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ABSTRACT The holograms in Star Wars have inspired many researchers to capture the whole human body
in real-time and present it as an avatar into Virtual Reality (VR). Facial capture is important to achieve this
because facial expressions are essential for social interaction. However, facial capture works well only when
the face is not occluded. While a VR headset has been widely used as a display device for VR, it occludes
half of the face and becomes an obstacle. This paper presents a systematic literature review on facial capture
for VR. The survey aims to: review the current state-of-the-art facial capture technologies for VR; identify
the types of technologies and context of the use, the methodologies, and theoretical groundings; identify
research gaps in facial capture for VR; and identify solutions of facial capture for VR headsets. A realism
index is defined to evaluate and compare the collected papers. The results show several technology trends in
the facial capture for VR: tracking facial motion with markers, facial capture in headsets using cameras or
sensors, facial performance capture, and hologram/volumetric capture. It is shown that the Modular Codec
Avatar is the best facial capture method in a VR headset, whereas Metahuman has the best output effects.
This paper also proposes that an open-design VR headset is an effective approach to lower the Total Cost of
Ownership (TCO).

INDEX TERMS Facial Capture, Facial Motion Capture, Facial Performance Capture, Headset, Virtual
Reality

I. INTRODUCTION

V IRTUAL Reality(VR) is a simulated experience that en-
ables the user to feel and interact with objects and char-

acters in a virtual environment in real-time. It replaces the
user’s senses (sight, hearing, etc.) with computer-generated
feeds. Merkx and Nawijn [1] stated that VR experiences
have multiple purposes and benefits in tourism. Caulfield
[2] demonstrated a digital twin of a future car factory that
revolutionized the planning process. In [3], it was demon-
strated that VR headsets helped the car design team boost
efficiency and productivity. In the App “Tilt Brush” [4], an
artist can paint a 3D volcano model unlimited colors from
the left-hand palette, changing the brush shape and size,
painting in 3D space, and drawing fog and snowflakes, which
is not possible in traditional painting media. VR systems
are also used in education, architecture, and medical ap-
plications. Telepresence refers to a set of technologies that
allow a user in a remote location to be seen, heard, and

sensed by other people in a local environment, and the user
can feel this local environment. Telepresence enables people
to talk, see and interact with each other remotely. In this
way, they can save the cost of long-distance travel. A well-
known example is the holograms in the science fiction Star
Wars. Heller [5] stated that business users of virtual meetings
“can use their valuable time much more efficiently by using
telepresence solutions from their particular offices”. It also
stated that in cases of natural disasters, epidemics or war,
telepresence could provide the opportunity to virtually com-
municate with colleagues or business partners while avoiding
traveling to dangerous places. Telepresence is more critical
in the COVID-19 pandemic because it retains the interaction
between people without physical contact, reducing inter-
person disease transmission. VR is often used in telepresence
because it is realistic, three-dimensional, and offers many
control methods.

VR headset (also known as Head Mounted Display, or
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HMD) systems have many advantages over CAVE systems
and are good VR solutions for individuals. Mallaro [6] used
a Vive VR headset and a CAVE system to study pedestrian
road-crossing behavior, and found that both systems were
effective in presenting the road-crossing task, and the headset
offered some benefits: inexpensive, portable, easy to use, and
simple to maintain. Manuelraj [7] compared VR headsets and
CAVE and stated that CAVE systems had higher resolutions,
had a larger Field Of View (FOV), were comfortable for
users, and could be viewed by multiple users, while the
headsets were more immersive, low cost and easy to set
up, carry and store, offering a much smaller footprint and
more ways for interaction. The advantages for the choice of
the headset system by the individual end-users are obvious:
It is more immersive, small enough for a household, and
affordable at hundreds of dollars, while a CAVE system is too
large and costs tens of thousands. Because a CAVE system
also has a pair of head-tracking glasses, many principles and
techniques reviewed in this paper can be applied to a CAVE
system as well.

VR headsets have gained popularity. Some headsets can
track hands and controllers to improve interactions. VR
headsets are now moving from the early majority stage
towards full market adoption. According to Bill Myers from
S3 Technologies [8], in 2017, a VR arcade station that used
an HTC Vive headset and a high-end computer cost around
$2,500. Now, consumers can have the same experience with
a standalone headset for just a few hundred dollars. This
dramatically improves user experience and the market size.

There are various concepts related to facial capture. The
movements of a person’s face are called facial motions. When
we investigate its psychological aspects (neutral, happy, an-
gry, disappointed, sad, etc.), they are called facial expres-
sions. Facial capture is also known as facial motion capture,
and it is the process of electronically converting facial mo-
tions into a digital database using cameras or other sensors.
When it is used to analyze the expressions of a subject,
it is called facial expression capture. When the purpose is
for filming or performance, it is called facial performance
capture.

