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ABSTRACT

We take a new step towards an algebraic characterisation of groups presented by length-reducing
rewriting systems. We prove that a group is presented by finite convergent length-reducing
rewriting systems where each rule has left-hand side of length three if and only if the group
is plain.

Our proof rests on proving a new result about embedded circuits in geodetic graphs, whose
proof may also be of independent interest to graph theorists.

1. Introduction
The study of rewriting systems connects abstract algebra and theoretical computer science in deep and useful

ways. A program of research initiated in the 1980s seeks to characterise algebraically the families of groups that may
be presented by various families of rewriting systems (see [13] for a broad introduction). An important part of this
program is to characterise the groups that may be presented by length-reducing rewriting systems. Early progress
was swift. Diekert [4] (see also [12]) proved that that the family of groups admitting presentation by finite convergent
length-reducing rewriting systems is properly containedwithin the family of virtually-free groups; Avenhaus, Madlener
and Otto [1] proved that the family of groups admitting presentation by finite convergent length-reducing rewriting
systems in which each rule has a left-hand-side of length two is exactly the family of plain groups (a group is plain if
it isomorphic to a free product of finitely-many factors, with each factor a finite group or an infinite cyclic group); an
explicit construction (described in Section 2.1) shows that any plain group admits presentation by a finite convergent
length-reducing rewriting system. From such results the plain groups emerged as the likely family of groups presented
by finite convergent length-reducing rewriting systems. In 1987, Madlener and Otto [11] summarised the state of
knowledge by highlighting the following two conjectures, the resolution of which would “give a complete algebraic
characterisation of groups presented by length-reducing systems”.

Conjecture 1 (Gilman [8]). Let G be a group. Then G admits presentation by a finite convergent length-reducing
rewriting system (Σ, T ) in which the right-hand side of every rule has length at most one if and only if G is plain.

Conjecture 2 (Madlener and Otto [11]). Let G be a group. Then G admits presentation by a finite convergent length-
reducing rewriting system (Σ, T ) if and only if G is plain.

Although a special case of Conjecture 2, Gilman’s Conjecture was important enough to consider separately because
it seemed more tractable and its resolution may provide clues to the more general problem. The recent positive solution
to Gilman’s Conjecture by Eisenberg and the second author [5] motivates the present work. Our main result proves
Conjecture 2 in a special case not implied by [5].

Theorem 1. Let G be a group. Then G admits presentation by a finite convergent length-reducing rewriting system
(Σ, T ) such that Σ = Σ−1 and the left-hand side of every rule has length at most three if and only if G is plain.

Our proof is essentially graph theoretic, and exploits the fact that if G and (Σ, T ) are as in the theorem, then
the undirected Cayley graph Γ = Γ(G,Σ) is geodetic. A simple undirected graph Γ is geodetic if between any pair
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Rewriting systems, plain groups, and geodetic graphs

of vertices there exists a unique shortest path. In [14, Problem 3, p.105], Ore posed the problem of giving a general
classification of all finite geodetic graphs, but that has proven very difficult. Although planar geodetic graphs have been
characterised [20], various structural aspects of geodetic graphs of diameter two and three are understood [15, 16, 18],
the geodetic graphs homeomorphic to complete graphs are known [19], and a number of clever procedures have been
developed for constructing new geodetic graphs from existing ones (see, for example, [7]), a general classification of
geodetic graphs is not close. We prove the following, which is new and may be of independent interest simply because
the task of classifying geodetic graphs has proven to be so difficult.

Theorem 2. If Γ is an undirected simple geodetic graph in which isometrically embedded circuits have length at most
five, then all embedded circuits have diameter at most two.

While Theorem 1 falls well short of resolving Conjecture 2, and Theorem 2 is an incremental contribution to our
understanding of geodetic graphs, we think our proof offers insight into the difficulties to be overcome by any argument
that takes a primarily graph-theoretic approach to a significant open problem that has defied the efforts of many authors
for more than three decades.

2. Definitions
2.1. Rewriting systems

A rewriting system is a pair (Σ, T ) that formalises the idea of workingwith products from a set of allowable symbols,
using a set of simplifying rules. The set Σ is a nonempty set, called an alphabet; its elements are called letters. We
write Σ∗ for the set of all finite words, including the empty word �, that can be made using letters from the alphabet.
For any w ∈ Σ∗, we write |w| for the length of w; � is the unique word of length 0. The second element T is a
possibly empty subset of Σ∗ × Σ∗, called a set of rewriting rules. The set of rewriting rules determines a relation →
(read “immediately reduces to”) on the set Σ∗ by the following rule: a → b if a = ulv, b = urv and (l, r) ∈ T .
The reflexive and transitive closure of→ is denoted

∗
→ (read “reduces to”). Thus the rewriting rules specify allowable

factor replacements, and u
∗
→ v if v can be obtained from u by a sequence of allowable factor replacements. A word

u ∈ Σ∗ is irreducible if no factor of u is the left-hand side of any rewriting rule, and hence u
∗
→ v implies that u = v.

