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Some borrowing from calculus
For deriving the theoretical model of the CPM’s oscillation 

in the Helmholtz field, we assume that the magnetic field B 
(the vector sum of the geomagnetic field Be  and magnetic 
field of the Helmholtz coil Bh) is uniform within the dimen-
sion of the CPM, which is a reasonable assumption consider-
ing the high magnetic flux uniformity at the center of the coil 
and the dimensions of Earth and that of the CPM.

We lay out our coordinate system for the vector proper-
ties such that the Helmholtz field Bh is in the y-direction, the 
horizontal component of the geomagnetic field Be-hor in the 
opposite y-direction, and the vertical component of geomag-
netic field Be-ver in the z-direction, so that B is in the yz-plane 
as shown in Fig. 1.

When the CPM is at rest, its magnetic moment m aligns 
with the direction of B. An oscillation about its center of mass 
in the yz-plane causes the magnetic moment m to deviate in 
its direction relative to B by an angle θ (Fig. 1). 

The torque that the CPM is experiencing during its oscilla-
tory motion is given by  = m B .11 For small oscillations  
(θ < 10o) in the yz-plane, we may approximate the torque by

|  | = |m | ∙ |B | ∙ sin θ ≈ |m | ∙ |B | ∙ θ .                                       (1)

On the other hand, from the mechanics for rotating bodies we 
know that the torque is related to the angular acceleration θ

..
 

by

|  | = I(θ
..

 ),     
                                                                                   

   (2)

with I the moment of inertia of a solid cylinder,11  

                                                          (3)

and m0 the CPM mass, R its radius, and l its length. With Eqs. 
(1) and (2) we are now in a position to derive the cylinder’s 
equation of motion,
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The directional feature of Earth’s geomagnetic field has 
been contributing to the technological development 
and prosperity of humankind since the invention of 

the magnetic compass navigation centuries ago. Today, for 
instance, magnetoresistance sensors are commonly used in 
nanosatellites and unmanned aerial vehicles for high accuracy 
geomagnetic field-based navigation and mineral survey ex-
ploration.1-4 

In a first-year undergraduate physics laboratory, the 
measurement of the local geomagnetic field often serves to 
illustrate the vector and field nature of an original physics 
phenomenon, albeit often carried out in a more qualitative 
way due to the limited accuracy of available instrumentation. 
In this paper, we describe a simple and yet highly accurate 
method to determine the local geomagnetic field and its com-
ponents. It provides an excellent opportunity for students to 
apply some basic calculus while also acquiring some data pro-
cessing skills and glimpses of real scientific working.

A common method to investigate the magnetic field di-
rection and its magnitude is to place a compass needle in the 
center of a solenoid (e.g., Helmholtz coil) that is oriented such 
that it generates an east-west oriented magnetic field.6-9 The 
tangent value of the deflection angle of the compass needle 
relative to the direction of north-south then represents the ra-
tio of the known solenoid field to the horizontal component of 
the local geomagnetic field. The horizontal component of the 
local magnetic field can thus be calculated. The vertical field 
component can be obtained by using a vertically aligned com-
pass (dip needle). This method is quite intuitive as it can be 
easily visualized and hence is often illustrated in textbooks in 
this way. The accuracy of the geomagnetic field deflection an-
gle reading though is limited by the set of scales on the com-
pass with a typically error margin of about 10%.10 A common, 
somewhat more sophisticated approach is to measure the os-
cillation of a cylindrical magnet polarized along its major axis 
as it reacts to the torque caused by the local geomagnetic field. 
This particular method neglects the vertical component of the 
field, resulting in a similar 10% uncertainty for the magnitude 
and direction of the local geomagnetic field.10

In this paper, we present a novel experimental approach 
to determine the local geomagnetic field based on equipment 
readily available in a first-year undergraduate physics pro-
gram. The accuracy of the geomagnetic field measurement 
can be improved by using a cylindrical permanent magnet 
(CPM) that is placed at the center of a Helmholtz coil and 
measuring its periodical oscillation within the vertical plane 
containing the coil’s axis (Fig. 1).

A simple theoretical model of the CPM’s oscillation can be 
developed from first principles, and a numerical fit to mea-
sured oscillation periods then reveals accurate values for the 
local geomagnetic field and its components.

Fig. 1. Angular deviation  of the CPM magnetic moment m from 
the static magnetic field B in the yz-plane.
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we used a common low-cost consumer camera (SONY DSC-
TX5, 60 fps) to video record the CPM’s oscillation. The cam-
era is placed such that it faces the center of the Helmholtz coil 
(Figs. 2 and 3). The oscillation of the CPM is recorded once its 
initial amplitude has receded such that the oscillation angle 
with respect to the vertical is within the range of our theoreti-
cal small-angle approximation (<10o).