Facial capture is essential for communication, telepres-
ence, and social VR. For presenting an avatar properly in VR,
it is necessary to track the body, head, gesture, and facial mo-
tions. Body, head, and gesture tracking are relatively mature,
and some commercial products are available. However, facial
capture and tracking are still under development. Xu et al. [9]
states that facial expressions can display personal emotions
and intentions, which are critical in a social situation. In
[10], the Latin proverb states: “the face is the portrait of the
mind; the eyes, its informers". Gunkel et al. [11] investigated
social VR use cases involving 91 users and 4 types of
applications. The research found that comic-like avatars were
not beneficial for business meetings. It was also found that
“the two most interesting applications to users (i.e., education
and video-conference) are those that involves a lot of face-to-
face conversations or interactions in non-remote/real-world

settings".
Facial capture can help increase the adaptation of VR

headsets. Herz and Rauschnabel [12] found that consumers
consider these four factors important when purchasing VR
headsets: Wearable comfort, making life more efficient, en-
tertainment, and data privacy. Facial capture can help in
the efficiency and entertainment aspects. It can enable face-
to-face conversation in business VR meetings and those
between family and friends. It can enable students to see
the teacher’s expressions while the teacher is demonstrating
complex concepts using interactive VR models. This can
make life more efficient. In VR games, with facial capture,
players can see the excitement of their team members and the
pain on the opponents’ faces. This will make entertainment
more enjoyable.

However, the current VR headsets in the market make
facial capture very difficult. First, the headset occludes the
user’s upper face, preventing it from being seen from outside.
Second, the headset touches the user’s face. When the user
smiles, it has constraints, and is not comfortable. On the
other hand, feeling uncomfortable, the user is less likely to
smile or make facial motions. Sometimes the pressure on the
face affects the circulation of blood in the facial skin, which
makes it very uncomfortable to wear. When the user takes it
off, red marks are left on the face. Mainstream VR headsets
are trying to tackle these problems. HTC recently announced
an accessory device called “Vive Facial Tracker", which
only supports 38 motions and cartoon characters. Oculus
(Facebook) is doing facial tracking through “Codec Avatars"
which will be discussed in more detail below. However, this
technology is still far from consumers.

Therefore, we seek to answer the following three research
questions in this survey. RQ1: How can we capture the facial
model while the headset occludes the user’s face? RQ2: How
can we make the headset more comfortable and allow the face
free to make any expressions? RQ3: How can we lower the
cost of facial capture as well as VR headsets and make them
affordable to the public?

II. LITERATURE COLLECTION AND ANALYSIS
We used these keywords to search different databases: facial
motion capture, facial expression capture, facial performance
capture, and volumetric video capture. Facial performance
capture and volumetric capture are added because: First, they
can be applied to the lower part of the face in HMD settings,
which is not occluded at all. Second, they can increase the
number of papers that contain similar types of questions,
methods, and principles related to facial capture. Third, they
can be used to collect data as a baseline or ground truth, or to
train models for further use in HMD settings. Furthermore,
volumetric capture is ideal for VR content creation, which is
an important aspect of VR.

The databases mainly used in this literature review are:
ACM Digital Library; IEEE Xplore; Google Scholar; Sco-
pus; Elsevier; ProQuest; Springer; and Google Search En-
gine. When reading these papers, we also reviewed the key
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references and added them to our collection if they were
related to facial capture. We collected more than 100 papers
and other materials for this research topic. Some of them
were eliminated because: they were too old or obsolete; they
were already widely accepted; duplication; demonstration or
a simplified version of another paper; they were not related
to facial capture. After elimination, 82 papers were included
in this study. Among them, 25 papers were kept but not
analyzed because: the data or statements were good for
quotation purposes; the main topic was not facial capture. 57
papers were analyzed for methods and types in the tables.
Note that for simplicity, not all papers in the tables were
described in the text. They were published between 2004 and
2021. Figure 1. shows the distribution of these papers by year.

FIGURE 1. Number of papers by year

Chronologically there are three stages of facial capture.
Before 2008 (inclusive), using markers were the most effec-
tive way to track facial motion and performance. From 2009
to 2017, because of the advancement of hardware, software,
algorithms, and machine learning, many new technologies
have been applied in facial capture. From 2018 until now,
Codec Avatars and volumetric capture have matured. There
are several different technology trends in facial capture for
VR. The first trend is head-mounted devices (sensors and
cameras). With these devices, the cameras are closer to the
face, and the face is always in the exact location in the video.
The second trend is facial performance capture, mainly with-
out a headset. The third trend is volumetric capture, which
captures everything in 3D within a specific range, including
the face and the whole body.

To identify how realistic the facial capture results are
and to compare between papers, we define a realism index
ranging from 1 to 9 (see Figure 2) as follows: 1–Tracked
dots on the face; 2–Lines connecting dots; 3–Cartoon; 4–
Smooth model without texture; 5–Detailed model without
texture; 6–Facial model with partial texture; 7–Facial model
with full texture; 8–Facial model with realistic texture, and
detailed features such as eyes, teeth, tongue, wrinkles, and

FIGURE 2. Realism Index (images from [13]–[20])

pores; 9–Detailed facial model with texture and other maps,
fully relightable. Note that the following features can be val-
ued for additional points: 0.5–Unlimited facial expressions;
0.3–Realistic dynamic movement; and 0.2–Translucent skin.
Some of these methods and processes are not real-time and
are denoted by a “-” sign beside the score.