The reflexive, transitive and symmetric closure of → is called “equivalence”, and denoted
∗
↔. The operation of

concatenation of representatives is well defined on the set of
∗
↔-equivalence classes, and hence defines a quotient

monoidM =M(Σ, T ). We say thatM is the monoid presented by (Σ, T ). When the equivalence class of every letter
(and hence also the equivalence class of every word) has an inverse, the monoid M is a group and we say it is the
group presented by (Σ, T ).

Example 1. Let Σ = {a, A} and let T = {(aA, �), (Aa, �)} . Then (Σ, T ) presents a group isomorphic to ℤ, the infinite
cyclic group.

Example 2. Let G be a finite group, let Σ = G ⧵ {eG} and let

T =
{

(gℎ, k) ∣ g, ℎ, k ∈ Σ and gℎ =G k} ∪ {(gℎ, �) ∣ g, ℎ ∈ Σ and g =G ℎ−1
}

.

Then (Σ, T ) presents a group isomorphic to G.

A rewriting system (Σ, T ) is finite if Σ and T are finite sets, terminating (or noetherian) if there are no infinite
sequences of allowable factor replacements, and length-reducing if for all (l, r) ∈ T we have that |l| > |r|. It is clear
that length-reducing rewriting systems are terminating. A rewriting system is called confluent if for all w, x, y ∈ Σ∗,
if w

∗
→ x and w

∗
→ y then there exists z ∈ Σ∗ such that x

∗
→ z and y

∗
→ z. A rewriting system is called convergent if

it is terminating and confluent. The following lemma (see, for example, [2, Theorem 1.13, p.13]) illustrates the utility
of convergent rewriting systems.

Lemma 1. In a convergent rewriting system, rewriting any word in Σ∗ until you can rewrite no more is an algorithm
for producing the unique irreducible word (the normal form) representing the same element.

The following simple lemma is provided without proof. The corollary is easily proved by applying the lemma to
the rewriting systems exhibited in Examples 1 and 2.
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Lemma 2 (Combining rewriting system to present free products). Suppose that (Σ1, T1),… , (Σn, Tn) are rewriting
systems presenting groups G1,… , Gn respectively and such that the alphabets Σ1,… ,Σn are pairwise disjoint. The
combined rewriting system

(

∪ni=1Σi,∪
n
i=1Ti

)

presents the free product G1 ∗⋯ ∗ Gn.

Corollary 1. IfG is a plain group, thenG admits presentation by a finite convergent length-reducing rewriting system
(Σ, T ) where Σ = Σ−1 and the left-hand side of every rule has length equal to two.

2.2. Graph theory
A simple undirected graphΔ is a pair comprising a nonempty set V (Δ), the set of vertices, and a set of two-element

subsets E(Δ), the set of edges. The vertices that form an edge are said to be adjacent. All graphs considered in this
paper will be simple and undirected. For the remainder of this section, fix a simple undirected graph Δ.

A path of length n in Δ from a vertex u to a vertex v is a sequence of vertices u = u0, u1,… , un = v with the
property that ui−1 and ui are adjacent for i = 1,… , n. A path from u and v is called a geodesic if there is no shorter
path in Δ from u to v. If for each pair (u, v) of distinct vertices in Δ there is at least one path in Δ from u to v, we say
that Δ is connected; if for each pair (u, v) of distinct vertices in Δ there exists a unique geodesic from u to v, we say
that Δ is geodetic. If Δ is connected, there is a natural metric d on the vertex set of Δ such that d(u, v) is the length of
a shortest path in Δ from u to v.

A circuit is a path u0, u1,… , un where u0 = un. A sub-path of a circuit u0, u1,… , un is either a path ui,… uj where
0 ≤ i ≤ j ≤ n or a path ui,… , un, u1,… , uj where 1 ≤ j ≤ i ≤ n. A circuit u0, u1,… , un is embedded if the vertices
u0,… , un−1 are distinct. An embedded circuit in Δ is isometrically embedded if the subgraph comprising the vertices
in the circuit and the edges between consecutive vertices is convex in Δ; that is, d(ui, uj) = min{j − i, n + i − j} for
all 0 ≤ i < j < n. We will use the acronym IEC for isometrically embedded circuit. We note that if u, v are adjacent
vertices in Δ, then the path u, v, u is an isometrically embedded circuit of length two. We also note that in a geodetic
graph, the unique geodesic joining two vertices of an IEC is a subpath of the IEC.

