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Abstract: This study proposes a new design method to perform the topological design of hierarchical 
thermoelastic structures for thermal insulation. Firstly, a design strategy with three layers including 
macro-, meso- and micro-layers is presented. The macroscopic structures are formed by periodically 
arranged mesoscopic structures, whose topological configurations are determined by the material 
microstructures provided at the micro-level. The microstructures and mesoscopic structures are 
independent of the optimization. Then, the floating projection technique is employed to find the 
optimal distribution path of insulation materials, without penalization used in the conventional 
density-based methods. The objective function is defined by maximizing the thermal compliance, 
subjected to the volume constraint that is added to the objective function through Lagrange multiplier. 
The sensitivity derivation and the algorithm implementation are given in detail. Finally, some 
numerical examples are presented to illustrate the advantages of the proposed method, and the design 
robustness of the topological results in both the damage tolerance and load position offset. 

Keywords: Topology optimization, floating projection, material mechanics, thermal insulation, 
hierarchical structures. 

1. Introduction 

Most of the existing literature referring to heat problems have widely investigated the topological 
design for the maximum heat transfer, while thermal insulation has not received as much attention. 
Actually, heat preservation design is also important in civil and mechanical engineering, especially in 
the area of building technology (Bruggi and Cinquini, 2011; Xia et al., 2018; Zhuang et al., 2007). 
Compared to the conventional continuous solids, hierarchical structures possess many favorable 
features such as lightweight, high energy absorption, high wave absorption, impact resistance, and 
vibration isolation (Jansen and Pierard, 2020). Hence, hierarchical structures are attracting extensive 
attentions in engineering. Although there have been many methods investigated various hierarchical 
structures in the past, they were associated with some drawbacks. The previous studies with scale 
separations were mostly limited to the design of periodic and lattice structures (Wang et al., 2017; Wu 
et al., 2019), rather than the rigorous hierarchical structures. The existing works with the 
homogenization methods were mostly two-scale designs (Vicente et al., 2016; Zheng et al., 2019), 
which are inefficient for the design of hierarchical structures with three or more scales. Additionally, 
multiscale hierarchical structures considering thermal insulation are relatively rare. Topology 
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optimization is an efficient numerical tool and widely utilized to design advanced structures and 
material microstructures (Bendsøe and Sigmund, 2013; Sigmund, 2020; Xue et al., 2017; Zhang et al., 
2019; Zhang et al., 2021; Zheng et al., 2020; Zheng et al., 2021). As a recently developed method, the 
floating projection topology optimization (FPTO) method (Huang, 2020b) exhibits some advantages 
such as good stability, smooth boundary and not easy to fall into the local optimum, which shows us a 
new vision on implementing the topology optimization algorithm. 

This study will propose a new design strategy to perform topological design of hierarchical 
thermoelastic structures for thermal insulation (Zhou et al., 2012). The insulated structure include 
three scales or levels, namely, the micro-, meso- and macro-structural scales. The macrostructures are 
to be optimized and formed by the periodic mesoscopic structures, the mesoscopic structures are 
composed of some non-periodic microstructures, which are provided at the micro-level. Four different 
types of the microstructures can be selected in this study. The structural configurations at the meso- 
and micro-levels are independent of the optimization, and the homogenization method bridges the 
macroscopic equivalent thermoelastic properties of the mesoscopic structures. This design strategy is 
tested on the implementing of thermal insulation problem, where the FPTO is employed to find the 
optimal distributions of insulation materials. The objective function is to maximize the thermal 
compliance, subjected to the volume constraint that is added to the objective function by using 
Lagrange multiplier. A heuristic optimality criterion is derived to iteratively update the design 
variables. Some numerical examples are presented to discuss the influences of material properties and 
topological configurations of the mesoscopic structures, on the hierarchical designs. 

2. Mathematical modeling and design strategy 

The pros and cons of thermal performance are usually characterized by the thermal compliance, a 
bigger thermal compliance generates a worse heat conduction efficiency (Gao and Zhang, 2010; 
Gersborg-Hansen et al., 2006). Therefore, the present topology optimization in thermal insulation is to 
maximize the thermal compliance under a given material usage. Based on the FPTO method, the 
mathematical modeling can be stated as (Bruggi and Cinquini, 2011) 
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In Eq. (1), C is the thermal compliance, T is the structural temperature matrix, K is the global heat 
conductivity matrix, N is the elemental number discretized in the design domain, ρe is the elemental 
density to be determined during optimization, Ve is the elemental volume, Vf is the upper limit of the 
prescribed volume fraction. P is the thermal load vector, ρmin is a small positive value (0.001 in this 
paper), to avoid the computational singularities of the heat conductivity matrix, ρe = 0 denotes the 
insulation fraction and ρe = 1 refers to the conductive phase. 
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Fig. 1. Illustration for the design strategy with three layers 