III. FACIAL CAPTURE USING MARKERS OR HEADSETS
Markers are fast and effective. Sensors and cameras mounted
on a headset have the following advantages: the signals are
stable, and the relative position of the face in the video
is permanently fixed. Table 1 shows the methods of facial
capture using markers or headsets.

A. USING MARKERS
Markers are effective in tracking facial motion. These mark-
ers refer to special markers attached to the actor/subject,
which are tracked by video cameras. In the early years,
markers were used to track key points of the face for facial
performance capture. For example, in [13], 102 markers were
used to capture faces and were aligned with videos to record
the performance. In [21], 80-90 markers were placed on the
face and captured by eight cameras at different scales. The
wrinkles were also marked and tracked. This marker-tracking
technology is quite mature and is still widely used in the film
industry.

However, these markers are not suitable for VR end users.
Colyer et al. [41] stated that marker-based methods have
these shortcomings: long participant preparation time; the
potential for erroneous marker placement or movement; the
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TABLE 1. Facial Capture using Markers or Headsets

Type Paper and Description Context Method Advantages Disadvantages realism
Index

Markers [13]:102 markers, align
with video
[21]:80-90 markers, track

wrinkles

Entertain-
ment,
Animation

[13]:PCA,RBF
[21]:RBF

Fast and accurate long time to setup [13]:3.5-
[21]:6-

Sensors [22]:5 IR sensors
[23], [24]:14+2 optical IR
[25]:8 EMG sensors

HMD [22] Semi-
empirical equation
[23]Classification
[24]: Multi-class
classification, ReLU
[25] LS-SVM

Low cost, simple
and fast

Only 4-6 expressions 3

Sensors +
HMC

[26]:IR eye-tracking cam-
eras

HMD, VR
broadcast

Translucent-
composition

Simple and fast No expressions 3.2

Sensors +
HMC

[27]:8 strain gauges +
RGB+D

HMD GMM Support many
expressions. Low
cost, simple and
fast

Training per user;
Calibration per use.

4

HMC [28]: 2 IR on the whole
face

VR broad-
cast

HMC + Camera dome Rigged, realistic Not VR HMD 9

HMC [29]:ToF IR + Depth, For
lower part of face only.

HMD Blendshape Simple Driving a cartoon
character, unrealistic

3.5

HMC [30], [31]: 2IR(eyes)+
RGB(lower face)

HMD [30]: SfM, eye and
face synthesis
[31]: CNN, weighted

blendshapes

[30]: Output to
video
[31]: 3D render

[30]: Video but not
3D
[31]: No texture

4

HMC [32]–[34]: 3 IR HMC,
2 IR for eyes, 1 lower
face. [35]: Output method
[19]:Eye tracking [36]:
Relightable models

HMD AAM, CVAE, Codec
Avatar

Realistic, [35]:
Decoder is faster
for multiple
avatars

Expensive to build [32]:8 [33]–
[35]:8.5
[19]:8.6,
[36]:9

HMC [37]: IR for eye-tracking,
3D Stereo Camera for
lower face(not HMC)

HMD AAM, regression,
classification

Render in stereo
video

Not rendered to 3D 7

HMC+filters [38]: Fisheye view of
whole face

HMD Polarizing filter RGB video of
whole face

Half transmittance,
distortion

N/A

HMC+filters [39]: IR for each eye,
RGB for lower face.

HMD IR-cut filter, coloriz-
ing neuron network

Good view of
eyes

Fitting per user 7

HMC+filters [40]: IR view for whole
face

HMD IR-pass filter Whole face Greyscale, filter
edges

N/A

PCA: Principle Component Analysis; RBF: Radial Basis Function; GMM: regression Gaussian Mixture Model; SfM: Structure from
Motion; AAM: Active Appearance Model; CVAE: Conditional Variational Auto-Encoder; ReLU: Rectified Linear Unit

unfeasibility of attaching markers in certain settings; physical
and psychological constraints. These are also true for the case
of facial capture for VR end users. It takes 30 to 60 minutes
to attach markers to the face. That may be acceptable for
commercial purposes because their usage may take hours or
even a whole day. However, many VR applications (gaming,
conference, and education) last 10 to 40 minutes. In these
cases, it seems that the 30-minute setup is a high cost and
is not acceptable. Thus, we focused on methods without
markers.

B. USING SENSORS

Sensors are low cost and are often used to detect skin move-
ment, but they lack details, and the output is too simple and
limited. The correspondence between the sensor signals and
facial expressions can be established. Most of these sensors
require contact with the facial skin to detect signals. In [22],
IR light was chosen because it could pass through several
layers of the human skin and had lateral propagation charac-
teristics. These IR emitters and receivers were contactless. Li