A vertex v inΔ is a cut vertex ifΔ is connected, but the graph obtained fromΔ by removing v and the edges incident
to v is disconnected. A graph is two-connected if it is connected and has no cut vertices. The maximal two-connected
subgraphs of a graph Δ are called blocks. It follows immediately from the maximality of blocks that any block B in
Δ is the subgraph of Δ induced by the vertex set of B. In a connected graph having at least two vertices, each block
has at least two vertices. The following well-known characterisation of blocks (see, for example, [14, Theorem 5.4.3,
p. 87]) will be useful in this article.

Lemma 3. Let Δ be a simple undirected graph. Two vertices u, v of Δ lie in the same block if and only if there exists
an embedded circuit in Δ that visits both.

Given a connected graph Δ, the block-cut tree T = T (Δ) is a well-known construction which encodes the block
structure of Δ. The graph T has one vertex vx (of type I) for each vertex x of Δ, and one vertex vB (of type II) for
each block B of Δ; a type I vertex vx is adjacent in T to a type II vertex vB if x is a vertex in the block B. For any
connected graph Δ, the block-cut tree T (Δ) is a tree (a connected graph in which every embedded circuit has length at
most two). See for example Figure 1.

Figure 1: Example of a graph and its block-cut tree. Type II vertices are solid black.

2.3. Key lemma and broomlike graphs
The following lemma and its proof are paraphrased from [6, Proposition 6.3].

Lemma 4. Let Γ be a geodetic graph, and let u0, u1,… , un and u0, u′1,… , u′n be equal length geodesics in Γ such that
u1 ≠ u′1 and d(un, u

′
n) = 1. Then

u0, u1,… , un, u
′
n,… , u′1, u0
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is an IEC.

u0 = v0

v1
v2 vn−1 vn = un

v2n
v2n−1

vn+2

vn+1 = u′n

Figure 2: Geodesics in Lemma 4, relabeled as in the proof.

Proof. Since Γ is geodetic and u1 ≠ u′1, the sets {u1,… , un} and {u′1,… , u′n} are disjoint. It is convenient to relabel
the vertices v0,… , v2n so that

v0 = u0,… vn = un, vn+1 = u′n,… , v2n = u′1.

In what follows we shall consider the index i of a vertex vi modulo 2n + 1.
Using induction, we shall prove the following statement S(i) for all i: The paths

vi, vi+1,… , vi+n and vi, vi−1,… , vi−n

are geodesics. The result follows immediately.
That S(0) holds is immediate from the hypotheses. Suppose that S(i) holds for some index i. It follows that

vi+1,… , vi+n is the unique geodesic from vi+1 to vi+n, because it is a subpath of the geodesic vi, vi+1,… , vi+n. It
follows immediately that d(vi+1, vi+n) = n − 1.

If d(vi+1, vi+n+1) < n, then there is a path of length at most n from vi to vi+n+1 = vi−n through vi+1. This contradicts
the fact that vi, vi−1,… , vi−n is the unique geodesic from vi to vi−n. It follows that d(vi+1, vi+n+1) ≥ n, from which it
follows that vi+1, vi+2,… , vi+n+1 is the unique geodesic from vi+1 to vi+n+1.

If d(vi+1, vi+1−n) < n, then there is a path of length at most n from vi+1 to vi−n = vi+n+1 through vi+1−n. This
contradicts the fact, just shown, that vi+1, vi+2,… , vi+n+1 is the unique geodesic from vi+1 to vi+n+1. It follows that
d(vi+1, vi+1−n) ≥ n, from which it follows that and vi+1, vi+1−1,… , vi+1−n is the unique geodesic from vi+1 to vi+1−n.

We make the following definition. Our vocabulary borrows from [3].

Definition 1 (s-broomlike). Let Δ be a geodetic graph and s a positive integer. We say that Δ is s-broomlike if
whenever a0,… , an−1, an, b is a path comprising distinct vertices such that a0,… , an is a geodesic but a0,… , an, b is
not, then the geodesic from a0 to b is a0,… , an−p, bn−p+1,… , bn = b for p ≤ s and bn−p+1 ≠ an−p+1.

a0

a1

an−p

bn−p+1

an−p+1 an−1

bn−1

an

b

Figure 3: Illustrating the s-broomlike property (Definition 1).

