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Abstract: In industrial applications, the processes of optimal sequential decision making are naturally
formulated and optimized within a standard setting of Markov decision theory. In practice, however,
decisions must be made under incomplete and uncertain information about parameters and transition
probabilities. This situation occurs when a system may suffer a regime switch changing not only the
transition probabilities but also the control costs. After such an event, the effect of the actions may
turn to the opposite, meaning that all strategies must be revised. Due to practical importance of this
problem, a variety of methods has been suggested, ranging from incorporating regime switches into
Markov dynamics to numerous concepts addressing model uncertainty. In this work, we suggest
a pragmatic and practical approach using a natural re-formulation of this problem as a so-called
convex switching system, we make efficient numerical algorithms applicable.
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1. Introduction

Decision-theoretic planning is naturally formulated and solved using Markov Decision
Processes (MDPs, see [1]). This theory provides a fundamental and intuitive formalism
not only for sequential decision optimization, but also for diverse learning problems in
stochastic domains. A typical goal in such framework is to model an environment as a set
of states and actions that can be performed to control these states. Thereby, the goal is to
drive the system maximizing specific performance criteria.

The methodologies of MDPs have been successfully applied to (stochastic) planning,
learning, robot control, and game playing problems. In fact, MDPs nowadays provide a
standard toolbox for learning techniques in sequential decision making. To explain our
contribution to this traditional and widespread area, let us consider a simplified example of
motion control. Suppose that a robot is moving in two horizontal directions on a rectangular
grid whose cells are identified with the states of the system. At any time step, there are
four actions to guide the robot from the current position to one of the neighboring cells.
These actions are UP, DOWN, RIGHT, LEFT, which command a move to the corresponding
direction. However, the success of these actions is uncertain and is state-dependent: For
instance, a command (UP) may not always cause a transition to the intended (upper)
cell, particularly if the robot is at the (upper) boundary. The controller aims to reach a
pre-specified target cell at minimal total costs. These costs are accumulated each time
when a control is applied and depend on the current position—the cell currently occupied—
accounting for obstacles and other adverse circumstances that may be encountered at some
locations. In mathematical terms, such a motion is determined by a so-called controlled
discrete-time discrete-space Markov chain. In a more realistic situation, the environment
is dynamic: The target can suddenly change its location, or navigation through certain
cells can become more difficult, changing the control costs and transitions. In principle,
such problems can be addressed in terms of the so-called partially observable Markov decision
processes (POMDPs, see [2]), but this approach may turn out to be cumbersome due its
higher complexity than that of ordinary MDPs. Instead, we suggest a technique which
overcomes this difficulty by a natural and direct modeling in terms of a finite number
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of Markov decision processes (sharing the same set of sets and actions), each active in a
specific regime, when the regime changes, another Markov decision processes takes over.
Thereby, the regime is not directly observable, thus the controller must guess which of those
Markov decision processes is valid at the current decision time: Determining an optimal
control becomes challenging due to regime switches. Surprisingly, one can re-formulate
such control problems as a convex switching system [3], in order to take advantage from
efficient numerical schemes and advanced error control. As a result, we obtain sound
algorithms for solutions of regime-modulated Markov decision problems.

This work models random environment as selection of a finite-number ordinary
Markov Decision Processes which are mixed by uncertain observations. On this account, we
follow a traditional path facing well-known difficulties originated from high-dimensional
state spaces and all problems from incorporating an information flow into a centralized
decision process. However, let us emphasize that there is an approach which aims to
bypass some of the problems through an alternative modeling. Namely, a game-theoretic
framework has attracted significant attention (see [4,5]) as an alternative to the traditional
centralized decision optimization within a random and dynamic environment. Here,
individual agents aiming at selfishly maximizing their own wealth are acting in a game
whose equilibrium replaces a centralized decision optimization. In such a context, the
process of gathering and utilizing information is easier to model and manage since the
individual strategy optimization is simpler and more efficient in collecting and processing
all relevant information which may be private, noisy and highly dispersed.