This study proposes a novel design strategy to obtain hierarchical structures with three layers at the 
macro-, meso- and micro-levels, as depicted in Fig. 1. The macroscopic structure is to be optimized, 
which is formed by periodically arranged mesoscopic structures XY, X and Y in the meso-structure 
usually have different topologies for a multifunctional macrostructure, since different configurations 
represent different properties. Moreover, X and Y are some classical microstructures selected from the 
micro-layer. It is noted that the mesoscopic structures and microstructures are independent of the 
optimization, and their macroscopic properties and topological configurations are known in advance. 

Table 1. The considered four microstructures 

Type A B C D 
Porosity 0.70 0.70 0.70 0.70 

PUC 

    
11 12

21 22

H H

H H

K K
K K
 
 
 

 0.4989 0.0660
0.0660 0.4989
 
 
 

 0.4995 0.0660
0.0660 0.4995

− 
 − 

 0.4956 0
0 0.4956

 
 
 

 0.5133 0
0 0.5133

 
 
 

 

To illustrate the feasibility of the design strategy in obtaining hierarchical structures for thermal 
insulation, this study mainly considers four microstructures in the microstructural library. Their 
periodic unit cell (PUC) and effective macroscopic properties are listed in Table 1, the calculations in 
macroscopic properties are based on the dimensionless thermal conductivity 1. For configurations 
A~D, their thermal conductivity tensors in the horizontal and vertical directions are the same. 
However, the coupling (off-diagonal) terms are equal to 0 in the configurations C and D, non-zero and 
opposite in the configurations A and B. Due to the possibility of different macroscopic properties 
induced by the same topologies and porosities, this study considers the same geometrical sizes in each 
microstructure, to make fair comparisons. 

Fig. 2 depicts the normalized equivalent thermal conductivities of the microstructures A~D, where 
20 samples with 0.5 interval are used to simulate the normalized conductivities. K11 and K22 denote the 
thermal conductivities of the porous materials in the x- and y- directions, respectively. K12 and K21 are 
the coupling conductivities of the porous materials along with the xy- and yx-directions, respectively. 
Ks is the thermal conductivity of solid material. 

As depicted in Fig. 2, as the material density increases, the conductivities of the four porous 
microstructures in the x- and y- directions are also increase accordingly, and their changing trends 



show the same parabolic shape. Furthermore, the thermal coupling tensors of K12 and K21 in A 
configuration increase first and then decrease, but they decrease first and then increase in B 
configuration, their inflection points are about the density value of 0.75. 

(a) (b)

(d)(c)

 

Fig. 2. Normalized equivalent thermal conductivities of the microstructures A-D 

3. Sensitivity analysis and algorithm implementation 

To utilize the mature optimization algorithm solving the problem defined in Eq. (1), the derivative of 
the objective function with respect to the design variables should be computed (Takezawa et al., 2014), 
such as 
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By differentiating the design variables on both sides of the equality constraint listed in Eq. (1), the 
following relations can be obtained. 

  

( )

-1 -1

0=

=

e e e e e e

T T

e e e e

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

∂∂ ∂ ∂ ∂ ∂
= = + ⇒ +

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⇒ − ⇒ = −
∂ ∂ ∂ ∂

KTP K T K TT K T K

T K T KK T P P K T
              (3) 

By combining Eqs. (2) and (3), the sensitivity information can be rewritten as 
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According to the material interpolation scheme used in the density-based method, the heat conduction 



matrix Ke in each element should be interpolated by 

0e eρ=K K                                (5) 
where K0 represents the equivalent heat conductivity properties of the considered mesoscopic 
structures. It is noted that this paper employs the floating projection technique to form the structural 
topologies, so the penalty factor is unnecessary in the calculation of Ke. By substituting Eq. (5) into 
Eq. (4), and take into account the maximization of the objective function, the sensitivity information 
can be finally written as 
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To stably update the design variables, the elemental sensitivity in current iteration is obtained by 
averaging with its previous values, such as 
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where the superscript 𝑖𝑖 denotes the current iteration number. According to the Karush-Kuhn-Tucker 
(KKT) conditions used in mathematical programming (Sigmund, 2001), the following formula can be 
obtained. 
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where λ  and jλ  are non-negative Lagrange multipliers corresponding to the constraints listed in 
Eq. (1), which includes the volume, balance equation, upper and lower bounds of the design variables. 
Since the balance equation, upper and lower bounds of the design variables will be satisfied 
automatically during the optimization, the last term in Eq. (8) can be ignored, such as 
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Furthermore, the heuristic optimality criterion to update the design variables can be expressed as 
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where λ  can be determined by the bi-section method or the Newton-Raphson method, and the 
sensitivity of the volume with respect to the design variables is directly given by 