Lemma 5. Let Δ be a geodetic graph and s a positive integer. If every IEC in Δ has length at most 2s + 1, then Δ is
s-broomlike.
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Proof. Let a0,… , an−1, an, b be a path comprising distinct vertices such that � = a0,… , an is a geodesic but a0,… , an, b
is not. Let � be the geodesic from a0 to b, and let � = a0,… , an−p be the longest prefix shared by � and �, where
0 < p ≤ n. Then � = ��′ and � = ��′ with �′ = an−p, an−p+1… , an and �′ = an−p, bn−p+1,… , b both geodesics, and
an−p+1 ≠ bn−p+1 for if not we could have made � longer.

Since Δ is geodetic, |�′| = |�′|, so bn = b. Then �′, �′ satisfy the hypothesis of Lemma 4, which means

an−p, an−p+1… , an, b = bn, bn−1,… , bn−p+1, an−p

is an IEC, so its length is bounded by 2s + 1, which means |�′| = |�′| = p ≤ s.

2.4. Cayley graphs
An important and much-studied connection between graph theory and group theory is via the Cayley graph. In this

article, we consider the undirected Cayley graph corresponding to a group and a choice of finite generating set. For
any group G let eG denote the identity element.

For a group G and a generating set Σ, the undirected Cayley graph of G with respect to Σ is the simple undirected
graph Γ = Γ(G,Σ)with vertex setG and in which distinct vertices g, ℎ ∈ G are adjacent if and only if g−1ℎ ∈ Σ∪Σ−1.
See for example Figure 4. If Σ is finite then Γ is locally finite. Each path u0, u1,… , un in Γ is labeled by a word
a1… an ∈ (Σ ∪Σ−1)∗ where ai =G u−1i−1ui. A geodesic path in Γ from eG to g is a shortest word in (Σ ∪ Σ−1)∗ spelling
the group element g.

Note that by definition if x ∈ Σ and x =G eG then x will not appear as the label of any edge in Γ(G,Σ). Also if
x, y ∈ Σ and x =G y then the unique edge joining adjacent vertices g to gx in Γ(G,Σ) may be labeled by either x or y.

a

ab

ab2

eG

b

b2

aba

abab

abab2

ab2a

ab2ab

ab2ab2
ba

bab

bab2

b2a

b2ab

b2ab2

baba

bab2a

b2aba

b2ab2a abab2a

ababa

ab2aba

ab2ab2a

Figure 4: Part of the undirected Cayley graph Γ(G, {a, b}) for G = C2 ∗ C3 with presentation ⟨a, b ∣ a2 = 1, b3 = 1⟩.

Remark 1. Note that the undirected Cayley graph for the group G = C2 ∗ C3 shown in Figure 4 is geodetic, and
isometrically embedded circuits have length at most 3. If we consider G2n+1 = C2 ∗ C2n+1 with presentation ⟨a, b ∣
a2 = 1, b2n+1 = 1⟩ for arbitrarily n ∈ ℕ, the undirected Cayley graph is geodetic and has isometrically embedded
circuits of length at most 2n+1. This family of examples shows that geodetic Cayley graphs may contain isometrically
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embedded circuits of any (odd) length. By Corollary 1 such groups are presented by finite convergent length-reducing
rewriting systems.

3. Embedded circuits in geodetic graphs
In this section we prove Theorem 2. We start with the following lemma.

Lemma 6. Let Γ be a simple geodetic graph. If � is an embedded circuit of diameter exceeding two and that has
minimal length among all such embedded circuits in Γ, then � contains a geodesic sub-path of length three.

Proof. Let � be an embedded circuit of diameter exceeding two and that has minimal length among all embedded
circuits of diameter exceeding two in Γ. Since � has diameter at least three, there exist vertices 1 and x visited by �
such that d(1, x) = 3. We choose a basepoint (the vertex 1), an orientation of �, and label the vertices visited by � in
order

1, u1, u2,… , um = x = vn, vn−1,… , v1, 1.

For each vertex w ∈ Γ, we say that w is in level d(w, 1).
Note that m, n ≥ 3 since � has diameter at least three.

1

u1
u2 um−1

x = um = vn

v1
v2

vn−1

Figure 5: The embedded circuit � in Lemma 6.