Before we turn to technical details, let us we summarize in the notations and abbrevia-
tions used in this work Table 1.

Table 1. Notations and measurement units.

stochastic kernel Ka
t vector with unit entries ~1 volume cubic meter

controlled probability Px,π l1-norm ‖ · ‖ area hectare
controlled expectation Ex,π maximum

∨
currency USD

Bellman operator Tt binding by row t costs USD per hectare

2. Discrete-Time Stochastic Control

First, let us review a finite-horizon control theory. Consider a random dynamics
within a time horizon {0, 1, . . . , T} ⊂ N whose state x evolves in a state space X (subset of
a Euclidean space) and is controlled by actions a from a finite action set A. The mapping
πt : X 7→ A, describing the action πt(x) that the controller takes at time t = 0, . . . T in the
situation x ∈ X is referred to as decision rule. A sequence of decision rules π = (πt)

T−1
t=0 is

called a policy. Given a family of

stochastic kernels Ka
t (x, dx′), t = 0, . . . , T − 1 a ∈ A on X ,

there exists an appropriately constructed probability space which supports a stochastic
process (Xt)T

t=0 such that for each initial point x0 ∈ X and each policy π = (πt)
T−1
t=0 there

exists a measure Px0,π and such that

Px0,π(X0 = x0) = 1, Px0,π(Xt+1 ∈ B |X0, . . . , Xt) = Kπt(Xt)
t (Xt, B) (1)

holds for t = 0, . . . , T − 1 for each measurable B ⊂ X . Such a system is called controlled
Markovian evolution. The interpretation is that if at time t the process state is Xt and the
action πt(Xt) is applied, then the distribution Kπt(Xt)

t (Xt, ·) randomly changes the state
from Xt to Xt+1.

Stochastic kernels are equivalently described in terms of transition operators. The
transition operator, associated with the stochastic kernel Ka

t will be denoted by the same
letter, but it acts on functions v : X → R by

(Ka
t vs.)(x) =

∫
X

v(x′)Ka
t (x, dx′) x ∈ X , t = 0, . . . , T − 1 (2)
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whenever the above integrals are well-defined.
Having introduced such controlled Markovian dynamics, let us turn to control costs

now. Suppose that for each time t = 0, . . . , T − 1, we are given the t-step reward function
rt : X × A 7→ R where rt(x, a) represents the reward for applying an action a ∈ A when
the state of the system is x ∈ X at time t. At the end of the time horizon, at time T, it is
assumed that no action can be taken. Here, if the system is in a state x, a scrap value rT(x),
described by a pre-specified scrap function rT : X → R is collected. The expectation of the
cumulative reward from following a policy π is referred to as policy value:

vπ
0 (x) = Ex,π

(
T−1

∑
t=0

rt(Xt, πt(Xt)) + rT(XT)

)
, x ∈ X ,

where Ex,π denotes the expectation over the controlled Markov chain whose distribution is
defined by (1). For t = 0, . . . , T − 1, introduce the backward induction operator

T a
t v(x) = rt(x, a) +Ka

t v(x), x ∈ X , a ∈ A (3)

which acts on each measurable function v : X → R where Ka
t v is well-defined. The policy

value is obtained as a result of the recursive procedure

vπ
T = rT , vπ

t (x) = T π(x)
t vπ

t+1(x) x ∈ X , for t = T − 1, . . . , 0 (4)

which is referred to as the policy iteration. The value of a “best possible” policy is ad-
dressed using

v∗0(x) = sup
π

vπ
0 (x), x ∈ X , (5)

where π runs through the set of all policies, the function v∗0 is called the value function. The
goal of the optimal control is to find a policy π∗ = (π∗t )

T−1
t=0 where the above maximization

is attained:

vπ∗
0 (x) = v∗0(x) for each x ∈ X .

