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Abstract 

A wearable electroencephalogram (EEG) is considered a means for investigating 

psychophysiological conditions of individuals in the workplace in order to ameliorate occupational 

health and safety. Following other sectors, construction scholars have adopted this technology over 

the past decade to strengthen evidence-based practices to improve the wellbeing of workers. This 

study presents the state-of-the-art hardware, algorithms, and applications of EEG as a platform 

that assists in dealing with the risk-prone and complex nature of construction tasks. After 

summarizing the background of EEG and its research paradigms in different sectors, a 

comprehensive review of EEG-enabled construction research is provided. First, through a macro-

scale review aided by bibliometric analysis a big picture of the research streams is plotted. Second, 

a micro-scale review is conducted to spot the gaps in the literature. The identified gaps are used to 

classify the future research directions into theoretical, application, and methodological 

developments.  

Keywords: EEG, EEG-enabled Construction, Wellbeing of Workers, Health and Safety, 

Systematic Review 17 

18 

1. Introduction19 

The construction sector has long been regarded as a high-risk industry. In this sector, workers are20 

consistently exposed to unsafe work environments due to, for instance, interactions with21 

machinery and physical hazards [1]. The dynamic workplace and varying nature of construction22 

tasks lead to differing working states and, thus, place the wellbeing of construction workers at23 

exacerbated risks compared to workers of other sectors [2]. According to Safe Work Australia [3],24 

the construction sector accounts for 9% of the total workforce in Australia but recorded 12% of25 

work-related fatalities. This situation is not different in other countries. For instance, in 2016, the26 

construction industry had the highest number of fatal work injuries among all other industries in27 

the United States [4]. Therefore, enhancing health and safety in the construction sector is a top28 

priority for both construction contractors and governmental authorities.29 

Construction health and safety is multidisciplinary in nature [5-7]. With the emergence of 30 

disruptive technologies in recent years, wearable technologies have attracted significant attention 31 

to ameliorate occupational health and safety and improve workers' wellbeing in different 32 

industries. In this cluster, electroencephalography (EEG) has emerged as one of the fast-growing 33 

technologies for measuring individuals' cognitive and mental states under different circumstances 34 

in the workplace [8].  35 

EEG is an electrophysiological monitoring system that records the electrical activities generated 36 

by cortical neurons [9]. Advancements in computing platforms and sensory technologies have 37 

enabled EEG systems to be designed as miniature, lightweight, ultra-low power [10, 11], wireless 38 

[12], and low cost devices [11, 13]. Therefore, deploying portable and mobile EEG has been on 39 

the increase in different sectors [14]. 40 
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The aforementioned developments in EEG and computational neuroscience make it a good choice 41 

for scientific and interdisciplinary studies. Thus, EEG has been used not only in clinical and 42 

psychiatric [15-17] and psychological and neuroscientific studies [18-23], but also in other fields, 43 

such as brain–computer interface (BCI) [24, 25], neuromarketing [26-29], gaming [30-33], neuro-44 

ergonomics [34-39], neuro-aesthetics [40, 41], transportation [42-47], and athlete performance 45 

evaluation [48, 49]. In the building industry, both neuro-architecture and neuro-urbanism [50-54] 46 

use EEG and mobile EEG in their studies to enhance the built environment features.  47 

Based on the theory of behavioral psychology, psychological status affects human behavior [55] 48 

and external phenomena affect human behavior through mental factors [56, 57]. These have 49 

perhaps led the construction industry to trial EEG technology in studying the psychophysiological 50 

impacts of the workplace on construction workers. The overall aim has been to improve health and 51 

safety in construction projects.  52 

EEG is considered as a strong tool in the construction studies because it directly and cost-53 

effectively measures neural activity with high time resolution, and can be used in mobile format. 54 

Mobility is an essential feature for all technologies to be used on the construction sites because of 55 

the physical complexities of the workplace or the physical demands of the work. EEG has a great 56 

advantage to conduct both laboratory and on-site studies in the construction sector, while other 57 

techniques, such as functional Magnetic Resonance Imaging, Positron Emission Tomography, and 58 

Magnetoencephalography, can only be used in stationary studies [58-70]. 59 

Despite the importance of using EEG in the construction field and its expected contributions, the 60 

body of knowledge lacks a structured review on this subject. With a growing number of articles in 61 

this field, such a systematic review can organize research areas, methodologies, outcomes, and 62 

challenges. A thorough review of the extant literature also assists in spotting the research gaps and, 63 

therefore, establishing a readily actionable reference to pathways for future research. Moreover, 64 

the review of the scholarly works provides insight into the network of researchers and 65 

professionals involved in the implementation of EEG in construction health and safety. This would 66 

facilitate future collaborations to share knowledge and expand the adoption of EEG in 67 

construction. 68 

The aim of this research is to shed light on the potential applications of mobile EEG on 69 

construction sites and investigate the contribution of this technology to workers' wellbeing and 70 

safety. This paper paves the way for extended application of mobile EEG to tackle construction 71 

challenges relating to workers' mental states. In this regard, reviewing the literature of EEG as a 72 

wearable technology to support the construction workforce is the primary concern of this paper. 73 

Therefore, the present study summarizes the EEG features and its general research paradigms 74 

beyond construction, discusses key EEG applications, research themes and analytical methods in 75 

the construction industry, and highlights possible pathways for the future of EEG adoption in the 76 

construction industry as a wearable technology to support the workforce. The study adopts both 77 

macro-scale and micro-scale approaches in analyzing the literature. While the macro-scale 78 

approach is mainly used to identify the overall focus of papers, the micro-scale analysis is 79 

employed to systematically classify the research themes and the gaps in the construction literature.  80 
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1.1. EEG in practice  81 

1.1.1 Brain electrical activity 82 

The cerebrum is the largest part of the brain anatomy and has four major areas, namely frontal, 83 

temporal, parietal, and occipital lobes [71]. These lobes consist of billions of neurons that transfer 84 

information, leading to voltage changes in milliseconds across their membranes.  85 

The generated electrical signal is a blend of different frequencies, each of which correlates to a 86 

specific state of the brain. These frequencies are classified as delta (0.5–3.5 Hz), theta (4–7 Hz), 87 

alpha (8–12 Hz), beta (13–30 Hz), and gamma (> 30 Hz) bands [72]. The delta band frequency 88 

appears in deep non-rapid eye movement sleep, which is typically located in the thalamus and is 89 

investigated for sleep disorders and alcoholism [9]. The frontal theta band is related to the hardship 90 

of mental operations (e.g., memory recall, processing, focused attention, and learning). It becomes 91 

more important with the increasing difficulty of a given task. Therefore, mental workload or 92 

working memory can be investigated through fluctuations of the theta frequencies, making this 93 

band an appropriate candidate to monitor workers, for instance, during construction operations. 94 

Beta frequencies appear in the moment of active, busy, or anxious thinking. Typical studies on 95 

beta frequencies encompass motor control and simulated-induced alertness [73]. The highest 96 

frequencies generated from the human brain are considered gamma band frequencies. 97 