et al. [27] used eight ultra-thin strain gauges and one RGB+D
camera. For each subject (individual), the headset must be
trained once. A short calibration was required for each use. A
Gaussian Mixture Model and a linear regression model were
trained to process the data and combine them. The result was
a realistic blend shape model. Suzuki et al. [23] placed 14
contactless IR optical sensors around the eyes, and another
two were attached to the bottom of the headset for the cheek.
A 3-layer perceptron network was trained to classify the fa-
cial expressions. Later, Suzuki et al. [24] described the above
process in more detail and applied a three-layered feed-
forward neural network. The training was required for each
user. Lou et al. [25] used eight electromyography (EMG)
sensors and built the correspondence from signals to FACS
codes. For each user, a single photo was taken with a neutral
expression and inverse-rendered into a multi-linear PCA face
model. The training data were collected from 15 volunteers
with five common facial expressions. The Root Mean Square
(RMS) and Least-Square Support Vector Machine (LS-SVM)
were used as the classifier. It could output six of the Action
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Unit (AU) and drive a facial model.
Frueh et al. [26] presented "Headset Removal", a modified

headset with an eye-tracking feature that yields improved
output. First, the user’s face was captured using an RGB-D
camera. The eye gaze direction and blinks were recorded in
a database. Second, QR code markers were placed on the
headset for tracking. Third, the eye-gaze parameters from
the headset were used to retrieve a model from the database.
Fourth, the corespondent upper-face model was aligned with
the actual face in this video, along with a transparent headset
to eliminate the “uncanny valley”. In this video, the headset
appeared transparent. No facial expressions were used in the
upper facial model.

C. USING HEADSET MOUNTED CAMERAS
In recent years, due to the development of hardware, es-
pecially advanced cameras and faster processing power, it
is possible to capture facial motion in video and perform
real-time processing. Edwards et al. [42] used the Active
Shape Model(ASM) to determine the boundary of a face in
an image. In [43], the Active Appearance Model(AAM) was
defined. These two laid the foundation for many later studies.
In March 2013, the startup company Oculus shipped its first
developer kit(DK1). Moreover, in mid-2014, developer kit
two(DK2) was shipped out. The VR headset became a big
hit, and researchers began to add facial capture functions to
this device. Li et al. [27] used both sensors and an RGB+D
camera to achieve many expressions. Yu and Park [29] used
only one ToF IR+D HMC to capture the lower half of the
face and drive a cartoon face. This required one calibration
for each user. Zhao et al. [30] used two IR HMCs to track
the eyes and one RGB camera (not mounted but away from
the user) to capture the lower face. Three cascaded learning
networks were used to track the eyes and lower face. The
online processing time for one frame was approximately
560ms on an Intel i7-4710 CPU (3.4GHz). Thies et al. [37]
used multi-view (RGB+IR) to drive the model for the same
person to be displayed in VR. Olszewski et al. [31] used
two IR cameras(eyes) and one RGB camera(lower face). A
microphone captured the voice to synchronize the mouth
movement. Convolutional Neural Network (CNN) regressors
were trained separately for the mouth and eyes. The output
mouth and eye control weights were used to drive an ani-
mated character online.

Some papers from Facebook Reality Labs showed sig-
nificant results. In [32], 40 cameras were mounted on a
hemisphere and could capture the user’s face with pore-level
details. Multiview stereo reconstruction was used to construct
the facial model. Each research subject/individual was asked
to perform 122 facial expressions and recite 50 sentences.
This large database formed the basis for further development.
Each facial model with texture and mesh was converted to a
code and vice versa. A Conditional Variational Auto Encoder
(CVAE) was used. One key component of the CVAE is view-
dependent texture synthesis. In the headset, only three IR
HMCs were used. Views from three HMCs were synthesized

to match the real images. When a match was found, the
corresponding code was used to synthesize the facial model.
The output was compared with linear and bi-linear models
and was better in quality and had fewer parameters. Wei
et al. [33] improved the Deep AAM by using more HMCs
for training, and IR images were pseudo-rendered before
the matching. The matching performance was more precise
than that in [32]. The result was significantly better with
detailed nuances. The algorithm was improved and supported
funny expressions that were not in the samples. Although it
could interfere with background flash and sometimes weaken
the emotion, it showed improvements in expressiveness and
robustness. In [34], the Deep AAM was named Codec Avatar,
and Modular Codec Avatar (MCA) was defined by several
high-level formulas. Schwartz et al. [19] added eye-tracking
features. Ma et al. [35] improved the decoder to display
multiple avatars faster. Chen et al. [36] improved the building
process by including different lighting, and thus made the
avatar relightable.

D. USING FILTERS TOGETHER WITH CAMERAS
Sometimes special filters are used in the headset for better
capture. These filters work on a different wavelength, thus
will not interfere with the visual light from the RGB screen.
Yamada et al. [38] used polarized filters to enable one-way
video capture in the “Selfie-Mask” headset. The user could
only see the display but not outside, while the outside camera
could see the whole face of the user. However, display lights
were reduced, and the full-face video was a bit distorted.
Rekimoto et al. [39] used one RGB camera for the lower
face and two IR cameras for the eyes. IR-reflective screens
were placed in front of each eye, resulting in a better viewing
angle. Chiba et al. [40] used IR-pass filters to block the
visible light around the display. An outside IR camera could
capture the entire face with just natural lighting.

IV. FACIAL PERFORMANCE CAPTURE
Facial performance capture is often used in filmmaking.
Usually, the cameras are more than 30 cm away from the
face, so the video is less distorted. The facial motions are
then transferred to a computer-rendered character. According
to the type of input device, facial performance capture can
be divided into monocular depth sensor, monocular RGB
video(Mono-RGB), and multi-view. The former two are
important because they are available to the public through
smartphones. They provide the baseline to build the initial
facial models for an individual to implement facial capture
in HMD settings. Table 2 shows papers related to facial
performance capture, mostly without a headset.

