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Abstract

In this paper we discuss dynamic model reduction methods which preserve a certain structure in the underlying system.
Specifically, we consider the situation where the reduction must be consistent with a partition of the system states. This is
motivated, for instance, in situations where state variables are associated with the topology of a networked system, and the
reduction should preserve this. We build on the observation that imposing block structure to generalized controllability and
observability gramians automatically yields such state-partitioned model reduction. The difficulty lies in ensuring feasibility
of the resulting Lyapunov inequalities, which is in general very restrictive. To overcome this, we consider coprime factor model
reduction. We derive an LMI characterization of expansive and contractive coprime factorizations that preserve structure, and
use this to build a more flexible method for structured model reduction. An example is given to illustrate the method.

Key words: Model reduction; Structure preserving; Coprime factorization; Linear matrix inequality(LMI); Algebraic Riccati
inequality

1 Introduction

Methods for obtaining lower-order approximations of
linear state-space systems have been in place since the
early 80s (Moore, 1981; Enns, 1984; Glover, 1984), and
yield bounds on model reduction error from an input-
output perspective. Superficially, such methods would
appear attractive for the study of large-scale systems
and networks which suffer from the curse of state di-
mensionality. However, a closer look reveals an impor-
tant difficulty: these methods would destroy the topolog-
ical structure which is inherent in large-scale systems.
By topological structure we mean that these models are
naturally built from interconnections of subsystem mod-
els, and therefore state variables, inputs and outputs
are associated with specific subsystems or network re-
gions: for many applications, it is desirable to maintain
such identification for the reduced system states. The
above-mentioned methods, in contrast, rely on global
changes of state coordinates (e.g., balancing), implying
the reduced state variables can only be given a global
interpretation. As an example, consider the power grid,
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a network obtained by interconnection of various re-
gional subnetworks made of power plants, substations
and other devices. Typical state variables for a certain
subsystem could be rotor angles and speed in generators,
or electrical quantities in local lines or other equipment.
Inputs and outputs used for control (e.g., voltage sta-
bilizers) are also local to each region. A reduced model
of the entire network can summarize many of the states
into fewer variables, and thus simplify design and sim-
ulation, but should still respect region boundaries, to
provide engineers (which could even belong to different
organizations) with reduced models with local meaning
(see Tsai, Narasimhamurthi, & Wu 1982 for more dis-
cussion of the power grid problem) .

Motivated by this issue, in this paper we consider a state-
space system of transfer function G(s),

ẋ = Ax + Bu, y = Cx + Du,
where the state vector is broken in N sub-vectors x =
(xT

1 , . . . , xT
N )T , each associated with a different subsys-

tem, and inputs and outputs are also partitioned accord-
ingly. We want the reduced system’s states to maintain
this association. For simplicity of exposition, we will con-
sider a partition of only two groups of states, where

A =

[
A11 A12

A21 A22

]
, B =

[
B1 0
0 B2

]
, C =

[
C1 0
0 C2

]
, D =

[
D1 0
0 D2

]

(1)

with conformal dimension. This amounts to having two
subsystems with separate inputs and outputs, but inter-
acting through the dynamics of their respective states
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x1, x2. We want the operations performed to go from G
to the reduced model Gr to be such that the final model
has a state variable xr = (xT

r1, x
T
r2)

T , where xr1 is only
a function of x1, xr2 is a function of x2, and the inputs
and outputs remain decoupled.

Linear Matrix Inequality (LMI) approaches to the
model reduction problem (see e.g, Dullerud & Paganini,
2000) open the door for obtaining such property, by im-
posing block structure on generalized system gramians.
Indeed, this idea has already been pursued in Zhou,
D’Souza, & Cloutier (1995) for a plant-controller in-
terconnection, and in Beck, Doyle, & Glover (1996) for
multi-dimensional systems, where the state partitions
correspond to different frequency variables, or uncer-
tainty variables. We will consider the structure

Gs = {H | H = H∗ = diag(H1, H2) consistent with (1)}
imposed on solutions to the Lyapunov inequalities

AX + XA∗ + BB∗ < 0, A∗Y + Y A + C∗C < 0 (2)

for the generalized gramians X > 0 and Y > 0. Such
a block-diagonal structure on these variables automat-
ically forces the resulting balancing transformations to
respect the subsystem boundaries, and thus the reduced
order model will maintain a topological association.