Claim 1: u2, v2 are in level 2.
First we note that, since � is an embedded circuit, the vertices 1,… um−1, v1,… , vn−1, x are distinct. Since 1 and u1
are distinct, u1 is in level 1. Suppose that u2 is not in level 2. Then it is either in level 0 or 1, but u2 ≠ 1 so it must be
in level 1. This implies that u2 is adjacent to 1, and omitting u1 from � yields a shorter embedded circuit of diameter
exceeding two. This contradicts the choice of �, and hence proves that u2 is in level 2.

A symmetric argument shows that v2 is in level 2.
Since Γ is geodetic, u1 is the unique level-1 vertex adjacent to u2. It follows that u3 is in level 2 or level 3. Similarly,

v3 is in level 2 or level 3. The result is proved if we can show that u3 and v3 cannot both be in level 2.
Claim 2: At least one of u3, v3 is in level 3.
Suppose that u3 and v3 are both in level 2. Let u′1 be the unique vertex in level 1 that is adjacent to u3; let v′1 be the
unique vertex in level 1 that is adjacent to v3. If � does not visit u′1, then replacing the subpath 1, u1, u2, u3 by the path
1, u′1, u3 yields a shorter embedded circuit of diameter at least three, contradicting our choice of �. Therefore � visits
u′1. If u

′
1 ≠ v1, then either 1, v1,… u′1, 1 or 1, u1,… , u′1, 1 is an embedded circuit of diameter at least 3, contradicting

our choice of �. Thus u′1 = v1. By a symmetric argument, we also have v′1 = u1, and we are now in the situation shown
in Figure 6.

Let �′ be obtained from � by replacing 1, u1, u2, u3 by 1, v1, u3, and replacing v3, v2, v1, 1 by v3, u1, 1. Since �′
visits only vertices visited by �, and 1 is the only vertex visited twice, we know that �′ is an embedded circuit which
is shorter than �. Since the only vertices from � omitted were in levels 1 and 2, we know that �′ still visits a vertex in
level 3, and hence it still has diameter at least 3, contradicting our choice of �.

We will make use of the following fact due to Stemple.

Lemma 7 ([18, Theorem 3.3]). If a geodetic graph contains an embedded circuit

w0, w1, w2, w3, w0
of length four, then the induced subgraph on these vertices is a complete graph.
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1

u1

v1

u2

v2

v3
u3

Figure 6: Case u′1 = v1 and v
′
1 = u1 in Lemma 6.

Next we have the following technical result.

Lemma 8. Let Γ be a geodetic graph in which any IEC has at most five edges. Suppose that � is an embedded circuit
in Γ of diameter at least three, and � has minimal length among all such embedded circuits. Without loss of generality
(using Lemma 6), we may label the vertices of � such that one traversal of � reads

1 = u0, u1,… , um = v3, v2, v1, 1

and 1, v1, v2, v3 is a geodesic subpath. Then m = 5, d(1, u1) = 1, d(1, u2) = d(1, u3) = 2, d(1, u4) = 3 and
d(u3, v1) = 1.

1

u1

u2

u3

u4

v1

v2
v3 = u5

Figure 7: Conclusion of Lemma 8.

Proof. As before, we say that a vertexw is in level d(w, 1). Following the proof of Lemma 6, we have that u1, v1 are in
level 1, u2, v2 are in level 2, and u3, v3 are in level 2 or 3 but not both in level 2. We assumed without loss of generality
in the hypothesis of this lemma that v3 that is in level 3.
Claim 1: u3 is in level 2 and d(v1, u3) = 1.
Since 1, v1, v2, v3 is a geodesic and Γ is geodetic, we have m ≥ 4, and the path 1, u1,… , um is not a geodesic. So, there
exists a unique i ≤ m such that 1, u1, u2,… , ui−1 is geodesic and 1, u1, u2,… , ui is not a geodesic. It follows that ui−1
and ui are both in level i − 1. Since u1 is in level 1 and u2 is in level 2, we know that i ≥ 3.

By Lemma 5, since 1, u1,… , ui−1 is geodesic and 1, u1,… , ui−1, ui is not geodesic then by the 2-broomlike property
there is either ui−2 to ui are adjacent, or there is a geodesic from ui−3 to ui of length 2. If ui−2 and ui are adjacent,
we could omit the vertex ui−1 from the path � and still have an embedded circuit that visits both 1 and um = v3 — a
contradiction to our choice of �. Thus there is a geodesic from ui−3 to ui of length 2. It follows that there is a vertex
x ≠ uj for 0 ≤ j ≤ i such that 1,… , ui−3, x, ui is a geodesic. See Figure 8.