Figure 4(a) shows a video frame where the CPM is just 
about to swing through its half-period point. Figure 4(b) 
shows a frame where the end of a completed cycle has been 
reached, hence providing a simple way to measure oscillation 
periods. 

For each Helmholtz excitation current, we determined the 
average oscillation period T from averaging over 50 oscilla-
tions. In this process, we neglected all non-conservative forc-
es, which we assumed to be negligible.

The compactness of the experimental setup (Fig. 2) makes 

Iθ
..

 – |m | ∙ |B| ∙ θ = 0,                                                                       (4)

which is the familiar simple harmonic motion with angular 
frequency and T the period of 
oscillation. The magnetic field B may be written in terms of its 
components,

B = Be  + Bh = (|Bh | – |Be-hor |) j + |Be-ver | k  ,

with j and k the unit vectors in y- and z-direction, respectively. 
The magnitude of B is then

                         
 (5)

where I0 is the excitation current in the Helmholtz coil and K 
a scalar parameter specifying the Helmholtz coil’s sensitivity, 
i.e., the ratio of the Helmholtz magnetic field to its excitation 
current. With Eq. (5) and the oscillation period T related to 
the magnetic field |B | through the angular frequency , we 
are now in the position to link the period T to the geomagnet-
ic field vectors and the applied Helmholtz current I0,

     
(6)

The relationship derived here has only two variables, the pe-
riod T and the applied Helmholtz current I0, which makes it 
an ideal base for an experimental investigation into the local 
geomagnetic field. We can measure the period of the CPM 
oscillation as function of the applied Helmholtz current I0, 
graph the resultant measurements in a T -4 vs. I0 plot, and then 
determine the constant coefficients Be and Be-hor from a best 
fit to the resulting T -4 period function.

Assembling and conducting the experiment
The essential pieces of this experiment are the Helm-

holtz coil, a power source, a CPM, and a common consumer 
camera for recording the CPM oscillation (Figs. 2 and 3). 
Ferromagnetic objects and electronic devices should be kept 
away from the experimental setup. A compass is used to line 
up the Helmholtz coil with Earth’s magnetic north-south di-
rection. The dimensions of the CPM used in our experiment 
were measured with a caliper; l = 24.000 ± 0.006 mm and its 
cross-section diameter d = 6.000 ± 0.001 mm. Its mass was 
measured on a scale, m0 = 4.800 ± 0.056 g. This allows us to 
calculate the CPM’s inertia from Eq. (3), I = 2.412 102 g∙mm2. 
The Helmholtz coil sensitivity parameter, K = 4.08 10-3 T/A, 
is provided with the manufacturer’s specifications. 

The CPM is suspended at the center of the Helmholtz coil 
by a fine horizontal thread (we used thin cotton thread) (Figs. 
3 and 4). An initial, small change in the Helmholtz current I0 
triggers a noticeable oscillation of the CPM about the hori-
zontal thread axis. Equation (6) provided us with the base for 
our experimental investigation, i.e., to measure the CPM’s 
oscillation period for a range of Helmholtz trigger currents I0 
(1 mA – 14 mA). 

For an accurate measurement of the oscillation period, 

Fig. 2. Experimental setup with Helmholtz coil, cam-
era, and power supply.

(a) (b)

Fig. 3. Schematics of the experimental setup. (a) Front view (zy).  
(b) Side view (zx).

Fig. 4. Camera video frames of oscillating CPM. Half period                    
(left) and period completed (right).
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At this stage, we have completed three typical steps in a sci-
entific investigation, finding an appropriate theoretical frame-
work that applies to what we wish to measure, developing an 
experiment and experimental procedure for the measure-
ment, and establishing a protocol for how we wish to evaluate 
our measurements. How do we know that our measurements 
of the local geomagnetic field are accurate?

We were fortunate that one of our more advanced student 
laboratories at BIT had a commercial high-precision geo-
magnetic magnetic field-measuring instrument (ZKY-DCC, 
Beijing Zhuozhang Electronic Science & Technology Co. Ltd.; 
Fig. 6) that we could use to compare our results with. Our re-
sults for the magnitude of the local geomagnetic field deviate 
by less than 2.5% from the measurements taken with the pro-
fessional instrument, and respective geomagnetic inclinations 

 deviate by less than 1% (Table I). Our measured magnetic 
fields are all slightly larger than the ones measured with the 
commercial instrument. For a simple Helmholtz coil as used 
here, the sensitivity parameter K is often derived from an av-
erage coil radius rather than a precision field measurement. 
This may result in a larger than actual K value, which in turn 
causes a scaling of field values.

it easy for it to be used in extended student projects and at 
different locations. Here, we took measurements at three 
different locations: a dedicated undergraduate physics labo-
ratory (L), a teaching building (T) about 1 km away from the 
laboratory, and a sports field (F) about 0.7 km away from the 
laboratory. This allows us to observe small variations in the 
local geomagnetic field at different locations.