The main difficulty in applying this method is that only
under some very strong conditions will (2) be feasible
with block diagonal X, Y ; in particular it is not enough to
have stability of A. For instance, lightly-damped spring-
mass systems which are essentially the models of power-
grid oscillations would not fall in this category. To avoid
this problem, in this paper we seek structured model re-
duction methods in the coprime factor description of a
system. In the absence of structure, such methods have
been developed by Anderson & Liu (1989); Liu & Ander-
son (1986); McFarlane & Glover (1990); Meyer (1990);
El-Zobaidi & Jaimoukha (1998), and can be applied even
to unstable systems; they are briefly reviewed in Section
2. Particularly attractive are reductions based on nor-
malized coprime factorizations, since robustness results
on closed-loop stability are available. However normal-
ization would also destroy our topological structure, so
we use again LMI conditions to produce suitable relax-
ations for which the structure can be imposed. Two ap-
proaches are presented in Section 3, based respectively
on expansive and contractive factorizations. We illustrate
the methods by a mass-spring example presented in Sec-
tion 4. Conclusions are given in Section 5. A preliminary
version of this work appeared in Li & Paganini (2002),
and frequency-weighted extensions are also done by Li
& Paganini (2003).

2 Background

In what follows, we adopt the following standard no-
tation. Let M be a complex matrix, then M∗ denotes

the complex conjugate transpose of M , and σ̄(M) the
largest singular value of M . The state-space realization
of a transfer matrix is denoted by G(s) =

[
A B
C D

]
:=

C(sI−A)−1B+D. TheH∞−norm of G(s) is denoted by
‖G‖∞ = supω σ̄(G(jω)). The collection of all rational
proper and stable transfer matrices is denoted byRH∞.

We first review balanced truncation using generalized
gramians (Dullerud & Paganini, 2000), i.e. any X, Y
satisfying (2) 2 . A state transformation T leads to the
transformed gramians X̃ = Ỹ = diag[γ1, . . . , γn]; the
diagonal elements γi are called the generalized Hankel
singular values. A subsequent truncation of the state to
order k gives the following error bound.

Proposition 1 If G =
[

A B
C 0

]
is minimal, with A Hur-

witz and the generalized Hankel singular values γ1 ≥
. . . ≥ γk > γk+1 ≥ . . . ≥ γn, and Gr =

[
Ar Br

Cr 0

]
is

obtained by k-th order generalized balanced truncation,
then Ar is Hurwitz and ‖G−Gr‖∞ ≤ 2(γt

1 + · · ·+ γt
q),

where γt
i denote the distinct generalized Hankel singular

values of γk+1, . . . , γn, that is, γt
1 > γt

2 > . . . > γt
q and

{γk+1, . . . , γn} = {γt
1, . . . , γ

t
q}.

We now review some classical work on model reduc-
tion via normalized coprime factorizations, which can
be found in McFarlane & Glover (1990); Zhou, Doyle,
& Glover (1996). A right coprime factorization (RCF)
(M,N) of plant G with G = NM−1 is called normalized
if

[
N
M

]
is inner, i.e. if N, M ∈ RH∞ and N(jω)∗N(jω) +

M(jω)∗M(jω) = I for all ω. The following characterizes
normalization in terms of the LQ Riccati equation.

Theorem 2 Given G(s) =
[

A B
C D

]
, suppose (A,B) is sta-

bilizable and (C, A) has no unobservable modes on the
imaginary axis. Denote R = I + D∗D, S = I + DD∗,
then a normalized RCF of G is given by

[
N(s)
M(s)

]
=




A + BF BR−
1
2

C + DF
F

DR−
1
2

R−
1
2


,

where F = −R−1(B∗Xs+D∗C), and Xs is the stabilizing
solution of the Algebraic Riccati Equation

Xs(A−BR−1D∗C) + (A−BR−1D∗C)∗Xs

−XsBR−1B∗Xs + C∗S−1C = 0. (3)

Since coprime factors are stable, standard reduction
methods such as balanced truncation apply to them.
The advantage of a normalized factorization is that,
given a stabilizing controller for the plant G, it allows
one to quantify the robust stability margin, i.e. the

2 If they exist, these would be non-unique, a fact that can
be exploited for further optimization, see below.
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maximum uncertainty in the coprime factors for which
the controller is stabilizing.