A. MONOCULAR DEPTH SENSOR
A monocular RGB+D senor can capture the facial model in
detail and precision but is not very realistic. Wang et al. [44]
captured an area of 260× 244 mm with an error of less than
0.05mm. It could capture a facial model at a coarse level
(1000 node mesh) or a refined higher level (8000 node mesh).
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TABLE 2. Facial Performance Capture

Type Paper and Description Context Method Advantages Disadvantages realism
Index

Mono-
Depth
Sensor

[44]RGB+D Entertain-
ment and
Animation

LLE High precision Narrow field of view
(FOV), low resolu-
tion

7

Mono-
Depth
Sensor

[16] RGB+D, expression
transfer to another model

[45] RGB+D(Kinect),39
blendshapes

Entertain-
ment and
Animation

[16] PCA, Rigid Recon-
struction, Optical Flow
[45] Rigid Tracking, EM,

MPPCA

[16] Rigid, mouth
and eyelid tracking,
chin aligned
[45] Rigid

[16]Projector too
bright
[45]Low resolution,
lack detail

6

Mono-
Depth
Sensor

[46]RGB+D(Kinect), 150
subjects aged from 7 to 80,
20 expressions each

General CG ASM, PCA, Facial rigging,
blendshape

Low cost, mobility Low resolution se-
vere noise

7

Mono-
RGB

[47]Re-targeting and re-
lighting

Entertain-
ment and
Animation

SHBMM, de-lighting, re-
lighting

Few images as input Not real-time 7-

Mono-
RGB

[48]Inverse Rendering General CG 3DMM, PCA Complete
framework, multi-
linear system

Complex pipeline 7-

Mono-
RGB

[49]: 3D regression
[50]:Face Tracking [51]:
46 FACS AUs

General CG [49]: 3D Regression
[50]: DDE
[51]: Local regressor

[49]: Easy,robust
[50]: General train-

ing
[51]: Wrinkle de-

tails

[49]: Training per
user
[50]: No wrinkles
[51]: Lighting de-

pendent

[49]:6
[50]:4
[51]:5

Mono-
RGB

[52]:Video reenactment Entertain-
ment and
Animation

Mouth database and synthe-
sis, non-rigid model-based
bundling

Photo-realistic Not 3D output 7

Mono-
RGB

[53]: Eye gaze animation,
multi-linear expression de-
formation model

General CG LBF, Randomized Forest,
double eye-gaze constraints

Eye and pupil track-
ing

Cartoon charactor 4.5

Mono-
RGB

[54]:4-level hierarchical
reconstruction

General CG AAM, SfS, hierarchical re-
construction

Wrinkle details Relies on landmarks 7.5

Mono-
RGB

[55]: 3DFaceNet, gener-
ated training set

General CG CNN, Inverse Rendering,
Refinement

Fine detail with tex-
ture

inaccurate reflection
and self-shading

6

Mono-
RGB

[56], [57]: Video reenact-
ment

Entertain-
ment and
Animation

DCNN, NMFC, mouth syn-
thesis [57]: DenseFaceReg,
eye synthesis

Realistic 2D output 6-

Mono-
RGB

[58]: Geometry and tex-
ture streams

General CG ASM, SSRPM Semantic Region
Stylization

Low to medium res-
olution

6

Mono-
RGB

[59]: Monocular videos of
actor

Entertain-
ment and
Animation

Deep CNN Fast, 287fps(real-
time)