Investigations into its origins are still ongoing [74].  98 

1.1.2. EEG electrodes 99 

In EEG, metal sensors (i.e., electrodes) are placed onto the scalp to record the electrical activity of 100 

the brain. Since the recorded signals are low voltage, an amplifier is used to strengthen the signals 101 

and make the electrical data more tangible [75].  102 

There are different kinds of electrodes that can be selected according to the conditions of the 103 

experiment. Mostly, electrodes are categorized based on the conductor between the electrode and 104 

the scalp. According to this classification, there are four types of electrodes, including wet, dry, 105 

active, and passive [76]. In wet electrodes, a conductive gel, usually made from a compound of 106 

silver chloride, is applied to skin; therefore, a better connection is established between the electrode 107 

and the scalp [77]. In the absence of a jellied conductor, dry electrodes use a metal piece (usually 108 

stainless steel) as a conductor between the electrode and the scalp [78]. Another type of electrode, 109 

known as “active”, amplifies the signal immediately in between the electrode and the scalp and 110 

before transmitting it to the recording system [79]. This can prevent the addition of noise between 111 

the electrode and the system. Passive electrodes use a simple approach to ameliorate the signal 112 

quality by extending the connection from the conductive material to the equipment [80]. 113 

To array the electrodes, the American Electroencephalography Society has presented a 10–20 114 

system in which the electrodes' positions are defined and named across the scalp [68]. In this 115 

system, the electrodes are named based on their positions on the scalp, such as Fp (frontal polar), 116 

F (Frontal), C (Central), P (parietal), O (occipital), and T (temporal). The number of electrodes 117 

may vary based on the experiment; however, the key is to try to distribute the electrodes evenly 118 

across the scalp [81]. 119 
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There are many electrodes and headsets in the market for scientific studies. With recent 120 

developments in neuroscience, the number of mobile headsets has also increased. Some headsets 121 

are more suitable for construction studies, such as mobile, wireless, and lightweight headsets with 122 

a reasonable number of electrodes. Also, electrodes with high-quality signal acquisition without 123 

too much preparation are preferred for construction site experiments.  124 

1.1.3. EEG experimental paradigms 125 

The advanced use of EEG requires expertise for signal preprocessing, artifact detection, and 126 

feature extraction. EEG signals are prone to artifacts, which can be physiological noises (e.g., 127 

lateral eye motions, blinks, and muscle movements), and external ones (e.g., movements of an 128 

electrode or the headset, line noise, swaying or swinging) [82]. The complexity of signal 129 

processing lies in the fact that an EEG-based dataset is characterized not only by features of the 130 

device but also by the respondent population, recording conditions, stimuli, and overall 131 

experimental paradigm [83]. Table 1 relates the features and the experimental paradigms by 132 

summarizing different EEG signals' analyses, their goals, characteristics, and fields of application.  133 

Metrics and 

features 
Goal Characteristics Application fields 

Event-related 

potentials 

(ERP) analysis 

To collect brain electrical 

signals generated by 

external stimuli 

 

-Voltage changes in response to stimuli 

or events  

- Data selection by epoching or 

segmentation 

- The average EEG time-course over 

different trials is used in the analyses 

-General and 

experimental psychology 

- Clinical psychology 

-Biomedical engineering 

Frequency-

based analysis 
To understand the brain 

processes which direct 

emotions, feelings, and 

thoughts 

 

- Analyzing the frequencies that are 

mainly associated with internal factors, 

including brain structures and 

physiological processes 

- Suitable for studying the general 

mental state under limited testing time 

and when the timing precision of 

stimulus is not the main concern 

Investigation of subject 

response to certain 

content, product, website, 

or software interfaces 

Frontal 

asymmetry 

metrics 

To understand states of 

emotion through high-

level frequency-based 

metrics in which the 

imbalanced frequencies 

between the left and right 

sides of the brain are 

investigated 

- Beta and/or gamma signals are 

investigated, especially in frontal 

cortical regions 

- Positive emotions, engagement, and 

motivation result in higher band power 

in the left vs. right frontal cortex and 

vice versa 

- Frontal asymmetry can be 

investigated throughout the frontal 

electrodes, such as F3 and F4 

- Emotion, motivation, 

and psychopathology 

- Resting and 

psychophysiology 

- Consumer neuroscience, 

advertisement, and 

marketing research 

Cognitive-

affective 

metrics 

To enable understating 

performance, personality, 

situation, and 

interactions 

 

- Associated with functions in the outer 

layer of the cerebrum related to mental 

workload or drowsiness 

- Enables the possibility of monitoring 

subjects' physiological and mental state 

(e.g., fatigue and attention level) 

- Two of the most important metrics 

are “cognitive state” and “workload” 

- Educational technology 

and educational 

assessment 

- Educational psychology 

- Military psychology 

- Fatigue, sleep, and 

psychological assessment 

Table 1: EEG experimental paradigms [9] 134 
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2. Research method 135 

In this study, a systematic review approach is adopted to avoid any bias and concurrently enhance 136 

the quality in mass review of the articles. As shown in Figure 1, the selected approach for the aim 137 

of this review is a hybrid of macro-scale and micro-scale reviews. The study first began at a macro-138 

scale, characterized by an “exhaustive review with selective citation”, that is, covering relevant 139 

articles from two prominent databases. At this scale, the “focus” of the selected articles was 140 

investigated through summarizing their methods, applications, and outcomes [84]. In line with the 141 

method stated by Cooper [85], the study was then taken to micro-level by conducting detailed 142 

scrutiny of the research outcomes. At the micro-scale, the outcomes were systematically analyzed 143 

with a view to identifying the research themes and the gaps in the literature.  144 

2.1 Systematic review 145 

The protocol for searching relevant materials was adopted from Major and Saven-Baden [86]. As 146 

depicted in Figure 1, the process encompassed an exhaustive search into the title, abstract, and 147 

keywords of the published research listed on two of the most reputable bibliographic databases, 148 

Scopus and Google Scholar. The relevant articles with the required themes and content were 149 

identified through screening the abstract and introduction sections. As this review is scoped on the 150 

application of mobile EEG in the construction industry, materials that were not fully related were 151 

also filtered out from micro-scale review. This means the EEG-related articles must have studied 152 

the construction tasks undertaken by construction workers either in a field research (i.e. in real 153 

construction sites) or in laboratory settings (i.e. in a pilot study of construction environments) to 154 

meet the micro-scale review criterion. 155 

A spreadsheet was then created in order to identify categories of publications for both descriptive 156 

and content analysis. The descriptive analysis was to classify the publications based on year, type, 157 

title of the publications, and the academic institutions. Furthermore, the focus of the study, EEG 158 

channels, software and hardware, signal processing methods, and accuracy of digital signal 159 

processing (DSP) were placed into different categories for content, thematic and gap analyses. In 160 

this paper, social network analysis (SNA) is adopted as a tool to analyze the categories in both 161 

descriptive and content analysis. In order to explore the patterns of the relationships among 162 

individuals and groups, SNA provides a wide range of analysis and techniques [87]. There is a 163 

plethora of software and tools to perform a network analysis, each of which has its own features 164 

and strengths specified for a certain type of network [88]. In this research, Gephi (0.9.2 version) 165 

was used as the network analysis tool [89]. It is an open-source software that provides a visualized 166 

insight into the structure of the formed networks. The methods used in the present study meets the 167 

requirements presented in the previous seminal studies [85, 86, 90, 91] for a methodologically 168 

robust and holistic literature review.  169 

  170 
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Figure 1: Methodology flowchart 173 
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2.2 Thematic and gap analysis 174 