Pulling the strings together
Once all measurements have been recorded, we can set 

out to finally determine the local geomagnetic field strength 
and its component by fitting the coefficients in the quadratic 
function in Eq. (6) to the quadratic function of measured os-
cillation periods (Fig. 5).

The best fits for our three locations are (where the currents 
are measured in mA and the period is measured in seconds):

       (7)

The fit coefficients can now be related to the respective mag-
netic moments and fields in Eq. (6):

                   
  (8)

            
 (9)

                                    (10)

The first, second, and third rows on the right-hand side of 
Eqs. (8)-(10) correspond to the measurements in the sports 
field, teaching building, and the laboratory, respectively. It is 
worthwhile to mention that this method also measures the 
magnetic moment |m|, which can be determined from the I2

0 
coefficient of the fit in Eq. (7).

 With the CPM’s moment of inertia I calculated from Eq. 
(3) and the magnetic moment |m | from Eq. (8), it is now a 
simple step to calculate the magnitudes of Earth’s magnetic 
field |Be |, its horizontal |Be-ver | and vertical |Be-hor | compo-
nents, and respective geomagnetic field inclinations . Table 
I shows the magnitudes of the local geomagnetic field and 
its components derived from this simple experiment with 
the support of some basic calculus applied to our theoretical 
model. We also found small variations in field magnitudes 
and inclinations even for locations that were only short dis-
tances apart. 

Fig. 5. Measured left-hand side of Eq. (9), i.e., T –4 (fitted to mea-
sured experimental values for various Helmholtz excitation cur-
rents I0).

Fig. 6. ZKY-DCC Geomagnetic Field Instrument.
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portunity for lateral as well as project-based 
collaborative teaching and learning at junior 
undergraduate level.
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Learning experience
We developed a novel approach to embed basic elements 

of calculus in the experimental measurement of the local geo-
magnetic field, which is based on commonly available first-
year physics laboratory equipment. The experimental setup 
itself is easily assembled with a cylindrical permanent magnet 
suspended at the center of a Helmholtz coil and its oscillation 
recorded with a common consumer camera or mobile phone. 
The small number of components allows the local geomag-
netic field measurement to easily be carried out at different 
locations, including outdoor field locations. 

The method presented here includes a theoretical model 
that combines multiple physics concepts such as rotational 
kinematics and inertia, classical dynamics, and electromag-
netics, which together with the experimental measurement 
allow us to accurately determine all components of the local 
geomagnetic field. 

The presented approach engages students in an authentic 
scientific practice of physical modeling that is nontrivial, goes 
beyond textbook models and knowledge, and yet is entirely 
based on first-year fundamental physics. The experiment 
itself is simple to conduct, requiring only very basic experi-
mental skills such as setting an electric current and observing 
the period of oscillation of the CPM. This simplicity enables 
students to conduct the experiment independently with little 
supervision, even outside the classroom environment. The 
setting up of the experiments takes about 10 minutes, the 
measurements take about 20 minutes per location, and the 
post-experiment video analysis takes another 20 minutes per 
location set. 

The evaluation of the experimental data requires some 
mathematical modeling, i.e., fitting of a nonlinear function 
and respective error analysis. This can be done with a com-
mon data analysis software, or as part of a larger student 
project or teaching module across a physics and mathematics 
course.

The presented student experiment shows how the appli-
cation of a sophisticated physical model based on a simple 
experimental setup can produce very accurate outcomes for 
the measurement of a nontrivial phenomenon, here Earth’s 
local geomagnetic field components and its inclination. With 
the low-level experimental approach taken here, we found the 
measurements highly reproducible and of high accuracy even 
when compared to a sophisticated commercial magnetic field 
measuring instrument. The simplicity of the experimental 
approach applied to a nontrivial phenomenon offers an op-

|Be-hor| |Be| |Be|ZKY        ZKY

F 29.50±0.04 56.30±0.03 55.12±0.08 58.399±0.012 58.439±0.020

T 29.56±0.17 57.47±0.10 56.19±0.14 59.038±0.022 59.144±0.020

L 29.64±0.24 58.42±0.35 57.11±0.20 59.507±0.015 59.558±0.025

Table I. Magnitudes of local magnetic fields and respective inclinations from mea-
surements in the field (F), teaching building (T), and laboratory class (L) compared 
to measurements with commercial purpose built ZKY-DCC instrument (ZKY sub-
scripts). Magnetic fields in units of μT, angles in angle degrees.


