m)T . The

covariates X are specified by

X(s) =


x1(s) 0 · · · 0

0 x2(s) · · · 0
...

...
. . .

...
0 0 · · · xm(s)

 . (3)

If all different types of sensors are colocated, then x1(s) =
· · · = xm(s). The measurement noises are now modelled by a
multivariate normal distribution ε ∼ MVN(0,Ψ), where the
dispersion matrix Ψ is arranged by

Ψ =


τ21 I 0 · · · 0

0 τ22 I · · · 0
...

...
. . .

...
0 0 · · · τ2mI

 ∈ Rmn×mn

and I is an n×n identity matrix. It is noticed that (yi, xi, βi,
τi) correspond to (y, x, β, τ) of the ith spatial field.

The important component in the model (2) is a mn × 1
vector process W(s), which is also called MVP [4], W(s) ∼
MGP (0,Σ). The multivariate cross-covariance matrix Σ is
given by

Σ =


C11 C12 · · · C1m

C21 C22 · · · C2m

...
...

. . .
...

Cm1 Cm2 · · · Cmm

 ∈ Rmn×mn, (4)

where Cii = E(yi(s + h)yi(h)) is a univariate covariance
matrix computed from only a single ith spatial field. Cij =
E(yi(s + h)yj(h)) is a cross-covariance matrix calculated
between any two ith and jth spatial phenomena, where
1 ≤ i 6= j ≤ m. Note that h ∈ Rd is a separation vector
between any two locations s.

Computing the univariate covariance matrix Cii is widely
known [2]; however, working out the cross-covariance matrix
Cij is not completely straightforward due to its ill-famed
requirement of positive semi-definite. To this end, Gneiting
et al. in [6] proposed a colocated correlation coefficient ρij to
account for cross-correlation between spatial process compo-
nents. That is, the cross-covariance matrix can be calculated
as follows,

Cij = Cji = ρijCOV(h | θ), (5)

where COV(h | θ) is a covariance function and θ is a vec-
tor of its hyperparameters. More specifically, they discussed
scenarios of employing the Matérn covariance function

COV(h | θ) =
σ2

Γ(ν)2ν−1
(κh)νKν(κh),

where σ2 is a marginal variance while ν and κ are the Matérn
smoothness and spatial scale parameters, respectively. Kν is



Fig. 1: Cross-covariance between temperature and humidity in
the whole environment. White circles are the sensor locations.

the modified Bessel function of the second kind with order ν >
0, and Γ(·) denotes a gamma function. Here θ = (σ2, ν, κ). In
this work, for the simplicity purpose, we consider a sensing
model of two types of sensors observing bivariate spatial
phenomena. However, the model can be extended to more than
two spatial fields [6]. In other words, in the case of modelling
two spatial component processes using the Matérn covariance
function, in order to guarantee positive semi-definite of the
cross-covariance matrix, the colocated correlation coefficient
ρ12 can be selected by the following theorem.

Theorem 1: [6] If ν12 = 1
2 (ν1+ν2) and κ12 ≥ max(κ1, κ2),

the colocated correlation coefficient ρ12 is computed by

ρ12 =
1

2

(
κ1
κ12

)ν1 ( κ2
κ12

)ν2√Γ(ν1 + 0.5d)Γ(ν2 + 0.5d)√
Γ(ν1)Γ(ν2)

(6)

× Γ(0.5(ν1 + ν2))

Γ(0.5(ν1 + ν2 + d))
.

To demonstrate cross-correlation between two spatial phe-
nomena we employ the temperature and humidity spatial fields
collected by 20 temperature and 20 humidity colocated sensors
monitoring the indoor climate. Detail of the data collection
will be presented in Section IV. By the use of (5) and (6),
cross-covariance between the two spatial processes in the
whole environment can be computed as depicted in Fig. 1.

B. Multiple Spatial Field Prediction

Due to a limited number of deployed sensors, a spatial field
in whole environment cannot be measured directly. In this
section we discuss how to predict multiple spatial phenomena
from the multivariate model given gathered measurements.

Let us define z = (zT1 , ..., zTp )T ∈ Rp×d as unmeasured
locations of interest, hence x(z) is a corresponding matrix of
covariates. The multiple spatial fields at z can be predicted by
the posterior multivariate Gaussian distribution as follows,

µz|s = X(z)β + Σzs(Σ + Ψ)−1(Y− X(s)β), (7)

Σz|s = Σzz − Σzs(Σ + Ψ)−1ΣTzs, (8)

where

X(z) =


x1(z) 0 · · · 0

0 x2(z) · · · 0
...

...
. . .

...
0 0 · · · xm(z)

 .
Both Σzz ∈ Rmp×mp and Σzs ∈ Rmp×mn can be computed
similarly to Σ in (4) with a notice that Σzz presents prior
covariance and cross-covariance among spatial fields at z while
Σzs presents cross-covariance between spatial phenomena at z
and those at s. It is to be noted that β and the hyperparameters
θ used to compute (7) and (8) can be estimated by the
maximum likelihood technique [8].