Differentiation of themes was based on a classification provided by Fellows and Liu [92]. This 175 

method classifies the themes of publications into theoretical and conceptual papers, case studies, 176 

and survey articles. Also, the prime model to categorize the outcome of research is presented as a 177 

study analysis, framework, and tool/system prototype [90, 93, 94]. Although gap analysis is 178 

usually conducted intuitively in construction research [92], this paper used a structured approach 179 

proposed by Sandberg and Alvesson [93] to spot the gaps in the extant literature. Accordingly, the 180 

gap spotting encompassed three particular modes, entitled confusion, neglect, and application [93]: 181 

 Confusion: The main concern of this approach is to reveal the confusion in previous studies. 182 

In other words, the problem has been investigated already in the literature, but the result 183 

conflicts with the available evidence. Research questions in this mode seek to highlight and 184 

explain contradictions in the existing literature. 185 

 Neglect: Pointing out a neglected area in the literature is one of the most prevalent ways to 186 

construct a research question. In this mode of gap analysis, the scholar tries to unveil a 187 

neglected territory to develop an investigation about it. Papers subject to this kind of gap are 188 

categorized in three groups according to their method and result (i.e., over-looked, under-189 

researched, and lack of empirical support).  190 

 Application: The last basic mode to identify a gap in the existing body of knowledge is in 191 

identifying a new application. Applying this version of gap analysis enables researchers to 192 

construct a research question based on the inadequacy of a specific theory or a clear outlook 193 

in a particular area of the research. The main idea is to detect the needs of a certain literature 194 

for completion or extension.  195 

Although most studies have employed one key approach to construct research questions, applying 196 

a combination of different gap analysis modes is not uncommon [93]. 197 

3. Results and discussion 198 

3.1 Descriptive analysis 199 

The review of EEG-related construction articles shows that the studies have placed emphasis on 200 

demonstrating the potential applications of EEG in the construction industry as a whole rather than 201 

narrowing down to any specific construction trade. This has been pursued by experimenting the 202 

use of EEG on the tasks that could be performed by most of the trades and in different construction 203 

processes. The investigated tasks may involve accident-prone processes, including but not limited 204 

to visual concentration or cognitive demand processes in conjunction with a muscular activity 205 

under a hazardous situation [95-97]. To exemplify these, some studies have designed a series of 206 

tasks, such as climbing a ladder, selecting and picking a tiny material, and fabricating an element, 207 

to experiment the usefulness of EEG technology [98]. Nonetheless, there are scenarios in which 208 

EEG technology has been used in non-hazardous conditions, for instance, to compare performance 209 

of workers with when they are exposed to hazardous conditions.  210 

The first publications related to the application of mobile EEG in the construction industry 211 

emerged around 2011 [99]. This was later followed by a slow growth of publications throughout 212 
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the last decade, as depicted in Figure 2. By the end of the literature search, a total of 29 purely 213 

construction-based EEG studies were found. This may suggest that construction researchers have 214 

accepted the concept behind EEG technology and trialed it in the construction sector in recent 215 

years. Nonetheless, this concept has been disseminated mostly through the first-tier construction 216 

journals (in terms of impact factor), such as Automation in Construction (standing for one-third of 217 

the publications) and a number of American Society of Civil Engineers’ journals. EEG has not yet 218 

been ubiquitously used in this sector. 219 

  220 

Figure 2: Annual distribution of the publications, (*: this bar includes publications up until April 221 

2021). 222 

 223 

3.2 Content analysis 224 

3.2.1 Keywords 225 

The SNA explores the relationships between entities and how these relationships influence a 226 

phenomenon, such as information, through a number of measures. In this study, the most popular 227 

individual centrality measures, including degree centrality, weight degree centrality, betweenness 228 

centrality and closeness centrality [100], were computed. The use of wearable EEG in construction 229 

studies varies according to the nature of the study or research problem. Therefore, a knowledge 230 

structure could be mapped by analyzing the keywords’ co-occurrence network [101]. In the 231 

network of keywords, generated by Gephi (0.9.2 version), the weight assigned to the link between 232 

two keywords is computed based on the number of articles in which both of the keywords exist 233 

[102]. The initial layout of the network was reformed by applying the force atlas algorithm for 234 

further visual clarity [103]. Moreover, nodes with more than two degrees were filtered out for 235 

further analysis and this resulted in a more visually accurate network.  236 

To ensure a reliable analysis, similar terms, such as “wearable devices”, “wearable EEG”, “mobile 237 

EEG” and “wearable sensing”, were amalgamated. The size of the nodes and their color were 238 

adjusted based on the betweenness centrality measures. The betweenness centrality disclosed the 239 

0

1

2

3

4

5

6

7

8

2011 2016 2017 2018 2019 2020*

N
u
m

b
er

Year

Conference papers Journal articles



 

9 
 

importance of location of the nodes and their effect on the whole network. The size of node labels 240 

was established in such a way to ensure the flow of information in the network was intelligible. 241 

Several analyses were conducted on the network, including the betweenness centrality and weight 242 

degree centrality. Eventually, a network consisting of 26 nodes and 95 links, as depicted in Figure 243 

3, was generated, indicating the keywords of construction EEG-based research.  244 

 245 

 246 

Figure 3: Relationships and importance of keywords in construction EEG-based studies.  247 
(In this network, between two particular nodes (keywords), the weight of the edge represents the number of papers 248 

in which both keywords existed. The size and color intensity of each node is justified based on the betweenness 249 
centrality. Nodes with less than two edges are filtered out from the network.)  250 

In Table 2, analytical results of the network are presented. The relative importance of keywords is 251 

based on the values of betweenness centrality. As seen, wearable EEG, brain waves, and safety 252 

management are the most frequently used keywords in the research into EEG. “Psychology” and 253 

“workers' productivity” are the other two that relate to human factors and placed in the top ten 254 

keywords. The only keyword that presents the signal processing territory is “brain signal 255 

processing”, which appeared in only two publications in the literature [82, 104]. 256 
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 257 