Training per user 5

Mono-
RGB

[60]: Relightable model
from single image

General CG GANFIT, pix2pixHD, CNN Open-source, Spec-
ular map

Not well on dark
skin, minor align-
ment errors, quality
dependent

7

Mult-
iview

[61]: 7 pairs of stereo
RGB

[62]: merged and en-
hanced
[17]: anchor-based recon-

struction

Entertain-
ment and
Animation

[61]: Frame Propagation,
mouth tracking
[62]: Mesoscopic Augmen-

tation
[17]: Frame anchoring,

image-space tracking

Pore-level details
[62]: Versatile
[17]: Robust

[61]:Fast motion er-
ror,
[62]: static model,

lighting sensitive

[61]:7.6-

[62]:8.0-

[17]:8.2-

Multi-
view

[63]: 5 high-speed
cameras synchronized
with lighting

Entertain-
ment and
Animation

Active lighting, heuristic
diffuse / specular separation

Automatic process,
novel viewpoints,
relightable

occasional spike,
computing intensive

8.8-

Multi-
view

[64]: 2 RGB HMCs, 3
cameras on rig

Entertain-
ment and
Animation

Compared HMCs to static
rig

Multi-dimensional
regression

Actor specific rig
and regressor

6.5

Multi-
view

[65]: Starline virtual
meeting

Communi-
cation

Active depth sensing, 3D
display

Portable, realistic Expensive,
prototype level

8.5

LLE: Locally Linear Embedding framework; SHBMM: Spherical Harmonic Basis Morphable Model; EM: Expectation Maximization;
CNN: Convolutional Neural Network; DCNN: Deep Convolutional Neural Network; MPPCA: Mixtures of Probabilistic Principal
Component Analyzers; DDE: Displaced Dynamic Expression; NMFC: Normalized Mean Face Coordinates; ASM: Attribute Spatial
Maps; SSRPM: Shared Semantic Region Prediction Module (SSRPM) .
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Then a model was designed to decompose content (non-user-
specific expression) and style (user-specific) from the 3D
facial model. From this model, new expressions could be
synthesized for an individual, or dynamic morphing could be
generated from one individual to another. In [16], a personal-
ized linear facial model was built for each actor. Weise et al.
[45] used an RGB+D(Kinect V1) camera to capture the user’s
face, convert it into blendshape weights, and drive a digital
avatar in an animation. Fifteen user-specific expressions and
39 blendshapes were used. In [46], a Kinect V1 was used to
capture expressions from subjects. Four example applications
were demonstrated using these models: facial image manipu-
lation, face component transfer, real-time performance-based
facial image animation, and facial animation retargeting from
video to an image.

B. MONOCULAR RGB CAMERA
Cao et al. conducted extensive investigations on real-time
performance. In [49], a novel 3D shape regression algorithm
was developed. In the first frame, a 2D shape regressor was
applied to locate the landmark positions. A shape regression
model was trained for each actor and was used to generate
blendshapes through iterations. In [50], the process was
improved so that user-specific training was not required. A
Displaced Dynamic Expression (DDE) model was developed
for this purpose. In [51], local regression was used to aug-
ment a global mesh model with winkle details.

In [52], the actor’s facial performance was transferred
to another subject in a photo-realistic manner. Wang et al.
[53] used a pre-trained user-dependent iris and pupil pixel
classifier to perform eye tracking together with the Maximum
A Posterior (MAP) framework. Multi-linear expression de-
formation models were used to reconstruct the 3D facial
model. In [54], a high-resolution RGB camera (Logitech
C922x) was used to capture the actor’s face. The same algo-
rithm from [53] was used to reconstruct the facial model with
5.6k vertices and 33k triangle faces. A hierarchical approach
was used to subdivide the mesh model into a 4-8 subdivision
scheme at each level to enhance the mesh. With the normal
map from the mesh, an albedo map was calculated for the
lighting estimation. Wrinkles and folds were interpreted as
albedo changes. The system was run at 50 fps on a PC
with a GPU. In [55], a framework named 3DFaceNet was
proposed, which consisted of three CNNs: a CoarseNet for
the first frame and a single image, a Tracking CoarseNet to
track between frames, and a FineNet to enhance the coarse
mesh with fine-scale details. An optimization-based inverse
rendering process was used to generate training data from
the existing datasets. From the RGB video, this 3DFaceNet
could recover detailed geometry, albedo, lighting, pose, and
projection parameters in real-time. Lattas et al. [60] captured
7 expressions from 200 individuals into a dataset called “Re-
alFaceDB”. The final model used GANFIT on an input image
to estimate the initial 3DMM, then used RCAN to up-sample
the texture map. This was then delighted into a diffused
albedo map. Subsequently, a diffused normal map and two

specular maps (albedo and normal) were generated from the
trained networks. The result was a view-independent facial
model that could be realistically relighted under different
lighting conditions.

C. MULTI-VIEW PERFORMANCE CAPTURE
Multi-view performance capture can retrieve more details
than monocular performance capture. However, the exten-
sive input data takes longer to calculate, making some of
these methods not real-time. Derek Bradley et al. from the
University of British Columbia (Canada) published a series
of papers on 3D and facial capture. In [66], they enhanced
the Multi-View Stereo algorithm and achieved a high perfor-
mance and well-shaped mesh. Due to its low resolution, it
was suitable for fabric and sculptures. Later on in [61], this
technique was used with high-resolution cameras to capture
seven parts of the face, and merge them into a detailed model.
In [62], seven stereo cameras (Fuji Real 3D W1) were used
to construct a passive stereo vision system. The resulting
error was less with mesoscopic augmentation and was more
accurate than the existing solution (PMVS [67]). It only
required an initial manual focus. Beeler et al. [17] improved
[62] from the previous single-shot mode to video mode.
The cameras were upgraded to Dalsa Falcon 4M60. and
synchronized. One reference frame and some anchor frames
were used to track other frames and refine the motions. Fyffe
et al. [63] used five high-speed and high-resolution cameras
(Phantom v640, up to 1500fps) to capture the actor’s face
under controlled lighting. The reflectance and geometry were
estimated under different lighting conditions. The resulting
model included the facial model, diffuse albedo, surface
normal, and specular albedo. This could be rendered under
different lighting conditions with realistic outcomes. In [64],
two cameras were installed on a head-mounted rig to capture
the user’s face. A cascaded regression scheme was trained for
the user to estimate the facial model in real-time. The result
was a high-quality real-time facial model. Laine et al. [59]
trained a deep learning network (12-level deep CNN) with
multi-view RGB videos. The 5-10 minutes of video footage
consisted of extreme expressions, FACS-like expressions,
pangrams, and in-character material. The output facial model
was better than the other two state-of-the-art methods.