III. MULTIMODAL SENSOR SELECTION

Sensor selection is well known, mainly for a univari-
ate/single spatial field, for selecting the most informative
subset of sensor nodes out of all possible ones [1]. In this
section we extend the sensor selection problem to multivariate
spatial phenomena monitored by multiple types of sensors with
the multimodal sensing paradigm.

A. Problem Statement

The critical crux in selecting the most informative subset of
sensor nodes is to minimize uncertainty at prediction results
of all spatial process components. In equivalent words, the
selected sensor subset (among all potential ones) must be
able to reduce predicted variances at unmeasured locations
of interest at the most. Let us define P as a set of all possible
sensors and C as a selected subset of sensors. As can be
computed by (8), predicted variances of all spatial fields at
unmeasured locations of interest z lie along a diagonal of
the posterior cross-covariance matrix Σz|sC . Note that sC is
locations of the selected sensors in the subset C. Therefore,

Fig. 2: Values of the objective function in the multimodal
sensor selection problem where two spatial temperature and
humidity fields are considered. The red solid curve was
obtained by our algorithm while the box plots summarises
the 1000 experiments with random sensor selection.



(a) Posterior mean obtained by all 20 sensors (b) Posterior standard deviation obtained by all 20
sensors

(c) Posterior mean obtained by 10 selected sensors (d) Posterior standard deviation obtained by 10 selected
sensors

Fig. 3: Predicted temperature field in the whole environment obtained by 20 sensors (top row) and 10 selected sensors (bottom
row), respectively. White circles are the sensor locations.

the multimodal sensor selection problem can be formulated
by

Copt = argmin
C ⊂ P

tr(Σz|sC ), (9)

where tr(Σz|sC ) is trace of the matrix Σz|sC . Unfortunately,
the multimodal sensor selection problem (9) is NP-hard [2];
that is, finding its optimal solution in polynomial time is
intractable.

B. Approximate Algorithm

In fact, an efficient way to near-optimally solve a NP-hard
optimization problem is employ a greedy heuristic algorithm.
More specifically, in this work, we start at C = � and pick one
sensor node from P . We add the picked node to C, compute
tr(Σz|sC ) accordingly then remove that node from C. It is
noted that as each node consists of multiple colocated types
of sensors, Σz|sC is a cross-covariance matrix. We repeat the
procedure until all nodes in P are picked. The minimum of
all the computed trace values leads to a corresponding sensor
node in P picked again and added back to C permanently. We
call this operation as OP.

We move to the second iteration where C now already has
one sensor node. To find the most informative sensor node and
add it to C, we redo OP. Repetition of OP can occur as many
times as expected until cardinality of C reaches a predefined
number, which is an expected number of selected sensor nodes.

To demonstrate efficacy of the sub-optimal algorithm in
addressing the optimization problem (9) we implemented it in
our experiments of selecting 1 to 10 most informative sensor
nodes out of 20 available ones in monitoring both indoor
temperature and humidity climates. The near-optimal values
(i.e. trace values) of the objective function are summarized
by the red solid curve depicted in Fig. 2. For the comparison
purpose, we also selected the sensor nodes randomly from the
potential set. Due to randomness, we run the random selection
1000 times and summarize the results in the box plots as
illustrated in Fig. 2. As can be clearly seen that the results
obtained by the approximate algorithm in this work are always
better than those obtained by the random selection regardless
a number of selected sensor nodes.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In order to demonstrate how to apply the multimodal sensor
selection for selecting the best locations for multiple types
of sensors and efficiently monitor multivariate spatial fields
simultaneously, we implemented the proposed approach in the
experiments of monitoring the indoor climate in the Nanyang
Technological University campus, Singapore. Note that only
two spatial fields of temperature and relative humidity are
discussed in this section.

A. Experiments and Data Collection

We conducted experiments at the room S2.1.B4.01, which
has size of 19.80 m in length and 14.86 m in width, on



(a) Posterior mean obtained by all 20 sensors (b) Posterior standard deviation obtained by all 20
sensors

(c) Posterior mean obtained by 10 selected sensors (d) Posterior standard deviation obtained by 10 se-
lected sensors

Fig. 4: Predicted humidity field in the whole environment obtained by 20 sensors (top row) and 10 selected sensors (bottom
row), respectively. White circles are the sensor locations.

the 25th of April, 2016. In those experiments, we employed
Libelium temperature and humidity sensors, 20 of each, to
measure the indoor temperature and relative humidity. The
sensors were utilized to form two networks that are wirelessly
connected and spatially deployed at 20 predefined locations
in the room as depicted by the white circles in Fig. 1. It
is noticed that due to design of the Libelium sensor board,
both the temperature and humidity sensors are embedded on
the same integrated circuit board. That is, each pair of the
temperature and humidity sensors are colocated. After taking
measurements, the sensor nodes transmitted their data to a
central station via the network routers [9]. Since the collected
data can be used to evaluate human comfort in a building, we
deliberately deployed all the sensors on the same plane at a
sitting level.