Lemma 3 (McFarlane & Glover, 1990; Dullerud & Pa-
ganini, 2000) If controller K stabilizes G = NM−1,
where (M, N) is normalized RCF of G, then K stabilizes

G4 = (N + 4N )(M + 4M )−1 for all
[4N

4M

]
∈ RH∞

and
∥∥∥
[4N

4M

]∥∥∥
∞
≤ ε iff

∥∥∥∥
[

G
I

]
(I −KG)−1

[
K I

]∥∥∥∥
−1

∞
> ε.

The accuracy of approximation in the normalized co-
prime factor model reduction is usually chosen in re-
gard to a certain closed loop stability consideration, in-
voking Lemma 3. For instance, one could use this pro-
cedure to design reduced-order stabilizing controllers
for a high order system in one of two ways (see Mc-
Farlane & Glover, 1990): firstly, reduce the plant, de-
sign the corresponding low-order controller to minimize∥∥∥∥
[

G
I

]
(I −KG)−1

[
K I

]∥∥∥∥
∞

in Lemma 3, and check if the

stability margin it gives allows one to ensure stability of
the original plant. Otherwise iterate; secondly, design a
full-order controller, find its stability margin, and then
reduce the controller’s coprime factors to an accuracy al-
lowed by the margin. We remark as well that this robust-
ness property is related to the fact that right coprime
factors generate the graph of the system (i.e. the set of
input-output pairs in L2 space), and (see e.g. Georgiou
& Smith, 1990; Vinnicombe, 1993) approximating such
graphs is key to preserving stability.

3 LMI-Based Algorithm for Structured Co-
prime Factor Model Reduction

We want to impose structure in an approximation
method such as normalized coprime factor reduction; as
explained in the introduction, we can preserve the par-
tition of system states by imposing the structure Gs on
the generalized controllability and observability grami-
ans of the plant RCF. However we also want to preserve
decoupled inputs and outputs; looking closely at nor-
malized coprime factor reduction, we see that unless
the feedback F for the normalized RCF is decentralized
(block-diagonal) the input-output structure will not
remain decoupled between subsystems. To impose this
decentralization, we need a generalization of normalized
RCFs which will allow more flexibility, but at the same
time approximate the normalization requirement. The
main idea of this paper is to work with LMI relaxations
of the LQ Riccati equation used for finding normalized
RCFs. One type of relaxation yields expansive factoriza-
tions (defined below), which is attractive since one can
generalize the robustness results, however stability of
the factorization is not automatically imposed, and thus
the overall problem becomes non-convex. The opposite
relaxation, contractive factorization, has more attrac-
tive computational properties, but then a heuristic is

required to induce approximate normalization. The two
approaches are now discussed, and we begin by defining
an expansive RCF of an LTI system.

Definition 4 A RCF of G = NM−1 with N, M ∈ RH∞ is
expansive if N(jω)∗N(jω) + M(jω)∗M(jω) ≥ I, ∀ω.

From the above definition it is routinely shown that the
sufficiency part of Lemma 3 still holds for an expansive
factorization, consequently a stability margin can also
be predetermined; this is the main motivation for con-
sidering expansive factorizations. For related work in a
multi-dimensional setting, see Beck & Bendottii (1997).
The following theorem indicates a procedure to seek ex-
pansive factorizations. The proof is very similar to the
one for contractive factorizations, covered below, and
hence is omitted (it can be found in Li & Paganini 2002).

Theorem 5 Given G(s) =
[

A B
C D

]
, let R = I + D∗D,

S = I + DD∗, and Xe satisfy the LMI
[

Xe(A−BR−1D∗C) + (A−BR−1D∗C)∗Xe + C∗S−1C XeB
B∗Xe R

]

≥ 0. (4)

Also let Fe = −R−1(B∗Xe + D∗C) and

U(s) =

[
N(s)
M(s)

]
=




A + BFe BR−
1
2

C + DFe

Fe

DR−
1
2

R−
1
2


 .

Then G(s) = N(s)M(s)−1 and U(jω)∗U(jω) ≥ I for
all jω /∈ eig(A + BFe).