Such policy optimization is well-defined (see [6], p. 199). Thereby, the calculation of an
optimal policy π∗ is performed in the following framework: For t = 0, . . . , T− 1, introduce
the Bellman operator

Ttv(x) = max
a∈A

(rt(x, a) +Ka
t v(x)), x ∈ X (6)

which acts on each measurable function v : X → R where Ka
t v is well-defined for all a ∈ A.

Further, consider the Bellman recursion, (also called backward induction)

v∗T = rT , v∗t = Ttv∗t+1 for t = T − 1, . . . , 0. (7)

There solution (v∗t )
T
t=0 to the above Bellman recursion returns the value function v∗0 and

determines an optimal policy π∗ via

π∗t (x) = argmaxa∈A
(
rt(x, a) +Ka

t v∗t+1(x)
)
, x ∈ X , t = 0, . . . , T − 1. (8)

Remark 1. In practice, discounted versions the above stochastic control are popular. These are
obtained by replacing the stochastic kernel Ka

t by κKa
t in the backward induction where κ ∈ [0, 1] is

a discount factor. The advantage of this approach is that for long time horizons, the optimal policy
becomes stationary, provided that all rewards and transition kernels are time-independent.
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3. Markov Decisions under Partial Observation

In view of the general framework from Section 2, the classical Markov Decision
Processes (MDPs) are obtained by specifying controlled Markovian evolution (Xt)T

t=0 in
terms of assumptions on the state space and on the transition kernels. Here, the state space
is given by a finite set P such that states are driven in terms of

stochastic matrices (αa
p,p′)p,p′∈P, a ∈ A. (9)

indexed by a finite number of actions a ∈ A with the interpretation that αa
p,p′ ∈ [0, 1] stands

for the transition probability from p ∈ P to p′ ∈ P if the action a ∈ A was taken. In this
settings, the stochastic kernels Ka

t are acting functions v : P→ R by

Ka
t v(p) = ∑

p′∈P
αa

p,p′v(p′) p ∈ P, t = 0, . . . T − 1. (10)

There is no specific assumption on scrap and reward functions, they are given by following
mappings on the state space P:

p→ rT(p), (p, a) 7→ rt(p, a), t = 0, . . . , T − 1, a ∈ A. (11)

In this work, we consider control problems where a finite number of Markov decision
problems are involved, sharing the same state space: each is activated by a certain regime.
For this reason, we introduce a selection of MDPs indexed by a finite set S of regimes. Here,
we assume that stochastic matrices as in (9) and control costs as in (11) are now indexed
by S:

(αa
p,p′(s))p,p′∈P, p→ rT(p)(s),

(p, a) 7→ rt(p, a)(s), t = 0, . . . , T − 1,
a ∈ A, s ∈ S. (12)

Let us now consider decision making under incomplete information. Given family of
Markov decision problems as in (12), the controller deals with a dynamic mixture of these
problems in the sense that each of these MDPs becomes valid under a certain regime which
changes exogenously in an uncontrolled way and is not observed directly. More precisely,
interpreting each probability distribution ŝ = (ŝ(s))s∈S on S as controllers believe about
the current regime, we introduce the following convex mixtures of the ingredients (12):

αa
p,p′(ŝ) = (∑s∈S ŝ(s)αa

p,p′(s))p,p′∈P p→ ∑s∈S ŝ(s)rT(p)(s),
(p, a) 7→ ∑s∈S ŝ(s)rt(p, a)(s), t = 0, . . . , T − 1,

a ∈ A, ŝ ∈ Ŝ. (13)

where Ŝ stands for the simplex of all probability distributions on S. That is, the transition
kernels and the control costs are now modulated by an external variable ŝ ∈ Ŝ which
represents the evolution of controller’s believe about the current situation. To describe its
dynamics, we suppose that the information is updated dynamically through the observa-
tion of another process (yt)T

t=1 which follows the so-called hidden Markov dynamics. Let
us introduce this concept before we finish the definition of our regime-changing Markov
decision problem.

Consider a time-homogeneous Markov chain (st)T
t=0 evolving on a

finite space S which is identified with the set of orthonormal basis
vectors of a finite-dimensional Euclidean space.