Relative 

importance 
Weighted degree 

centrality 
Betweenness 

centrality 
Keyword 

1 22 70 Wearable EEG 
2 19 45 Brain waves 

3 14 44 Safety management 

4 10 28 Workers' productivity 

5 7 22 Psychology 

6 5 9 Mental workload 

7 6 8 Brain signal processing  

8 7 7 Fatigue assessment 

9 5 5 Vigilance 
10 5 1 Attention 

 258 

Table 2: Top ten primary keywords of construction EEG-based studies 259 

3.2.2 Topics 260 

Task workload and cognitive load, fatigue detection, attention, vigilance and hazard awareness, 261 

stress recognition, emotional state and valence level, BCI and signal processing were found as the 262 

main topics of interest in EEG-based construction research. Figure 4 demonstrates the percentage 263 

of publications in each area of EEG adoption. As seen, the highest percentage of publications 264 

belongs to stress recognition. In spite of its top priority, the SNA results (shown in Table 2) does 265 

not classify it among the top ten keywords provided by researchers.  266 

 267 

Figure 4: Topics of interest in the EEG-enabled construction research 268 

Technically, EEG adoption in the construction industry is tied to the advent of suitable signal 269 

processing frameworks and their accuracy and effectiveness in practice. The signal processing 270 

method has received little attention in EEG-related research in the construction sector and, in 271 
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particular, for on-site applications. It is noteworthy that the findings of the betweenness centrality 272 

of the keywords shows that EEG has been utilized for safety purposes rather than productivity, 273 

and referring to workforce productivity in the context of publications does not indicate the focus 274 

of the work.  275 

3.2.2.1 Task workload allocation 276 

Task workload plays a critical role in both the wellbeing and productivity of the workforce. One 277 

of the main focuses of EEG research in the construction field is to assess the mental workload of 278 

workers. An example is the work of Chen et al., which investigated the potential of applying EEG 279 

for evaluating hazards (e.g., workers falling from high places, unsafe behavior) through time-280 

frequency analysis [98]. The mental demands of different construction activities were 281 

quantitatively assessed and the signal patterns provided clear distinctions between the studied tasks 282 

through their mental loads. In such types of research, the mental workload is correlated to the risk 283 

level associated with construction tasks. One approach is to measure EEG signals transmitted from 284 

workers' brains as a proxy for assessing their working memory [105]. The ERPs and time-285 

frequency based analysis have been applied to identify vulnerable workers. In line with this, 286 

construction scholars have developed a novel framework to assess task workloads using EEG as a 287 

quantitative system for monitoring the mental and memory conditions of the workers [106]. A 288 

recent research has taken one step further to analyzing EEG signals for assessing task workload 289 

with a view to ameliorate poor task allocation [107].  290 

A dominant strategy in using EEG for task workload assessment has been the simplification of the 291 

analyses. Simplification approaches include limiting the number of studied tasks, number of 292 

electrodes, types of signals, and method of analysis [98, 104, 105]. The studies have concentrated 293 

on three or four tasks to limit the complexity of obtained data. They may also constrain the number 294 

of electrodes to one to four channels, mainly from Fp1, Fp2, Tp9, or Tp10 [104, 105]. In addition, 295 

the focus has been placed on signals from alpha, beta, and gamma bands [98, 105]. Also, the data 296 

analysis can be limited to recognizing overall patterns, such as statistical variance, and/or sudden 297 

spikes in the recorded signals.  298 

3.2.2.2 Fatigue detection 299 

Early detection of fatigue among the construction workforce can reduce the accident rate. EEG 300 

has been examined as a means of assessing workers' fatigue levels [108-111]. Fatigue levels have 301 

been identified based on variations in a single type of signal or in a metric that combines multiple 302 

types of signals. The signals of interest, thus far, have been alpha, beta, and theta. A drop in the 303 

signal(s) or a ratio of different signals (for instance (Alpha1 + Theta) / Beta1) can indicate a 304 

fatigued worker [108-110]. Compared to the aforementioned approach for task workload analysis, 305 

the EEG signal analysis for fatigue detection is more sophisticated. It may require employing data 306 

classifiers, such as Support Vector Machine (SVM)-based algorithms, in the signal processing 307 

stage [109]. The complexity of fatigue recognition has led to applying EEG in conjunction with 308 

devices for measuring physiological states of workers. Skin temperature and heart rate, combined 309 

with brainwave signals, can provide an understanding of both physical and mental fatigue [109]. 310 

However, these factors are interrelated and, thus, researchers have begun to investigate such 311 

interrelationships [111]. Fatigue is a complex phenomenon and cumulative in nature and, 312 
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therefore, requires studying construction workers over a longer period of their performance. This 313 

exposes practical challenges to using EEG on construction sites [108].  314 

3.2.2.3 Attention and vigilance  315 

EEG-enabled publications attempting to investigate the level of attention and vigilance of 316 

construction workers are limited but have been increasing in recent years. The central aim is to 317 

measure workers' perceptions and reactions to site risks and hazards [112-115]. Mobile EEG 318 

systems are used to identify varying vigilance levels of workers with different demographic 319 

backgrounds when they are undertaking tasks in risk-prone scenarios. Such investigations rely on 320 

collecting different EEG signals, predominantly from 14 channels [113, 114]. However, it is highly 321 

likely that a preprocessing stage is required to clean the data sets from artifacts caused by, for 322 

instance, eye blinks [114]. In doing so, it is common to use frequency band filters. The paradigm 323 

of experiments may set to ERP or frequency-based analyses. In the preprocessing stage, bandpass 324 

filter (1-60Hz), notch filter (50Hz) and Independent Component Analysis (ICA) may be applied 325 

while the signal features may be extracted and classified using Fast Fourier Transform (FFT), 326 

Sparse Fast Fourier Transform (SFFT), Wavelet Packet Decomposition (WPD), and SVM 327 

algorithms [113, 114]. An attempt has recently been made to synchronize the data obtained from 328 

eye-tracker and EEG signals with a view to assess visual hazard recognition and its correspondence 329 

with brain activity [115].  330 

3.2.2.4 Stress recognition 331 

Several studies have been conducted to assess the stress level of construction workers by mobile 332 

EEG. They have all used 14-channel off-the-shelf mobile EEG devices. The effectiveness of stress 333 

recognition, however, has significantly been dependent on artifact removal and data classification 334 

stages [95-97, 116-119]. These require employing sophisticated computational analysis methods 335 

to ensure accuracy of the results. An exemplary study proposed an EEG-based stress recognition 336 

framework, which employs two deep neural network algorithms (i.e., a fully connected deep neural 337 

network (FCDNN) and a deep convolutional neural network (CNN)), to classify the signals and 338 

determine the stress level [97]. Data were collected from ten subjects who were performing tasks 339 

in both hazardous and non-hazardous conditions, using a 14-channel EEG device and, 340 

subsequently, artifact removal methods, such as bandpass filter and ICA, were performed. To 341 

classify and measure stress levels, an FCDNN algorithm was applied using Neural Network 342 

Toolbox in MATLAB, and its accuracy was 86.5%. In an effort to recognize stress levels in nearly 343 

real time, Jebelli et al. used a self-developed algorithm, Online Multitask Learning, and predicted 344 

the stress levels with 77.61% accuracy [116]. In another study, researchers applied both linear and 345 

nonlinear SVM algorithms to recognize stress levels in the workers with 71.1% accuracy [96]. 346 