Note that Theorem 5 does not guarantee the stability
of A + BFe, therefore (M,N) is so far not yet an ex-
pansive factorization by Definition 4. Moreover, we do
not only want stability but something stronger: namely,
the coprime factorization must admit structured gener-
alized controllability and observability gramians. More
precisely, the condition

(A−BR−1(B∗Xe+D∗C))Ye+Ye(A−BR−1(B∗Xe+D∗C))∗ < 0
(5)

should admit a structured solution Ye ∈ Gs.

Unfortunately, the two conditions (4-5) are not jointly
convex in Xe, Ye (they are a BMI), and so we do not
have a tractable method to determine conclusively its
feasibility. In Li & Paganini (2002) we used a two-step
procedure to seek solutions for it: first, use a heuristic
to make the solution Xe of (4) as close to the stabilizing
solution of (3) as possible, and then check for feasibility
of (5) as an LMI in Ye. The behavior of this heuristic
method will be demonstrated in an example in Section 4.

We turn now to the opposite relaxation to the normal-
ization requirement: namely, using contractive RCFs.

Definition 6 A RCF of G = NM−1 with N, M ∈ RH∞ is
contractive if N(jω)∗N(jω) + M(jω)∗M(jω) ≤ I, ∀ω.
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Lemma 7 Given G(s) =
[

A B
C D

]
, X satisfies A∗X +

XA+C∗C < 0 and C∗D+XB = 0, then G(jω)∗G(jω) ≤
D∗D for all jω /∈ eig(A).

PROOF. Let G̃ (s) =
[
−A∗ −C∗
B∗ D∗

]
, then G̃ (jω) =

G(jω)∗ for all jω /∈ eig(A). We obtain

G̃ (s)G(s) =

[ −A∗ −C∗C
0 A

−C∗D
B

B∗ D∗C D∗D

]
.

Let Q = A∗X +XA+C∗C < 0, and introduce the state
transformation T =

[
I −X
0 I

]
which leads to

G̃ (s)G(s) =−B∗(sI + A∗)−1Q(sI −A)−1B + D∗D

by using C∗D + XB = 0. Let s = jω, we get

G(jω)∗G(jω) = [(jωI −A)−1B]∗Q[(jωI −A)−1B] + D∗D
≤D∗D ∀jω /∈ eig(A).

We now state the convex condition to search for contrac-
tive factorizations (similar conditions appear in Wood,
Goddard, & Glover 1996; El-Zobaidi & Jaimoukha 1998
in the context of LPV systems).

Theorem 8 Given G(s) =
[

A B
C D

]
, let R = I + D∗D,

S = I + DD∗, and X̄c > 0 satisfy[
(A−BR−1D∗C)X̄c + X̄c(A−BR−1D∗C)∗ −BR−1B∗ X̄cC∗

CX̄c −S

]

< 0. (6)

Also let Fc = −R−1(B∗X̄−1
c + D∗C) and

U(s) =
[

N(s)
M(s)

]
=




A + BFc BR−
1
2

C + DFc

Fc

DR−
1
2

R−
1
2


 (7)

then (N(s),M(s)) is a contractive RCF of G(s).

PROOF. By Schur complement and changing variable
with Xc = X̄−1

c , (6) is equivalent to

Xc(A−BR−1D∗C) + (A−BR−1D∗C)∗Xc

−XcBR−1B∗Xc + C∗S−1C < 0 (8)

which leads to

Xc(A + BFc) + (A + BFc)
∗Xc +

(
C + DFc

Fc

)∗ (
C + DFc

Fc

)
< 0

(9)
Thus A + BFc is Hurwitz. Notice that

(
C + DFc

Fc

)∗(
DR−

1
2

R−
1
2

)
+ XcBR−

1
2 = 0,

by Lemma 7, U(jω)∗U(jω) ≤ I, ∀jω /∈ eig(A + BFc).

Note that Theorem 8 guarantees the stability of A +
BFc, therefore no other restriction is needed as in the
expansive method. So if (6) is feasible with the addi-
tional restriction X̄c ∈ Gs, this already produces a con-
tractive factorization which preserves the input-output

structure, and which will admit, furthermore, general-
ized gramians with the correct structure. Indeed, writing
the Lyapunov inequalities for the contractive factoriza-
tion U(s) in the unknowns Pc, Qc, we have:

(A + BFc)Pc + Pc(A + BFc)∗ + BR−1B∗ < 0 (10a)

(A + BFc)
∗Qc + Qc(A + BFc) +

(
C + DFc

Fc

)∗ (
C + DFc

Fc

)
< 0

(10b)

The feasibility of (10b) follows directly from (9) by let-
ting Qc = Xc, implying A + BFc has the necessary sta-
bility to allow for structured generalized gramians, and
therefore (10a) will be feasible as well. So, provided (6)
is feasible, we can proceed with our structured method.