(14)

Assume that this Markov chain is governed by the stochastic matrix Γ = (Γs,s′)s,s′∈S. It is
supposed that the evolution of (st)T

t=0 is unobservable, representing a hidden regime. The
available information is realized by another stochastic process (yt)T

t=0 taking values in a
space Y, such that at any time t, the distribution of the next observation yt+1 depends
on the past {y0, . . . , yt} through the recent state st only. More precisely, we suppose that
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((st, yt))T
t=0 follows a Markov process whose transition operators are acting on functions

v : S×Y → R as
(s, y) 7→ ∑

s′∈S

∫
Y

v(s′, y′)Γs,s′µs(dy′). (15)

Here, (µs)s∈S stands for the family of distributions for the next-time observation of yt+1,
conditioned on st = s ∈ S. For each s ∈ S, we assume that the distribution µs is absolutely
continuous with respect to a reference measure µ on Y and introduce the densities

νs(y) =
dµs

dµ
(y) for y ∈ Y and s ∈ S.

Since the state evolution (st)T
t=0 is not available, one must rely on the believe distribution ŝt

of the state st, conditioned on the observations y0, . . . , yt. With this, the hidden state estimates
(ŝt)T

t=0 yield a process that takes values in the set Ŝ of all probability measures on S which
is identified with the convex hull of S due to (14). It turns out that although the observation
process (yt)T

t=0 is non-Markovian, it can be augmented by the believes process to obtain
(zt = (ŝt, yt))T

t=0 which follows a Markov process on the state space Z = Ŝ × Y. This
process is driven by the transition kernels acting on functions v : Ŝ×Y → R as

Ktv(ŝ, y) =
∫

Y
vs.

(
Γ>V(y′)ŝ
‖V(y′)ŝ‖ , y′

)
‖V(y′)ŝ‖µ(dy′), (ŝ, y) ∈ Ŝ×Y, (16)

for all t = 0, . . . T − 1. In this formula, V(y) stands for the diagonal matrix whose diagonal
elements are given by (νs(y))s∈S, y ∈ Y whereas ‖ · ‖ represents the usual l1 norm.

Remark 2. In the Formula (16) the quantity

ŝ(y′) :=
Γ>V(y′)ŝ
‖V(y′)ŝ‖ (17)

represents the updated believe state under the assumption that prior to the observation y′ ∈ Y, the
believe state was ŝ ∈ Ŝ. On this account, this vector must be an element of Ŝ, which is seen as
follows (the author would like to thank to anonymous referee for highlighting out this point): Having
observed that all entries of Γ>V(y′)ŝ and of V(y′)ŝ are non-negative (ensured by multiplication
of ŝ by matrices with non-negative entries), we have to verify that they sum up to one, thus (17)
represents a probability distribution on S. For this, we introduce a vector~1 = (1, 1, . . . , 1) of ones
with our believe state dimension, in order to verify that the scalar product is

~1> ŝ(y′) =
~1>Γ>V(y′)ŝ
‖V(y′)ŝ‖ =

~1>V(y′)ŝ
‖V(y′)ŝ‖ = 1

in other words, all entries of ŝ(y) sum up to one. Here, we have used that~1>Γ> =~1 since all rows
of stochastic matrix Γ are probability vector whose l1 norm is representable by a scalar product
with~1.

The optimal control for such modulated MDP is formulated in terms of the transitions
operators, rewards and scrap functions which we define now. With notations introduced
above, consider a state space X = P× Z with Z = Ŝ× Y. First, introduce a controlled
Markovian dynamics in terms of the transition operators acting on functions v : P× Z → R
as