Principal component analysis (PCA) has been used to reduce the dimension of signal properties. 347 

Moreover, fixed and sliding windows have been applied to extract time and frequency domain 348 

features. In 2020, Arpaia et al. claimed more than 90% accuracy in recognition of stress using a 349 

single differential channel with dry electrodes [95]. Signals were collected according to frontal 350 

asymmetry and the collected data were analyzed in MATLAB. PCA was used in the preprocessing 351 

stage and the four post-processing algorithms applied included K-Nearest Neighbor (KNN), SVM, 352 

Random Forest and Artificial Neural Network (ANN). Although this study was conducted in a 353 

non-construction context, the findings show the potential of algorithms in accurate stress 354 
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recognition. A new stream of research into this domain was introduced in 2020 and found that a 355 

correlation between questionnaire-based and EEG-based stress recognition systems exists [118].  356 

3.2.2.5 Emotional state and valence level 357 

Concerning the use of EEG in evaluating emotional state and valence level, two studies were 358 

identified in the literature. Jebelli et al. employed a mobile EEG device (Emotiv EPOC+) in safety 359 

practice and tried to measure construction workers' valence levels at the workplace [120]. Four 360 

EEG channels, including Af4, F4, Af3, and F3 were investigated, and EEG data were obtained 361 

from three participants, who performed different kinds of tasks under three scenarios: on the 362 

ground, on a ladder, and in a confined space. Hwang et al. applied a bipolar emotional model, 363 

valence and arousal, to quantify the workers' emotional states [121]. Data were obtained using a 364 

mobile EEG sensor with 14 channels; however, only signals from Af3, F3, Af4, and F4 were 365 

investigated. The bandpass filter and ICA were applied to clear out the extrinsic and the intrinsic 366 

artifacts, respectively. In the processing stage, mean power spectral density (PSD) of frequency 367 

bands (i.e., alpha and beta) were calculated and, based on the power spectrum features, the frontal 368 

EEG asymmetry was employed to measure emotional levels. To validate the result, researchers 369 

applied the one-way analysis of variance method, and the results of this study shed light on 370 

measuring and quantifying on-site workers' emotions and the effects of working conditions on 371 

workers' emotions.  372 

3.2.2.6 BCI 373 

There are different views on EEG-based studies of BCI. In this paper, we classify a publication as 374 

relating to BCI if construction operators have to interact with computers. A scientific attempt has 375 

been made by Rezazadeh et al., who proposed a novel approach to monitoring workers' cognitive 376 

load in a virtual environment [99]. In this research, two training environments were developed for 377 

crane drivers, in which they were able to control the hoisted loads at a virtual construction site 378 

using facial gestures. The results of this paper may lead to improving performance of crane drivers. 379 

In 2021, Lui et al. proposed a framework for brainwave-driven human–robot collaboration in 380 

which the robot detects the worker's cognitive load and adjusts the robotic performance 381 

accordingly [122]. In another research effort, Lui et al. presented a BCI system based on workers' 382 

brainwaves to remotely control a robot with 90% accuracy [123]. 383 

3.2.2.7 Signal processing 384 

Signal processing is a part of nearly every EEG-based construction research. However, there are 385 

only two publications predominantly focused on EEG signal processing of construction activities 386 

[82, 104]. Since construction sites are dynamic in nature and wearable EEG headsets are prone to 387 

noise and artifacts, obtaining high-level EEG signals on construction sites is of high importance. 388 

The prominent work by Jebelli et al. proposed a framework to identify and sort out artifacts which 389 

originate from body movements [82]. Liu et al. presented a signal processing framework to clear 390 

out the ocular artifacts [104]. The researchers compared dependent component analysis with 391 

traditional methods, ICA, and PCA. Their proposed methods yielded a promising result in order 392 

to obtain high-quality signals on construction sites.  393 
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3.2.3 EEG electrodes 394 

To provide a clear illustration of the investigated channels for each state, a zoned scalp is presented 395 

in Figure 5 based on the data presented in the body of knowledge. Previous construction EEG-396 

based research with a focus on stress recognition examined a series of channels that cover almost 397 

all the surface of the scalp [95-97, 116-119]. These channels include AF3, F3, F7, Fc5, T7, P7, 398 

O1, O2, P8, T8, Fc6, F4, F8, and AF4. The EEG-based studies that investigated workers' emotional 399 

states have had a focus on AF4, F4, F3, and AF3 channels. The emotional state in the frontal lobe 400 

of the brain has been well investigated. The issue of fatigue was investigated in four studies [108-401 

111]. Fp1 is the channel by which the researchers assess workers' fatigue. Compared with fatigue-402 

related channel studies in the transportation sector, both studies emphasized on frontal channels, 403 

especially Fp1, as the channels most related to fatigue. The issue of mental workload has also been 404 

investigated in frontal lobe studies, especially through Fp1 and Fp2 channels. AF3, F7, and F3 405 

were selected as the most relevant channels for investigating attention levels and mental vigilance 406 

of workers. The research findings indicated that EEG signals disseminated from the frontal lobe 407 

are highly correlated to the workers' mental and physical state. The aforementioned studies into 408 

EEG electrodes provide information about those electrodes on the scalp which have not yet 409 

received sufficient attention in construction-based EEG research. For instance, a future study could 410 

focus on investigating whether workers' attention, while performing construction tasks, is related 411 

to channels F7, F3, and AF3. A positive answer would mean the focus should be on the signals 412 

generated from this part of the brain.  413 

 414 

Figure 5: Electrode position and their cognitive effects used in construction studies  415 

 416 

3.2.4 EEG analysis software 417 

There are numerous platforms available for processing EEG signals. The most common ones that 418 

are being used include R programming language (R Core Team, 2013), MATLAB (The 419 
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Mathworks, Inc., Natick, MA, USA) and its toolboxes (e.g., fieldtrip [124], EEGlab [125]), Python 420 

programming language (Python Software Foundation), and brain vision analyzer software (Brain 421 

Products GmbH). Among them, MATLAB and its toolboxes are perhaps the most commonly used 422 

software suite as four out of five papers published in this domain have used this platform.  423 

3.2.5 Applied hardware in EEG signal acquisition 424 

The two most common devices for data acquisition on construction sites in previous studies are 425 

NeuroSky and Emotiv. NeuroSky offers both sensors (TGAM) and headsets (MindWave), and 426 

Emotiv products cover a wide range of devices for different purposes (e.g., Epoc+, Insight, Epoc 427 

Flex). Nearly 74% of the experiments used Emotiv and 26% employed NeuroSky products (see 428 

Table 4). There is no explicit mention of prioritizing one product over another in the scientific 429 

literature.  430 

3.2.6 DSP and the level of accuracy 431 

Due to transient and dynamic nature of construction site environments, it is important to develop 432 

suitable DSP frameworks for gathering signals. EEG signals are the signatures of neural activities 433 

[9], and among these signals there are some signal distortions, or artifacts [72]. Signal processing 434 

has three main stages, including image acquisition, preprocessing, and processing, as shown in 435 