V. VOLUMETRIC CAPTURE
Volumetric capture usually involves multi-view set-ups of
RGB, RGB+D, or depth cameras, and sometimes even pat-
tern projectors. Due to a large amount of processing, these
systems are mostly non-real-time. Table 3 lists papers related
to volumetric capture. In [68], Microsoft Research presented
the real-time “Holoportation” system which consisted of 8
pods, 8 GPUs on 4 PCs. To solve the interference, random
dots were used and treated as reference points for further
details. A prototype called “Visor Removal” was imple-
mented by capturing each eye from a camera installed at the
corner of the visor, projecting the video as a texture onto a
reconstruction of the user’s face. In [69], Holoportation was
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TABLE 3. Volumetric Capture and Other Trends

Type Paper and Descrip-
tion

Context Method Advantages Disadvantages realism
Index

Volumetric [68], [69]: 8 RGB+D
(Stereo IR), Holopor-
tation

Communication Visor removal, active stereo,
[69]: NLP

Real time Vol-
umetric

High band-width,
expensive*, no
eye-contact

8

Volumetric [70]: Distributed
system with 1 centre
and 4 RGB+D units

Entertainment
and Animation

CNN, Multi-task learning Open-source Low resolution 7-

Volumetric [71]: Huge (10,000
square feet) dome, 90
servers

Entertainment
and Animation

Multi-view capturing, synchro-
nized cameras

High
resolution

Huge cost* 8.8-

Volumetric [72]: 58 RGB +
32 structured IR, 331
programmable lights,
room-scale

Entertainment
and Animation

Active depth sensing, Deep
Learning Based Segmentation,
Reflectance Maps Generation

High
resolution,
relightable

High cost* 9-

Volumetric [73]: 46 4K RGB
camera dome, 70 cm
viewing baseline

Entertainment
and Animation

Multi-Sphere Images, Layered
mesh model

Portable,
broadcast level

Limited views 8.5-

Statistics [74]: Synthesis of fa-
cial detail

Entertain-ment
and Animation

Markovian techniques, steer-
able pyramid, Gaussian noise

Pore-level de-
tails, aging and
de-aging

Plausible output 5-

Statistics [75]: Facial assets Entertain-ment
and Animation

FACS, Influence Map Details,
teeth/tongue
modeling

Large training
data

8-

Output
/Render

[20], [76]: Real-time
facial rendering

Entertainment
and Animation

Opacity map and pore mask Hyper-realistic High processing
needs

9.2-

Output
/Render

[77]: The Heretic
demo short film

Entertainment
and Animation

Cavity map, eyes and teeth
modeling

Realistic Lack opacity 9-

NLP: Natural Language Processing. *: The costs are for the capture system.

improved by combining Natural Language Processing (NLP)
and Text To Speech so that the hostess could present the
talk in any language. Shrestha et al. [78] solved the inter-
ference problem by modulating the ToF cameras at different
frequencies to cancel the interference out. Sterzentsenko et
al. [70] created a low-cost system with four RGB-D units,
which send data to a center “orchestrator” through LAN. In
[71], a huge dome system was able to capture volumetric
video for film making at a rate of over one terabyte of
data every 10 seconds. Guo et al. [72] developed the “The
Relightables” system, which has a geodesic sphere fitted with
LED lights, cameras, and custom-designed depth sensors.
The final model had a specular map and was relightable.
Broxton et al. [73] presented a portable VR/AR broadcast
system with 46 low-cost cameras (Yi 4K) on a 92-cm di-
ameter hemisphere facing outwards. The acquired multi-view
video was processed into a layered mesh representation.

VI. OTHER TRENDS

Statistics were used for facial capture. In [74], statistical
models were used to enhance details and generate aged or
de-aged geometries regarding ages, genders, and races. In
[75], a whole set of dynamic facial assets could be generated
from a single facial scan. A high-fidelity facial scan database
(178 subjects, each with 19 to 26 different expressions)
was used to train a Blendshape Generation network and a
Texture Generation network. The personalized blendshapes
were augmented with facial components and template blend-
shapes, and combined with the dynamic textures to make the
final output that contains the expressive models of the actor.

In addition to facial capture, the output (rendering) method
is also vital for VR to persuade people’s eyes that this is a real
human being instead of a cartoon character. Real-time game
engines are quite advanced in rendering human faces. Peder-
sen et al. [77] described the render pipeline of facial model
in Unity 3D. Humphreys [20] used “MetaHuman Creator”
(based on Unreal Engine) to create a hyper-realistic virtual
human called “Dana”. It is state-of-the-art and far beyond
competitors. According to [76], the skin is translucent and
contains pore-level details.

VII. DISCUSSION

This systematic review of facial capture for VR is based on
a sample of 57 papers and materials from typical databases
such as ACM Digital Library and IEEExplore, as well as
through search engines and the Internet until June 2021.
Facial tracking markers have been used for a long time. They
are mature, fast, and often used for film production. How-
ever, the long preparation time and physical/psychological
constraints make them unsuitable for VR end users. Sensors
can be used in VR headsets to track facial motions, either in
contact or contactless. They are low cost and easy to imple-
ment. However, the output expression is sparse, limited, and
unrealistic. This is because only several (4 to 6) expressions
can be supported by most sensors.