Observe that replacing in � the subpath ui−3, ui−2, ui−1, ui with ui−3, x, ui yields a closed path �′ that visits both 1
and um = v3. The minimality of the length of � implies that �′ is not an embedded circuit; that is, x must be equal to
one of the vertices of �′. If x = uj for some i+1 ≤ j ≤ m, then we can remove a cycle from �′ and construct a shorter
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1

u1

ui−3

x ui

ui−2 ui−1

Figure 8: Using the 2-broomlike property in the proof of Claim 1 of Lemma 8.

embedded circuit that visits both 1 and v3. It follows that either x = v1 or x = v2. Suppose x = v2. Then x is in level
2 and so 1, u1, x is a geodesic, as is 1, v1, x, and since u1 ≠ v1 we contradict that Γ is geodetic. Hence we have that
x = v1. This means that i = 3 and u3 is in level 2, and d(v1, u3) = 1, as required.
Claim 2: m ≥ 5.
We know that m ≥ 4. If m = 4 then v1, u3, u4 and v1, v2, v3 are two different geodesics between the same endpoints,
contradicting geodecity. Thus m ≥ 5.
Claim 3: u4 is in level 3.
Since Γ is geodetic, v1 is the only vertex in level 1 that is adjacent to u3. Since m ≥ 4 and u4 ≠ v1 (because � is an
embedded circuit), we have that u4 is in level 2 or level 3. Suppose that u4 is in level 2, and let p denote the unique
vertex in level 1 that is adjacent to u4.

1

u1

u2

u3

u4
v1

v2

v3

Figure 9: Claim 3 in the proof of Lemma 8: assume u4 is in level 2.

Now either p is a vertex of �, or not. If it does not lie on � then we can replace the subpath 1, u1, u2, u3, u4 by 1, p, u4
and obtain a shorter embedded circuit which visits 1 and v3, contradicting the minimality of �.

Therefore p is a vertex of �.
Case 1: p = v1.
The path 1, u1, u2, u3, u4, v1, 1 is an embedded circuit of length 6. Call this path �. Since u1, u4 are distinct we have
1 ≤ d(u1, u4) ≤ 3. The paths u1, u2, u3, u4 and u1, 1, v1, u4 are both length 3, so d(u1, u4) ≠ 3 or the graph is not
geodetic. If d(u1, u4) = 1 then we can replace in � the path u1, u2, u3, u4 by u1, u4 and find a shorter embedded circuit
of diameter exceeding 2. Thus d(u1, u4) = 2.

It follows that there must be a vertex t that is not visited by � and is adjacent to both u1 and u4. Since t does not
lie on �, t ≠ v1, and since u4 is in level 2, t is in level 2 (if it were in level 1 we would have two geodesics to u4
contradicting geodecity). Since t is adjacent to u1 and v1 ≠ u1, if t = v2 we would have two geodesics to v2, thus
t ≠ v2. It follows that by replacing in � the subpath 1, u1, u2, u3, u4 by the path 1, u1, t, u4, and removing a subpath that
is a cycle if necessary, we may construct a shorter embedded circuit that visits both 1 and v3. This contradiction proves
that this case is impossible.
Case 2: p = u1.
Omitting u2 and u3 from � would yield a shorter embedded circuit that still visits 1 and v3. This contradiction proves

M. Elder and A. Piggott: Preprint submitted to Elsevier Page 8 of 11



Rewriting systems, plain groups, and geodetic graphs

that this case is impossible.
Case 3: u1 ≠ p ≠ v1.
In this case p = uj for 5 ≤ j < m since v1, v2, v3 are all spoken for (only v1 is in level 1).

Then the path 1, p = uj , uj+1,… , um = v3, v2, v1, 1 is an embedded circuit passing 1 and v3 so has diameter 3 and
is shorter than �, a contradiction.

Since all cases are impossible, we conclude that u4 is not at level 2. Hence u4 is at level 3.
Claim 4: u5 is at level 3.
Since u3 is the unique vertex in level 2 adjacent to u4, and u5 ≠ u3, we have that u5 is not in level 2.

Suppose that u5 is in level 4, and so � = 1, v1, u3, u4, u5 is a geodesic. Since � is geodesic and 1, v1, u3, u4, u5,… , um
is not a geodesic, there exists a unique integer i ≥ 5 so that 1, v1, u3, u4, u5,… , ui is geodesic and 1, v1, u3, u4, u5,… , ui, ui+1
is not geodesic, and ui and ui+1 are both in level i − 1.