What we give up in this version are the robustness guar-
antees of the normalized (or expansive) method; in fact,
if we want a robustness theorem in this case it should be
based on a certain level of “γ-expansiveness”, as in

I ≥ N(jω)∗N(jω) + M(jω)∗M(jω) ≥ γ2I (11)

Since such a condition is difficult to impose, we will in-
stead use a heuristic to try to make our contractive fac-
torization approach the normalized one. To explore this,
we first review the relation between Xc in (8) and the
stabilizing solution of the control Riccati equation.

Lemma 9 Let Xs be denoted the stabilizing solution of
(3) and Xc > 0 satisfy (8), then Xc > Xs.

PROOF. Subtract (3) from (8),

(Xc −Xs)(A + BFc) + (A + BFc)∗(Xc −Xs)
< −(XsB −XcB)R−1(XsB −XcB)∗ ≤ 0.

Since A + BFc is Hurwitz from Theorem 8, Xc > Xs.

Based on this condition, we see that in the absence of
structure, a normalized coprime factorization could be
obtained by minimizing Xc subject to (8), or equiva-
lently minimizing X̄−1

c subject to (6). Thus a possible
heuristic to seek approximate normalization in the pres-
ence of structure is the semidefinite program

min trace(Z) with X̄c ∈ Gs

subject to (6) and
[

X̄c I
I Z

]
> 0 (12)

After X̄c is found, its inverse Xc is a generalized observ-
ability gramian Qc of the coprime factors. To obtain Pc,
one possibility would be to solve (10a) in a second step
by minimizing its trace to approximate the true gramian.

An alternative, in which both generalized gramians can
be found in one step, is based on considering the dual,
filter Riccati inequality

(A−BR−1D∗C)Yc + Yc(A−BR−1D∗C)∗

−YcC
∗S−1CYc + BR−1B∗ < 0. (13)
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...
M1 M2 M8 M9

u1 u2 u8 u9

x 1

y = x1 1

x 2

y = x2 2

x 8

y = x8 8

x 9

y = x9 9

K 1 K 2 K 3 K 8 K 9 K 10

Fig. 1. 9-mass spring system.

The following lemma (El-Zobaidi & Jaimoukha, 1998)
shows the connection between the generalized gramians
of the contractive factorization and the solutions of the
Riccati inequalities (8), (13).

Lemma 10 Let U(s) represent the contractive RCF of
G(s) =

[
A B
C D

]
, given by (7). Let Xc > 0 solve (8)

and Yc > 0 solve (13), then Pc = Yc(I + XcYc)−1 and
Qc = Xc are one pair of generalized controllability and
observability gramians for U(s).

A suitable Yc ∈ Gs could be found separately, based on
[

Ȳc(A−BR−1D∗C) + (A−BR−1D∗C)∗Ȳc − C∗S−1C ȲcB
B∗Ȳc −R

]
< 0

(14)

with Ȳc = Y −1
c , equivalent to (13), and then used to

construct Pc. Any solution of (14) will do, but once more
it is natural here to solve the following problem

min trace(W ) with Ȳc ∈ Gs

subject to (14) and
[

Ȳc I
I W

]
> 0 (15)

since in the absence of a structure restriction (15) and
(12) would lead to the actual gramians of the contractive
factorization. We now summarize the overall procedure.

Procedure 11 (Contractive RCF Model Reduction)

(1) Solve the semidefinite programs (12) and (15).
(2) Write U of degree n, with the form of (7).
(3) Let Pc = diag(P1, P2) = (Ȳc + X̄−1

c )−1 and Qc =
diag(Q1, Q2) = X̄−1

c be generalized gramians of U ,
balance (Pi, Qi) by Ti, i=1,2, to get the transforma-
tion matrix T = diag(T1, T2).