e eV Vρ∂ ∂ = −                                 (11) 
To suppress the numerical instability such as typical checkerboard pattern and mesh-dependency in 

the conventional density-based methods, our previous experiences show that the use of the following 
filter is a simple but efficient way to overcome this problem, such as 
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where rij denotes the distance between the centers of the i-th and j-th elements, and w  is a weight 
coefficient calculated by 
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where rmin is the prescribed filter radius. 
Although the above-described filter scheme is adopted, the optimized topologies are still filled with 

some intermediate densities. To overcome this difficulty, the floating projection technique is employed 
to progressively push the design variables toward 1 and 0, which leads to 
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where 0β >  denotes the steepness coefficient, th is the floating threshold used to ensure the volume 
invariance before and after floating. Besides, a move limit should be given to avoid the large changes 
in the design variables, which is taken as 0.02 in this paper. To gradually push the design variables 
toward 1 or 0, 𝛽𝛽 usually starts from a small positive value (10-6 in this paper), and increases with Δ𝛽𝛽 
(1 in this paper) until the following smooth criterion is satisfied: 

1
31 10

N i i
e ee

x x
N

τ
−

−=
−

= ≤∑                            (14) 

It should be emphasized that 𝛽𝛽 controls the speed in approaching a 0/1 solution, and it will be stopped 
to increase once the solution is smooth enough. More information about the smooth representation of 
structural boundaries in FPTO can be found in reference (Huang, 2020a). Finally, the whole algorithm 
will be ended until stricter convergence criteria than Eq. (14), τ ≤ 10-4 is satisfied. 

4. Numerical examples 

This section considers three cases to illustrate the insulation performance of the considered six 
mesoscopic structures, which are listed in Table 2. As listed in Table 2, the thermal conductivities in 
the horizontal and vertical directions are the same for each mesoscopic structure. If the considered 
structures are symmetrical, the coupling terms 12

HK  and 21
HK  are equal to 0. On the contrary, both of 

them are positive in A-configurations and negative in AB and B-configurations. 

Table 2. The considered six mesoscopic structures 

Porosity 0.70 0.70 0.70 0.70 0.70 0.70 
Type DA DB DC AB AC AD 

PUC 

      
11 12

21 22

H H

H H

K K
K K
 
 
 

  0.4989 0.0490
0.0490 0.4989
 
 
 

 0.4995 0.0486
0.0486 0.4995

− 
 − 

 0.4958 0
0 0.4958

 
 
 

 0.4920 0.0322
0.0322 0.4920

− 
 − 

 0.4896 0.0155
0.0155 0.4896
 
 
 

 0.5044 0.0158
0.0158 0.5044
 
 
 

 

The design domains, boundary conditions and the solid designs of three cases are given in Fig. 3. In 
all the numerical examples, the geometrical sizes of the design domains are 1m × 1m, which are 
discretized by 100 × 100 quadrilateral four-node elements. The specified volume fractions are 0.4, 
filter radiuses are 2, the blue color represents that the temperature in those positions is 0K, and the red 
color denotes where the thermal loads are applied. In case 1, a concentrated thermal load 100W/m3 is 



applied at the center of the design domain, and the four sides are adiabatic boundaries. In case 2, five 
thermal loads 30 W/m2 are symmetrically distributed in the design domain, four corners are set to be 
adiabatic. In case 3, the bottom side of square plate is evenly heated as 3 W/m2, and the top half is 
adiabatic boundaries. Fig. 4 gives the topological results for all the hierarchical structures, Table 3 lists 
all the numerical results. 

As shown in Fig. 3 and Fig. 4, the solid and porous designs possess clear topologies and smooth 
boundaries, which illustrate that the FPTO method has good ability to obtain hierarchical 
thermoelastic structures. In case 1, all topological results exhibit the same configurations. For the solid 
design and porous DC result, materials are symmetrically distributed in the four corners of the design 
domain. Besides, other porous designs distribute more materials on the left or right diagonal corners, 
due to the asymmetry of their micro-structural configurations. It is interesting to find that if the 
micro-structural configurations are left tilted, more materials will distribute on the right diagonal 
corner of the design domain to block the heat transfers, and vice versa. 