Table 3. Image acquisition refers to the signal to record. Preprocessing consists of two steps, 436 

including artifact removal and data filtering. Processing also includes two steps, which are feature 437 

selection/extraction and classification [126]. The techniques and approaches adopted in the 438 

previous studies for the preprocessing stage include: ICA/high pass filter, low pass filter, and 439 

Notch filter (57%), bandpass filter (22%), third order one-dimensional median filter, Savotzky-440 

Golay filter, and moving average filter (7%), time window (7%), and ICA/multi-nominal logistic 441 

regression (7%). The preprocessing and processing methods that have been applied are presented 442 

in Table 3.  443 

 444 

Processing Preprocessing 

Feature selection and extraction/Classification Data filtering/Artifact removal 

 Power spectral analysis 

 Online multitask learning 

 Machine learning (K-Nearest Neighbors, 

Gaussian discriminant analysis, SVM with 

different kernel functions (e.g. linear, nonlinear, 

quadratic, cubic, Gaussian)) 

 Convolutional neural network 

 Fully connected neural network 

 PCA 

 Sliding time window 

 WPD 

 Decision trees 

 Boosted trees 

 Mathematical method. 

 ICA 

 PCA 

 DCA 

 Multi-nominal logistic regression 

 High pass filter 

 Low pass filter 

 Notch filter 

 Third order one-dimensional median filter 

 Savitzky-Golay filter 

 Moving average filter 

 Time window (Hanning window, Rectangular 

window). 

 445 

Table 3: Common methods and techniques for EEG signal processing 446 

 447 
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Analyzing the accuracy of the applied DSP methods provides insight into the suitability of the 448 

algorithms and techniques, which is valuable to future studies. A DSP approach that yields a high 449 

accuracy result has the capacity to be reutilized in future research. As research into EEG in the 450 

construction discipline is relatively new, only a very limited number of the papers investigated the 451 

accuracy of their algorithms. Thus far, there are five publications that have examined the accuracy 452 

of their DSP algorithms. For instance, Aryal et al. applied several algorithms to record and collect 453 

EEG signals for scrutinizing workers' fatigue; the boosted trees have yielded the highest accuracy, 454 

with 82.6% in the algorithm tested [109]. Other studies have employed various algorithms, such 455 

as linear/non-linear SVM, online multitask learning (OMTL), CNN, FCNN, K-Nearest Neighbors, 456 

and Gaussian SVM (Table 4). Among these, the FCNN (i.e., Fully Connected Deep Neural 457 

Network) has yielded the highest accuracy, with 86.62%, followed by Gaussian SVM, OMTL, and 458 

nonlinear SVM for recognizing the stress levels in construction workers (Table 4). One of the latest 459 

publications in this field suggests using the combination of four algorithms, including KNN, SVM, 460 

Random Forest, and ANN [95]. These methods together yielded an average accuracy above 97% 461 

for a non-construction context. 462 

 463 

 DSP       

Accuracy 

(%) 

Extracting, 

Classifying 

 Preprocessing Software Hardware Frequency 

bands 

 Channels Focus of 

Study 

Ref. 

- PSD, Engagement 

index 

 Time 

window, 

Lowpass 

filter 

- Neurosky  theta, 

alpha, 

beta, 

gamma 

Fp1, Tp10 Mental 

workload 

[98]  

- -  - - Neurosky low alpha Fp1 Fatigue [108] 

- Engagement index, 

PSD 

 Time window - Neurosky  alpha, 

beta, 

gamma 

Tp10 Mental 

workload, 

vulnerability 

[105] 

- Frequency analysis, 

PSD 

 - - Neurosky  alpha, 

beta, 

gamma 

Fp1 Mental 

workload 

[106] 

82.6 Boosted trees  Third order 

one-

dimensional 

median filter, 

Savitzky-

Golay filter, 

Moving 

average filter 

Neuro- 

Experim

enter 

Neurosky beta Beta 1 

channel 

Fatigue  [109] 

- Mean PSD  Low pass 

filter, High 

pass filter, 

Notch filter, 

ICA 

- Emotiv 

Epoc+  

beta - Signal 

processing 
[82] 

- PSD  Low pass 

filter, ICA 

EEGlab Emotiv 

Epoc+  

lower 

gamma 

frequency 

AF3, F7, 

F3 

Attention, 

Vigilance 

[112] 
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- Valence value  Bandpass 

filter (0.5<-

<40 Hz), ICA 

MATLA

B 

Emotiv 

Epoc+ 

alpha, 

beta 

Af4, F4, 

Af3, F3 

Emotional 

state, 

Valence level 

[120] 

- Mean PSD, Frontal 

EEG Asymmetry 

 Bandpass 

filter, ICA 

- Emotiv 

Epoc+ 

alpha, 

beta 

Af4, F4, 

Af3, F3 

Emotional 

state 

[121] 

 

 

86.62 Fully Connected 

Deep Neural 

Network 

 Low pass 

filter, High 

pass filter, 

Notch filter, 

ICA 

MATLA

B 

Emotiv 

Epoc+ 

- AF3, F7, 

F3, FC5, 

T7, P7, 

O1, O2, 

P8, T8, 

FC6, F4, 

F8, AF4 

Stress [95] 

77.61 OMTL-VonNeuman  Bandpass 

filter (0.5<-

<40 Hz), 

Notch filter, 

ICA 

MATLA

B, 

EEGLA

B 

toolbox 

Emotiv 

Epoc+ 

delta, 

theta, 

alpha, 

beta 

AF3, F7, 

F3, FC5, 

T7, P7, 

O1, O2, 

P8, T8, 

FC6, F4, 

F8, AF4 

Stress [96] 

71.1 Non-linear SVM  A bandpass 

filter (0.5<-

<40 Hz), ICA 

- Emotiv 

Epoc+ 

delta, 

theta, 

alpha, 

beta 

AF3, F7, 

F3, FC5, 

T7, P7, 

O1, O2, 

P8, T8, 

FC6, F4, 

F8, AF4 

Stress [97] 

- Wavelet packet 

transform 

 Higher cutoff 

(>60 Hz), 

PCA, Event-

related 

potential, 

Fast Fourier 

Transform  

- Emotiv 

Epoc+ 

alpha, 

beta, 

gamma 

AF3, F7, 

F3, FC5, 

T7, P7, 

O1, O2, 

P8, T8, 

FC6, F4, 

AF4 

Mental 

vigilance 

[113] 

80.32 Gaussian support 

vector machine 

 PCA, Low 

pass filter, 

High pass 

filter, Notch 

filter, ICA 

- Emotiv 

Epoc+ 

delta, 

theta, 

alpha, low 

beta, beta, 

high beta, 

gamma 

AF3, F7, 

F3, FC5, 

T7, P7, 

O1, O2, 

P8, T8, 

FC6, F4, 

F8, AF4 

Stress [116] 