B. Results and Discussion

In order to simultaneously represent both the temperature
and relative humidity spatial fields, we employed the multi-
variate model presented in Section II. We chose a first order
function of spatial locations to account for trends of the spatial
phenomena. Moreover, the Matérn covariance function was
exploited to compute covariance and cross-covariance matrices
of the model (2). Given the 20 measurements collected for
each process component, by the use of the multiple spatial field
prediction formulated in Section II-B, we conducted prediction
of the two spatial processes in the whole environment, as
demonstrated in Fig. 3a for the temperature and Fig. 4a for

the relative humidity, respectively. It is noticed that in the
whole environment prediction we discretized the room into
the 2500 unmeasured locations of interest positioned on an
50 × 50 uniform grid and then predicted the both indoor
climates at those 2500 locations. The corresponding predicted
variances of the fields at the 2500 grid positions in the whole
room are summarized and demonstrated in Figures 3b and 4b,
respectively. Both Figures 3b and 4b show that the prediction
uncertainty of the either temperature or humidity is fairly low,
which efficiently proves efficacy of the multivariate model in
representing multiple spatial phenomena concomitantly.

Now it is assumed that we expect to select 10 most
informative sensor nodes out of all 20 ones. Since each node
has two temperature and humidity sensors, it is required to
address the multimodal sensor selection problem. To this end,
we run the proposed algorithm presented in Section III, where
values of the objective function are plotted in Fig. 2. It is
important to note that due to different ranges of measurements
of spatial fields, all the measurements of each process were
normalized before utilized in the multimodal sensor selection
algorithm. In Fig. 2 it also reveals that the more sensor nodes
are selected the more accurate prediction results are as total
of the predicted variances is reduced following increase of the
number of the selected sensors. The 10 corresponding near-
optimal sensor node locations are shown by white circles in
Fig. 3d (or in Fig. 4d).

Let us consider whether the selected sensors can be used to
efficiently monitor spatial fields as compared with all possible



(a) Temperature difference

(b) Humidity difference

Fig. 5: Differences between the spatial field predictions ob-
tained by all 20 sensors and 10 selected sensors: (a) temper-
ature comparison and (b) humidity comparison.

ones. For instance, given the measurements gathered by the 10
selected sensor nodes, i.e. 10 temperature measurements and
10 humidity measurements, we trained the multivariate model
again and conducted prediction of the two phenomena at the
2500 grid locations covering the whole room. The predicted
fields are illustrated in Fig. 3c for the temperature and in Fig.
4c for the humidity. It qualitatively shows that the prediction
results obtained by the most informative 10 sensor nodes are
highly comparable to those obtained by all the 20 sensor
nodes, as demonstrated in Figures 3a and 4a. In addition,
though exploiting only 10 sensor nodes to observe the climate
in the room, the prediction uncertainty as shown in Figures
3d and 4d are reasonable as compared with that obtained by
all the 20 sensors as depicted in Figures 3b and 4b. Reduced
number of sensors are highly practical in building monitoring
applications [9].

TABLE I: Quantiles of Prediction Differences

Spatial Quantiles
Fields 5% 50% 95%

Temperature -0.44 0.04 0.57
Humidity -2.47 -1.22 1.21

More importantly, to quantify difference between prediction
obtained by the selected subset of the 10 sensors and that
obtained by all the 20 sensors, we computed errors between
the predicted results shown in each pair Figures 3a and 3c
for the temperature and Figures 4a and 4c for the humidity.

The temperature and relative humidity errors are summarized
in histograms as plotted in Figures 5a and 5b, respectively.
Moreover, we specifically calculated quantiles of the errors in
both scenarios and summarized them in Table I. Statistically,
90% of difference between the prediction in the whole envi-
ronment obtained by the 10 selected sensor nodes and that
obtained by all the 20 ones are within about 0.5 oC for the
temperature and ranged from -2.47% to 1.21% for the relative
humidity.

V. CONCLUSIONS

The multimodal sensor selection problem for reconstructing
multivariate spatial phenomena has been discussed in the
paper. Statistically, modelling multiple spatial random fields
simultaneously is not trivial due to positive semi-definite re-
quirement of cross-covariance matrices. However, by using the
MGP and Matérn cross-covariance function, multivariate spa-
tial processes can be represented by one model and predicted
at any unobserved locations, which leads to emergence of the
multimodal sensor selection. The multimodal sensor selection
problem aims to select the most informative sensor nodes out
of all potential ones so that selected sensors can effectively
monitor multiple phenomena and efficiently predict those pro-
cesses jointly at unmeasured positions. The proposed approach
was implemented in the real-world experiments where the
obtained results demonstrate its practical effectiveness.
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