(a) (b) (c)  

Fig. 3. Design domains and the corresponding solid designs. (a) Case 1; (b) case 2; (c) case 3. 

(a) (b) (c) (d) (e) (f)  

Fig. 4. Topological results for hierarchical structures. (a) DA configuration; (b) DB configuration; (c) DC 

configuration; (d) AB configuration; (e) AC configuration; (f) AD configuration. 

In case 2, solid design is different from all the porous hierarchical designs, some materials are 
distributed on the four sides, and the remaining materials are symmetrically distributed between 



different heat sources to achieve the thermal insulation; for the hierarchical designs, DC, AC and AD 
results converge to the same topologies, DB and AB configurations are leftly tilted, but DA result is 
rightly slanted, which demonstrates that the macroscopic topology is more susceptible to the Y 
configuration in XY. 

In case 3, solid design shows an inverted triangle shape on the top, and two right triangles appear 
on the bottom side, which is true for the hierarchical designs including DC, AB, AC and AD results. 
For DA and DB results, more materials distribute on the right and left sides of the structure, 
respectively, due to the larger anisotropy of their microstructures. 

As listed in Table 3, values of objective function in all hierarchical designs are bigger than the 
corresponding solid designs, illustrating that hierarchical designs possess better insulation 
performance than the corresponding solid designs. The values of AC results in all cases are the largest 
ones, showing their best performance in thermal insulation, AD results are the worst ones in each case, 
which indirectly show that the C-type microstructure is more suitable to prevent the heat transfers than 
others, while the D-type microstructure is the worst one. Furthermore, the sequence of the values in 
objective function is opposite to the numerical values of the equivalent thermal properties shown in 
Table 2 ( 11

HK  and 22
HK ), and the larger thermal constants, the smallest insulation performance. In 

addition, three cases converge to the final designs with about 100 iterations, illustrating that the FPTO 
method is efficient to obtain hierarchical thermoelastic structures. The values of the projection 
coefficient β are equal to 1 and do not need to increase anymore, which shows that the topological 
boundaries for all cases are always smooth enough during the optimization. 

Table 3. Numerical results for all considered cases 

Type Case Solid DA DB DC AB AC AD 

Objective 
function 

1 10055.63 20906.90 20880.57 20984.88 21172.00 21256.27 20634.07 
2 26514.65 55895.19 55823.86 56094.55 56671.17 56800.90 55137.35 
3 35181.38 82987.24 82915.80 83746.82 84532.65 84794.50 82426.09 

Iteration 
number (β) 

1 64 (1) 64 (1) 64 (1) 64 (1) 63 (1) 64 (1) 63 (1) 
2 55 (1) 73 (1) 74 (1) 64 (1) 70 (1) 69 (1) 68 (1) 
3 76 (1) 111 (1) 106 (1) 99 (1) 97 (1) 103 (1) 87 (1) 

5. Multiple load case and design robustness 

This section applies the proposed design strategy to multiple load case and illustrates its design 
robustness. The geometric size of the design domain is 1m × 1m, as shown in Fig. 5 (a). 
Correspondingly, the design domain is discretized by a mesh size of 100 × 100 quadrilateral grids. 
There are four points (red color) with heat fluxes q = 40W/m2 are symmetrically distributed in the 
design domain, and there is one point (blue color) located at the bottom that has a given temperature T 
= 0K. It is noting that four heat fluxes are not applied simultaneously, and they belong to two cases P1 
and P2, as marked in Fig. 5 (a). For comparisons, Fig. 5 (b~i) gives topological results related to the 
single load design and all the hierarchical designs (under multi-load condition), in addition to the 
multi-load design. Table 4 lists the numerical calculation results for all cases. 
  As shown in Fig. 5, for the single load design, solid materials are separated into five parts and more 



materials distribute in the upper part of the design domain, and they are far from the adiabatic point. 
The remaining designs exhibit the same gate-shaped topologies, although their shapes and sizes are a 
little different. The topological results illustrate that different micro-structural configurations have 
little effect on the hierarchical designs under multiple load cases. 

  

25

25

25

25

P1

P1

P2

P2

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)  

Fig. 5. Design domain and topological results. (a) Design domain under two loads; (b) solid design under multiple 

loads; (c) solid design under single load; (d) DA configuration; (e) DB configuration; (f) DC configuration; (g) AB 

configuration; (h) AC configuration; (i) AD configuration. 