- Sliding window, 

WPD, Vigilance 

indices 

 Fast Fourier 

Transform, 

Bandpass 

filter, PCA 

- Emotiv 

Epoc+ 

delta, 

theta, 

alpha, 

beta, low 

gamma 

AF3, F7, 

F3, FC5, 

T7, P7, 

O1, O2, 

P8, T8, 

FC6, F4, 

F8, AF4 

Attention and 

vigilance 

[114] 

- PSD, Three-way 

analysis of variance 

 ICA - Neurosky gamma Fp1 Mental 

workload 

[107] 

96.99% Root mean square, 

Fuzzy clustering 

 Lowpass 

filter (0.1Hz) 

ack100

w 

BioPac 

system 

alpha Frontal, 

Temporal  

BCI [99] 
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- Fourier transform 

(Time domain to 

frequency domain), 

power spectrum 

 Notch filter 

(50Hz), 

Bandpass 

filter (0.5-

50Hz), PCA 

(Channel 

selection) 

- Emotiv 

Epoc+ 

alpha, 

beta, theta 

AF3, F7, 

F3, FC5, 

T7, P7, 

O1, O2, 

P8, T8, 

FC6, F4, 

F8, AF4 

Fatigue [110] 

 PSD, Mental fatigue 

index 

 Filtering (0.5-

40Hz), ICA 

- Emotiv 

Epoc+ 

theta, 

alpha, 

beta 

AF3, F7, 

F3, FC5, 

T7, P7, 

O1, O2, 

P8, T8, 

FC6, F4, 

F8, AF4 

Fatigue [111] 

- Wavelet packet 

decomposition, 

Vigilance index 

 Filtering 

(60Hz), 

Clustering 

- Emotiv 

Epoc+ 

delta, 

theta, 

alpha, 

beta, low 

gamma 

AF3, F7, 

F3, FC5, 

T7, P7, 

O1, O2, 

P8, T8, 

FC6, F4, 

F8, AF4 

Attention [115] 

79.26% Fully connected 

neural network  

 Filtering, 

ICA  

- Emotiv 

Epoc+ 

- - Stress [117] 

>97% KNN, SVM, 

Random forest ANN 

 PCA MATLA

B 

EEG-SMT 

(olimex) 

- Fp1, Fp2 Stress [118] 

- Spectral edge 

frequency-90 

 - - Omnifit 

mindcare 

headset 

- Fp1, Fp2 Stress [119] 

- -  - - Emotiv 

Epoc+ 

- - BCI [122] 

- -  -  Emotiv 

Epoc+ 

- - BCI [123] 

- -  DCA  Emotiv 

Epoc+ 

- AF3, F7, 

F3, FC5, 

T7, P7, 

O1, O2, 

P8, T8, 

FC6, F4, 

F8, AF4 

Signal 

processing 

[104] 

 464 

Table 4: Results of content analysis 465 

 466 

3.3 Thematic and gap analysis  467 

The current research into the EEG applications in the construction discipline was exhaustively 468 

reviewed, and their contents were analyzed in three different sections, including the research 469 

themes, research outcomes, and the gap analysis. Table 5 presents the outcomes of the analyses.  470 

 471 
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Gap Analysis Research Outcomes Research Design Ref. 

Application 

Neglect 

Confusion 

Tool/ 

System 

prototype 

Framework 
Study 

Analysis 
Survey 

Case 

Study 
Conceptual  

Lack of  

empirical  

research 

Under-

researched 

Over-

looked 

           [98] 

           [108] 

           [121] 

           [112] 

           [105] 

           [106] 

           [109] 

           [82] 

           [120] 

           [95] 

           [96] 

           [113] 

           [116] 

           [107] 

           [99] 

           [110] 

           [111] 

           [114] 

           [115] 

           [122] 

           [123] 

           [117] 

           [118] 

           [104] 

           [8] 

           [97] 

           [10] 

           [14] 

           [119] 

9 3 7 2 4 6 8 18 3 21 5 
Total 

No. 

 472 

Table 5: Research themes, outcomes, and research deficiencies of the collected publications 473 

474 
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3.3.1 Research themes 475 

Approximately 80% of the studies that adopted mobile EEG in construction can be categorized as 476 

case studies. These studies largely focused on different technical aspects of EEG-based solutions 477 

that predominantly contributed to construction safety. The remainder of the studies attempted to 478 

discuss a conceptual foundation for the application of EEG in construction. There is a lack of a 479 

structured study to survey opinions of experts and practitioners on the potential execution of 480 

wearable EEG in construction projects. Moreover, a large-scale survey on the longitudinal study 481 

should be conducted to understand the ambiguities pertaining to the applications of EEG in 482 

construction. 483 

3.3.2 Research outcomes 484 

More than half of the published studies included some form of statistical/data analysis in deriving 485 

their outcomes. These are mainly from the case study themes. These studies provide a scientific 486 

ground for the adoption of EEG, its potentials, challenges, and recommendations to overcome the 487 

challenges [109, 117]. There are four publications aimed at developing prototypes or systems 488 

based on the conceptual and case study themes. For instance, Jebelli et al. proposed a stress 489 

recognition system to detect workers' stress in a nearly real-time fashion [117]. Of the publications, 490 

30% focused on developing a new conceptual framework, including logics or rules, for enhancing 491 

EEG applications in the construction [82, 108].  492 

3.3.3 Research gaps 493 

The three types of gaps in the literature, including confusion, neglect, and lack of empirical 494 

research, are discussed below:  495 

3.3.3.1 Confusion 496 

While there is extensive potential for using EEG in construction, its practicality may be viewed 497 

with skepticism if the experimental studies do not conform to the real-world situations. It is 498 

crucially important to assess the conducted methodology with hazardous tasks under real 499 

circumstances. Thus, simple tasks and unreal experimental conditions are two issues encountered 500 

by the researchers in this particular area. There are a number of works conducted under laboratory 501 

settings for examination of their hypotheses (see Table 5). Such works have significant technical 502 

merits; however, future studies are required to accommodate real-world settings.  503 

The study conducted by Chen and Song is based on performing one simplified task to evaluate and 504 

test their methodology [98]. Compared to the complex and diverse tasks undertaken by an 505 

individual worker on a construction site, which require a high level of attention, the selected tasks 506 

are usually simpler and require less attention. In addition, the test environment does not simulate 507 

the construction site as the studies tend to focus on a short period of performing tasks. This may 508 

lead to overlooking the accumulative workload associated with prolonged performance. While the 509 

limitations of conducting research are understandable, it is important to focus on pertinent tasks in 510 

an environment similar to a real construction site in order to generate a reliable EEG assessment 511 

outcome. 512 
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3.3.3.2 Neglect 513 

There are a number of issues of neglect in the literature of construction EEG-based research. First, 514 

there is a lack of evidence to support the accuracy and reliability of the studies. For instance, the 515 