If ui−1, ui, ui+1 is not geodesic, omitting ui from � gives a shorter isometrically embedded circuit visiting 1 and v3,
contradiction. So ui−1, ui, ui+1 is geodesic. By Lemma 5, we must have ui−2, ui−1, ui, ui+1 is not geodesic and there is
a geodesic path ui−2, z, ui+1 where ui−2 ≠ z ≠ ui−1.

Note that by construction z is in level i − 2 ≥ 3, so z cannot equal v1, v2.
If z = v3 = um then 1, u1,… , ui−2, z, v2, v1, 1 is a shorter isometrically embedded circuit that visits 1 and v3, a

contradiction. Also note that z ≠ u6 since i ≥ 5 and ui+1 ≠ z.
It follows that if z = uj then 6 < j ≤ m − 1, and replacing the subpath ui−2, ui−1, ui, ui+1 by ui−2, z, ui+1 and

possibly removing a cycle, we get a shorter embedded circuit than � that visits 1 and v3 = um.
This shows that z is not a vertex of �. Then replacing ui−2, ui−1, ui, ui+1 by ui−2, z, ui+1 again gives a shorter

embedded circuit than � that visits 1 and v3.
This contradiction proves that u5 is in level 3.

Claim 5: m = 5.
We note that u5 is not adjacent to u2 or u3, otherwise we could omit u3, u4 or u4 respectively from � and have a shorter
embedded circuit that visits both 1 and v3. Since u5 is in level 3, we have v1, u3, u4 is a geodesic and v1, u3, u4, u5 is
not geodesic, and u3, u5 is not an edge so Lemma 5 implies there exists a vertex q adjacent to both v1 and u5 such that
u2 ≠ q ≠ u3. Therefore 1, u1, u2, u3, u4, u5, q, v1, 1 is an embedded circuit visiting 1 and a vertex at level 3, so by the
minimality of � we must have q = v2 and u5 = v3.

We can now prove Theorem 2.

Proof of Theorem 2. Suppose that there exists in Γ an embedded circuit of diameter exceeding two. By Lemma 8,
there exists an embedded circuit � labeled

1, u1, u2, u3, u4, v3, v2, v1, 1

with u1 at level 1, u2, u3 at level 2, u4 at level 3 and d(u3, v1) = 1, and 1, v1, v2, v3 is geodesic, as illustrated in Figure 7.
Let �′ be the embedded circuit that begins at v3 and visits the same vertices as �, but in reverse order. That is, �′ visits
vertices in the following order

v3, u4, u3, u2, u1, 1, v1, v2, v3.

Now �′ is also a minimal length embedded circuit with diameter exceeding two, so Lemma 8 applies to �′ as well (with
u2 playing the role of u3 and v2 the role of v1), which gives that d(u2, v2) = 1.

It follows that u2, v2, v1, u3, u2 is an embedded circuit of length 4. By Lemma 7, we must have that u2 and v1 are
adjacent. This contradicts the fact that u1 is the unique level-1 vertex adjacent to u2. This contradiction proves that
there are no embedded circuits in Γ with diameter exceeding two.

4. Plain groups, blocks and embedded circuits
Bass-Serre theory [10, 17] tells us that a groupG is plain if and only ifG acts on a locally-finite tree, with a compact

quotient, finite vertex stabilisers, trivial edges stabilisers and no edge inversions. See for example [17, Theorem 13].
Another useful characterisation of plain groups then follows from the block-cut tree associated to the graph, de-

scribed in Section 2.2.
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1

u1

u2

v1

u3
u4

v2
v3

�′

Figure 10: The path �′ which starts at v3 and runs in the reverse direction to � in the proof of Theorem 2.

For a finite set of vertices S in a graph Γ, the diameter of S is the maximum distance in Γ between any pair of
vertices in S. Haring-Smith [9] proved the following result in 1983. We provide a short proof that uses Bass-Serre
theory and the block-cut tree.

Theorem 3 (A characterisation of plain groups). For a group G and a positive integer s, the following are equivalent:

1. G admits a finite generating set Σ such that, in the associated undirected Cayley graph Γ(G,Σ), the diameter of
any embedded circuit is at most s.

2. G admits a finite generating set Σ such that, in the associated undirected Cayley graph Γ(G,Σ), the diameter of
any block is at most s.