Table 4. Numerical calculation results for all cases 

Type Normal results Local failure Load position offset Iteration number (β) 
Solid design (b) 31354.89 31354.69 30139.55 56 (1) 
Solid design (c) 54637.15 54636.74 52285.10 55 (1) 

DA 64218.27 64183.85 61358.73 62 (1) 
DB 64135.24 64134.15 61279.79 62 (1) 
DC 64313.87 64313.54 61462.54 62 (1) 
AB 64947.19 64946.09 62062.33 62 (1) 
AC 65160.88 65159.21 62268.09 62 (1) 
AD 63248.35 63246.98 60440.93 62 (1) 

As listed in Table 4, values of the objective function in two solid designs (single load and multiple 
loads) are smaller than the hierarchical ones, which further explains that hierarchical designs possess 
better performance in thermal insulation than the corresponding solid designs. The objective function 
value of single load case is bigger than the multi-load design, since more loads are applied at once. 
For the hierarchical designs, AC microstructure performs the best performance in thermal insulation 
because of its biggest value of objective function, while AD configuration is the worst one to achieve 
thermal insulation among the six hierarchical designs. This phenomenon may be attributed to the 



different number of holes inserted into the porous microstructure, we can roughly say that the more 
holes inserted, the greater the thermal insulation performance, and vice versa. 

To further demonstrate the advantages of the proposed design method, we test the robustness of the 
topological results in both the damage tolerance and load position offset, as illustrated in Fig. 6. 
Damage tolerance is to ensure that the designed structures are still works as expected (no significant 
degradation in insulation performance here), even if part of the structure is damaged (Jansen et al., 
2014). This is extremely valuable in the aircrafts with high reliability, where local failure usually 
occurs due to some unexpected events, such as collisions, explosions, fatigue fracture, etc. For 
simplicity but without loss of generality, a simplified damage model is used, which assumes that a 
rectangular area located at the upper right corner of the structure is corroded and fractured, and it is 
randomly given and the materials are removed from this area. For fair comparisons in their insulation 
performance, all the designed structures shown in Fig. 5 are damaged with the same local failure, we 
perform finite element analysis to examine how robustness the damaged structures will be. As listed 
in Table 4, the insulation performance under local failure are smaller than the corresponding normal 
results, but all the hierarchical design results are larger than the solid design values, which illustrates 
that the designed hierarchical structures have good abilities to continue working after fracture, 
showing their better damage robustness than the traditional solid designs. 

10

10

10

(a) (c)(b) (d)  

Fig. 6. Illustration for damage tolerance and load position offset. (a) Local failure in design domain; (b) local failure 

in multi-load design; (c) load position offset in design domain; (d) load position offset in multi-load design. 

Another benefit of the designed hierarchical structures is to check their robustness in the load 
position offset, this situation often occurs in engineering for the following reasons (Li et al., 2020). 
Firstly, the actual external heat points cannot be guaranteed to be exerted on the specific locations, 
maybe due to the manufacturing error or installation error. Besides, since the engineering equipment 
usually work in some complicated conditions, the external heat loads initially applied may shift or 
offset a little during use, although their magnitude are unchanged. The variations of the heat load 
positions will make the original topological designs (under specific load positions) inaccurate. Hence, 
whether the designed structures are insensitive to the variation of the heat load position is also 
significant in engineering. As listed in Table 4, when position offset exists in all the considered heat 
points, the thermal insulation performance under all cases are deteriorated, since the numerical results 
under position offset condition are smaller than the corresponding ones under the specified positions. 
Besides, all the hierarchical design results are bigger than the solid ones when load position offset 
exists, which demonstrates that the proposed method is more efficient and robust for insulated 
structures than the traditional solid designs. 



6. Concluding remarks 
This study proposes a new method to perform the topological design of hierarchical structures for 
thermal insulation, it has many advantages such as high efficiency, good connections between 
different microstructures, macrostructures easily to be manufactured by 3D printing, excellent 
robustness when suffered from the local damage and load position offset. The FPTO method is 
demonstrated to be powerful to realize the hierarchical topology optimization. Although the types of 
the microstructures and mesostructures considered in this study are rather limited, new types of 
microstructures and mesostructures can be exploited according to the design needs. Then, more 
suitable mesoscopic structures can be selected to match the specific requirements to the 
macrostructures. Although the proposed method is tested on the implementing of 2D numerical 
examples, it can be further applied to other 3D insulation problems, such as the mitigation of the 
effects of thermal bridges and the heat preservation of the components of modular curtain walls. 
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