DSP method and its accuracy have great importance in deriving research findings. Therefore, the 516 

accuracy yielded from the DSP method should also be studied [105, 106]. On the other hand, many 517 

of the existing publications have not provided sufficient information about applied DSP 518 

algorithms. This impacts the replicability of EEG-related research. With the lack of such 519 

information, new studies have to trial multiple algorithms in order to choose the most suitable 520 

method for complex and dynamic environment of construction projects.  521 

Moreover, the employment of cutting-edge approaches, such as machine learning algorithms, has 522 

yet to be fully applied in EEG-related research. Machine learning approach has proven efficient in 523 

dealing with the abundance of data and, thus, the digitalized data generated by EEG devices can 524 

potentially be analyzed using such novel algorithms. As virtual reality (VR) and augmented reality 525 

(AR) have advanced in the recent years they can provide a more realistic and immersive 526 

environment for preliminary experiments to bridge the gap between research and practice.  527 

3.3.3.3 Application 528 

Vast majority of the published works have explicitly highlighted their contribution to the body of 529 

knowledge. There are five publications (shown in Table 5) that require further clarity on how their 530 

results contribute to the existing literature. On the other hand, due to insufficient knowledge about 531 

the methodical approaches of EEG research in the construction discipline, a number of articles 532 

seem to lack a strong underpinning theory [112, 119]. This has impeded conclusive validation of 533 

the research findings. Employing a theory reinforces the findings and assists in systemic 534 

identification and extension of directions for future research in this area.  535 

Lastly, the current applications of EEG predominantly remain at a tactical level of on-site 536 

construction management. The investigations on the usefulness of EEG need to be extended to 537 

trigger changes in the existing policies for managing construction workforce.  538 

3.4 Future research directions  539 

To fulfill the aims of this research, potential applications and contributions of mobile EEG are 540 

outlined below. Based on the analyses and the identified gaps, key future research directions are 541 

summarized as follows: 542 

3.4.1 Theoretical developments 543 

Empirical research is required to scrutinize requirements for ubiquitous adoption of EEG in the 544 

construction context. Technical viability, economic feasibility, industry perception and 545 

acceptance, and legal aspects of applying EEG in construction projects can be key attributes of up-546 

coming studies. The outcomes of such research will assist in designing verifiable EEG case studies. 547 

The world of theory is wide; however, the most relevant theories can be borrowed from sectors 548 

such as psychology, neuroscience, and management science.  549 

3.4.2 Application/scope development 550 

One new direction is to use EEG for studying the optimal allocation of tasks to construction 551 

workers. The extant literature has little or implicit reference to the potential of EEG for such 552 
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applications. However, this domain deserves a separate pathway to proactively address issues with 553 

safety, workload imbalances within a crew, on-the-job skill training and skill promotion on one 554 

common platform. Extreme workload is one of the main causes of fatigue in workers and EEG has 555 

the potential to provide an evidence basis for a universally adoptable framework for job assignment 556 

to construction workers. With growing recognition toward using human-assisted robots on 557 

construction sites, it is envisioned that issues associated with human–machine interactions are on 558 

rise. This opens a new avenue for EEG-based studies of human–machine interactions in order to 559 

optimize the design and utilization of such robots and the design of a convenient environment for 560 

human–robot interaction. In future construction research, investigation and comparison of the 561 

trades and processes in which wearable EEG has been used is of high importance. To consider real 562 

construction trades and demonstrate EEG contribution will contribute to a wider adoption of this 563 

technology. Trialing EEG on a wide spectrum of construction tasks with varying levels of 564 

complexity and risk can provide a more realistic picture about capabilities and limitations of EEG-565 

based research.  566 

3.4.3 Methodological developments 567 

Signal processing has significant potential in improving and expanding the current application of 568 

EEG in construction. Future research can further extend the focus on developing hybrid analytical 569 

methods for preprocessing (noise and artifacts removal) and post-processing (clustering and 570 

pattern recognition) of the collected data from construction sites. Attention can be paid to 571 

visualizing the outcomes of analyzed data in order to enable rapid diagnosis of issues with 572 

workplace and workers' wellbeing. Future construction studies could also focus on advancing 573 

EEG-based research in virtual environments using technologies such as AR and VR. Such 574 

platforms enable nearly limitless experimental settings, simulating real-world scenarios in an 575 

economic way. More importantly, AR and VR can come into play for assessing the efficacy of 576 

signal processing algorithms. Signal processing is an evolutionary and iterative process in most 577 

cases relying on data abundance. Hence, existence of cost-effective platforms can facilitate the 578 

improvement of this process. Another potential application of VR technology in this field is to 579 

investigate the possibility of VR-based construction safety training. Hybridizing EEG devices with 580 

other easy-to-use biometric technologies (such as temperature, heart rate, and blood pressure 581 

meters) is an area to examine whether and how such technologies can complement or act as a 582 

proxy for one another in assessing workers' wellbeing and safety.  583 

4. Conclusions 584 

This paper provided a comprehensive review of the EEG technology and its applications in 585 

construction research. The systematic review was founded on three pillars consisting of 586 

bibliometric, thematic, and gap analyses. The study characterized the EEG tools and gears, 587 

experimental paradigms, topics, keywords, and network of researchers. Moreover, it outlined the 588 

major research theme and signal processing approaches. The review highlighted the gaps in EEG-589 

related research through three modes of confusion, neglect and application. Then, it derived 590 

various directions for future research. 591 

There are diverse types of EEG devices available in the market. Besides cost factors, selecting a 592 

suitable device is mainly based on the movability, number of channels, type of electrodes and 593 
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amplifying quality of signals. Construction scholars have preferred off-the-shelf wireless EEG 594 

devices with up to 14 channels and dry electrodes along with a conventional amplifier. The 595 

dominant experimental paradigms include ERP analysis, frequency-based analysis, frontal 596 

asymmetry metrics, and cognitive-affective metrics. The US and China are leading the research 597 

into EEG-enabled construction and the major topics of interest are stress recognition, attention 598 

monitoring, vigilance, and hazard awareness. “Wearable EEG”, “brain waves”, and “safety 599 

management” convey the highest weighted degree of centrality in the extant keywords. Case 600 

studies are the main research approach in applying EEG to construction. Some of the construction 601 

scholars have pursed a simplification strategy by limiting the number and complexity of studied 602 

tasks and trialing in laboratory settings. Moreover, DSP has been limited to the signals from a few 603 

channels in some cases, for instance, only Fp1 for workload assessment, due to the high level of 604 

artifacts and noise associated with the collected signals. Under such scenarios, a pattern of spikes 605 

in the recorded signal is attributed to anomalies of tasks or workplace conditions. Other studies 606 

have proven the potential of applying advanced preprocessing filters and post-processing 607 

classifiers in drawing accurate conclusions about tasks, workplaces, and workers.  608 

Future research should be directed towards theoretical development, scope expansion, and 609 

methodological advancement. Theoretical development can focus on empirical research to 610 

scrutinize requirements for ubiquitous adoption of EEG in construction and enhancing the 611 

theoretical foundations of EEG-based construction research. Scope expansion can divert attention 612 

to studying a wider spectrum of site tasks, optimal job assignments, workers' productivity, and 613 

interactions between workers and human-assisted robots. Methodological developments should 614 

mainly place emphasis on advancing DSP and trialing EEG in conjunction with other digital 615 

technologies.  616 
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