3. G is a plain group.

Proof. 1.⇔ 2.: Follows immediately from Lemma 3.
3. ⇒ 2.: Suppose that G is a plain group. Then G is a free product of m finite groups G1,… , Gm and n copies

of the infinite cyclic group C1,… , Cn. Let Σ be a set comprising each nontrivial element of each finite factor Gi,
and one generator ai and its inverse Ai for each infinite cyclic factor Ci. In the Cayley graph Γ = Γ(G,Σ), the only
blocks containing the identity element eG are the subgraphs induced by Γ(Gi, Gi ⧵ {eGi}) for 1 ≤ i ≤ m (and these are
complete graphs), and subgraphs induced by (eG, ai) for 1 ≤ i ≤ n. Thus all blocks containing eG have diameter 1.
Since Γ is vertex-transitive, all blocks in Γ have diameter one (and hence all blocks in Γ have diameter at most s).

2. ⇒ 3.: Suppose that G admits a finite generating set Σ such that in the associated Cayley graph Γ = Γ(G,Σ)
all blocks have diameter at most s. Let T denote the block-cut tree of Γ, as described in Section 2.2. The natural
left-action of G on Γ induces a left-action of G on T . Since the action of G on Γ is vertex transitive, the action of G on
T is transitive on the set of type I vertices and there are finitely many orbits of type II vertices. It follows that the action
ofG on T is cocompact. In the action ofG on Γ, vertices have trivial stabilisers. It follows that in the action ofG on T ,
type I vertices have trivial stabilisers, type II vertices have finite stabilisers (because blocks in Γ comprise finitely many
vertices), edges are not inverted (each edge includes a type I and type II vertex which cannot be interchanged) and edge
stabilisers are trivial. Since G acts on T , a locally-finite tree, with finite vertex stabilisers, trivial edges stabilisers and
no edge inversions, by [17, Theorem 13] G is a plain group.

If a rewriting system (Σ, T ) presents a group G, then properties of the rewriting system determine properties of the
Cayley graph Γ = Γ(G,Σ).

Lemma 9. Let (Σ, T ) be a finite convergent length-reducing rewriting system such that Σ = Σ−1 and (Σ, T ) presents
a group G. Let Γ denote the undirected Cayley graph of Γ with respect to Σ. Then

1. Γ is geodetic;
2. If u0, u1,… , um−1, um = u0 is an IEC in Γ of length m > 2, then m = 2n + 1 for some positive integer n and
(x1… xn+1, x−1m … x−1n+2) ∈ T where xi =G u−1i−1ui ∈ Σ for 1 ≤ i ≤ m.

Proof. If u0,… , un and v0,… , vn are two geodesics in Γ(G,Σ) with u0 = v0, un = vn, then the words

u = (u−10 u1)… (u−1n−1un) ∈ Σ
∗ and v = (v−10 v1)… (v−1n−1vn) ∈ Σ

∗

M. Elder and A. Piggott: Preprint submitted to Elsevier Page 10 of 11



Rewriting systems, plain groups, and geodetic graphs

are irreducible words representing the same group element. By Lemma 1, u = v, which establishes the first claim.
If u0, u1,… , um−1, um = u0 is an IEC in Γ of length m > 2, set xi =G u−1i−1ui ∈ Σ for 1 ≤ i ≤ m. If m = 2n then

u0,… , un and u0, um−1,… , un are two geodesics for the same element, and since the circuit is embedded and m > 2,
so n > 1, we have u1 ≠ um−1, so a, b are distinct words, which contradicts the first claim. Thus m = 2n + 1.

Now let a = x1… xn+1 and b = x−1m … x−1n+2. Then a =G b. The word b is geodesic since it is a subpath of length
n of an IEC of length 2n + 1. The word a is not geodesic so some rewrite rule must apply. We have a = ulv with
(l, r) ∈ T , |r| < |l| and a =G urv. If |u| + |v| > 0, then l is geodesic since it is a subpath of length at most n of an
IEC of length 2n+1. Then l ≠G r for any r ∈ Σ∗ with |r| < |l|. Hence u = v = � and a = l. But then r = b because
b, being geodesic and shorter than a by one letter, is the unique word r with |r| < |a| and r =G a.

We are now ready to prove the main theorem.

Proof of Theorem 1. Corollary 1 gives one direction.
Suppose that G admits presentation by a finite convergent length-reducing rewriting system (Σ, T ) such that Σ =

Σ−1 and the left-hand side of every rule has length at most three. Let Γ be the undirected Cayley graph ofGwith respect
to Σ. By Lemma 9, Γ is geodetic and IECs have length at most five. Since Γ satisfies the hypotheses of Theorem 2, all
embedded circuits in Γ have diameter at most two. By Theorem 3, G is plain.
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