Monocular RGB cameras can be used to capture facial
models and motions, and are widely available. Since 2014,
more than 1.2 billion smartphones were sold every year [79],
all equipped with RGB cameras. They are almost accessible
to everyone. The monocular RGB video of a user contains

8 VOLUME 4, 2016



Wen et al.: A Survey of Facial Capture for Virtual Reality

much redundant information. Basically, regardless of what
expression the user makes, the facial skin textures mostly
remain the same. Only the shape and blood circulation may
change. If the user holds the same expression, then the shape
does not change, and only the posture and lighting conditions
may change. Using the methods in [60], we can retrieve facial
shape, texture (albedo map), specular map, etc. from these
videos. With some close-up shots, it is possible to retrieve
pore-level details.

Monocular RGB+D cameras can also be used for facial
capture. In a market report [80], the smartphone depth sensor
market size was valued at $561 million in 2017 and is
projected to reach $9,280 million by 2025, registering a
compound annual growth rate(CAGR) of 42.3% from 2018
to 2025. Apple iPhone 12 is equipped with a depth sensor,
and sales were $47 billion in Q2 2021 [81].

Other RGB+D sensors are also available on the market,
such as Intel Realsense, Structure Sensor, and Microsoft
Kinect Azure. Some of them are used for facial recognition,
while others are used for robot vision. The depth channel
can provide more details, which makes the process faster and
more accurate. Binocular RGB video can be used for facial
capture, but the setup requires calibration and is suitable for
professionals and studios.

The most promising technology for facial capture for VR
is multi-view capture in HMCs. Some HMCs for the eyes are
from a narrow-angle, which do not provide enough details,
especially when the eyes are looking away from the camera.
This needs to be addressed in future studies. According to our
comparison of the realism index values among these HMC
techniques, the Modular Codec Avatar presented in [34],
[35] and [36] is state-of-the-art. However, building an initial
model for a Codec Avatar(CA) is expensive. Volumetric
capture or the camera dome is too expensive for the public.
This burden can be lowered by using facial performance
capture technologies with AI and statistics. Many photos and
videos can be collected on social media for the same user,
which can be used as a database for AI to build CA for
the same user. Facial performance capture using monocular
videos is a mature technology. It is possible to use one RGB
camera or one RGB+D camera, which is widely available
on mobile phones, to collect data for the CA. In addition,
building a CA requires many samples. Currently, we are in
the COVID-19 pandemic, and video conferences are widely
used for safety reasons. If these videos can be used in
the facial capture and development of the CA, much time
can be saved. A key component of CA is view-dependent
texture synthesis. However, the texture is view-dependent
mostly because of specular reflections. It could possibly be
simplified as a view-independent model using specular maps
[60]. From the computing point of view, mobile phones and
laptop computers have limited computing power, so some of
the calculations can be shifted to the cloud. These are future
research topics to be addressed.

Volumetric capture is an expensive setup that is used
only in studios. Most of these high-fidelity systems are too

expensive and difficult to access for the public, such as the
Light Stage system and “the Relightables” [72].

One aspect of facial capture is data privacy. Herz et al.
[12] stated that data privacy is a key factor when consumers
purchase VR headsets. A database of facial capture includes
the details of a user’s face at different ages and times. It
knows and remembers the user’s face better than anyone else.
Strong authentication should be applied to ensure that a facial
model is not manipulated by a person other than the owner.

The ergonomics of the VR headset must be improved. As
stated before, the physical constraints of the headset on the
skin make it uncomfortable for the user. The solution is to
keep the headset contactless from the face so that the facial
motions are not constrained. Yan et al. [82] found that any
headset above 200g would cause at least slight discomfort on
certain parts of the head. Given that the mainstream headsets
are above 500g, there is a lot to do to reduce the weight.

Finally, the VR headsets’ Total Cost of Ownership(TCO)
is still high. A high-quality VR headset system costs from
$400 to $3,000. Once purchased, the headset value decreases
rapidly. When the next version emerges, the old headset
quickly becomes absolute. It is better to have an open-design,
to make hardware and software compatible with different
manufacturers. Therefore, the upgrade process will be more
gradient and smooth, and the VR headsets will be affordable
to everyone.

VIII. CONCLUSION
For answering RQ1, this survey proposed the use of multiple
inward-facing HMCs and deep learning methods such as
the Modular Codec Avatar to capture and present the facial
model. For RQ2, this survey suggested enabling the headset
and sensors to be contactless from the face and improve
their ergonomics. For RQ3, it is possible to use a single
high-resolution RGB camera to collect data to build the
Codec Avatar model. This would make Codec Avatars widely
available. An open-designed VR headset can lower the TCO.

Several potential research gaps have been identified. In
the Codec Avatar, facial expressions are weakened for some
extreme emotions, which still cause an uncanny valley. More
data can be collected, and the model can be improved. To
build the Codec Avatar, we can use RGB video or reuse
existing photos and videos from social media and video
conferencing.
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