(4) The new balanced system is Unew =
[

Anew Bnew

Cnew Dnew

]

with balanced generalized gramian Σ = diag(Σ1, Σ2),
where Σi = diag(Σi1,Σi2). The sub-matrices of
Anew, Bnew, Cnew corresponding to Σi2 are trun-
cated to obtain the reduced order approximation
Ur =

[
Nr
Mr

]
of degree k < n.

(5) Form the reduced plant Gr = NrM
−1
r of degree k.

4 Example

We consider the 9-mass physical system shown in Fig. 1.
The states are the position and velocity of each mass;
there is a force input and a position output at each mass,

and some friction with the ground. Specifically, the dy-
namics of each mass Mi, i = 1, . . . , 9, satisfies

ẋi = vi,

Miv̇i = Ki(xi−1 − xi) + Ki+1(xi+1 − xi)− divi + ui;

where x0 = x10 = 0. Thus, we see this system satis-
fies our topological assumptions: interconnection of sub-
systems with local inputs and outputs, only interacting
with the neighbors through their state variables.

All masses are taken to be of unit size Mi = 1, and
the damping parameter is chosen to be di = 0.1
for all masses, but we impose considerable differ-
ences on the spring parameters, by choosing K =
[50, 40, 3, 2, 1, 2, 3, 4, 5, 6]. Intuitively, this suggests a
natural way to divide the system into two subsystems,
by partitioning through the weakest (5th) spring. We
seek to reduce this model while preserving this partition.

Numerical solutions were found using the LMI control
toolbox in Matlab. First we attempt to work with the
plant directly, without coprime factorization, and seek
structured generalized gramians for it, satisfying (2). We
find, however, that these LMIs are infeasible; in fact, only
for a much more highly damped system (d = 0.7) will (2)
become feasible. In our lightly damped case, this leads
us to consider the coprime factor methods: we tried both
the expansive and contractive factorization approaches.

For the expansive case, using our heuristic from Li &
Paganini (2002) to solve the BMIs (4-5), leads to the
generalized Hankel singular values
Σe

1 = diag[35.13 34.98 7.45 6.77 0.61 0.59 0.39 0.39],
Σe

2 = diag [34.75 34.53 11.18 5.97 4.67 4.59 0.99 0.96 0.63 0.61].

For the contractive method, we get
Σc

1 = diag[0.93 0.80 0.77 0.71 0.55 0.53 0.37 0.37],
Σc

2 = diag[0.92 0.83 0.77 0.73 0.66 0.62 0.58 0.58 0.56 0.55].

Reducing 2 states from the first subsystem, leads
to the following error bounds for each method:∥∥∥∥
[

Ne

Me

]
−

[
Ne

r
Me

r

]∥∥∥∥
∞

= 0.7374,

∥∥∥∥
[

Nc

Mc

]
−

[
Nc

r
Mc

r

]∥∥∥∥
∞

= 0.7372.

For comparison purposes, we considered doing stan-
dard normalized coprime factorization model reduction,
reducing 2 states without attention to preserving the
topological association of the states. The resulting er-
ror in the coprime factors only decreases slightly, to∥∥∥
[

N
M

]
−

[
Nr

Mr

]∥∥∥
∞

=0.7371. We see that our methods

yield comparable errors in the coprime factor sense, but
in contrast with the standard coprime factor model re-
duction method, we are able to preserve the topological
structure in terms of the partition of the system states.

As a final point, since as remarked, contractive factor-
izations do not satisfy a robustness theorem, it is useful
to compare the level of ‘γ-expansiveness” (as in (11))
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achieved by our contractive factorization. The result, ob-
tained through a frequency sweep, is γ = 0.49, which
gives robust stability for controllers that satisfy a con-
dition approximately twice as tight as that in Lemma 3.

5 Conclusions

We have proposed a series of methods for model reduc-
tion aimed at preserving underlying topological struc-
ture of the plant states, all of which are based on im-
posing block-diagonal structure to generalized gramians.
We have shown how adopting a coprime factor approach
greatly extends the range of applicability of this method;
to ensure the coprime factorization itself is structure-
preserving we use LMI relaxations of the LQ Riccati
equation that gives normalized RCFs. Different heuris-
tics are employed to attempt to obtain approximate nor-
malization in this context. We remark that frequency-
weighted extensions are also available for this method;
for details see Li & Paganini (2003).
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