Ka
t v(p, ŝ, y) = ∑

p′∈P
αa

p,p′(ŝ)
∫

Y
v

(
p′,

Γ>V(y′)ŝ
‖V(y′)ŝ‖ , y′

)
‖V(y′)ŝ‖µ(dy′) = Ka

t v(p, ŝ) (18)
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for all p ∈ P, (ŝ, y) ∈ Ŝ×Y, t = 0, . . . T − 1. This kernel describes the following evolution:
Based on the current situation (p, ŝ, y), a transition to the next decision state p′ ∈ P occurs
according to the mixture αa

p,p′(ŝ) of transition probabilities introduced in (13). Furthermore,
our believe state evolves due to the information update based on the new observations
y′, as described in (16). Obviously, this transformation does not depend on the decision
variable y ∈ Y , with abbreviation introduced by the last equality of (18). Finally, we
introduce the control costs that are expressed by scrap and reward functions in terms of
mixtures (13):

rT(p, ŝ, y) = ∑
s∈S

ŝ(s)rT(p)(s) = rT(p, ŝ), (19)

rt(p, ŝ, y, a) = ∑
s∈S

ŝ(s)rt(p, a)(s) = rt(p, ŝ, a), (20)

for t = 0, . . . , T − 1, a ∈ A, ŝ ∈ Ŝ, and y ∈ Y. Note that (18), (20) and (19) uniquely define
a sequential decision problem in terms of specific instances to controlled dynamics and
its control costs. In what follows, we show that this problem seamlessly falls under the
umbrella of a general scheme that allows an efficient numerical treatment.

4. Approximate Algorithmic Solutions

Although there are a number theoretical and computational methods to solve stochas-
tic control problems, many industrial applications exhibit complexity and size driving
numerical techniques to their computational limits. For an overview on this topic we
referrer the reader to [7]. One of the major difficulties originates from high-dimensionality.
Here, approximate methods have been proposed based on state and action space dis-
cretization or approximations of functions on this space. Among function approximation
methods, the least-squares Monte Carlo approach represents a traditional way to approximate
the value function s in [8–13]. However, function approximation methods have also been
used to capture local behavior of value functions and advanced regression methods such
as kernel methods [14,15], local polynomial regression [16], and neural networks [17], have
been suggested.

Considering partial observability, several specific approaches are studied in [18], with
bound estimation presented in [19]. The work [20] provides an overview of modern
algorithms in this field with the main focus on the so-called point-based solvers. The main
aspect of any point-based POMDP algorithm (see [21]) is a dynamical adaptation of the
state-discretized grid.

In this work, we treat our regime switching Markov decision problem in terms of effi-
cient numerical schemes, which deliver an approximate solution along with its diagnostics.
The following section presents this methodology and elaborates on specific assumptions,
required in this setting. The numerical solution method is based on function approxi-
mations which require convexity and linear state dynamics. For technical details, we
refer the interested reader to [22]. Furthermore, there are applications to pricing financial
options [23], natural resource extraction [3], battery management [24] and optimal asset
allocation under hidden state dynamics [25], many applications are illustrated using R
in [26].

Suppose that the state space X = P×Rd is a Cartesian product of a finite set P and
the Euclidean space Rd. Consider a controlled Markovian process (Xt)T

t=0 := (Pt, Zt)T
t=0

that consists of two parts. The discrete-space component (Pt)T
t=0 describes the evolu-

tion of a finite-state controlled Markov chain, taking values in a finite set P, while the
continuous-space component (Zt)T

t=0 follows uncontrolled evolution with values in Rd.
More specifically, we assume that at any time t = 0, . . . , T− 1 in an arbitrary state (p, z) ∈ X
the controller chooses an action a from A in order to trigger the one-step transition from
the mode p ∈ P to the mode p′ ∈ P with probability αa

p,p′(z), given in terms of pre-
specified transition probability matrices (αa

p,p′(z))p,p′∈P indexed by actions a ∈ A. Note



Algorithms 2021, 14, 291 7 of 19

that these transition probabilities can depend on continuous state component z ∈ Rd.
For the continuous-state process (Zt)T

t=0, we assume an uncontrolled evolution which is
governed by linear state dynamics

Zt+1 = Wt+1Zt, t = 0, . . . , T − 1, (21)

with independent disturbance matrices (Wt)T
t=1, thus the transition operators Ka

t are

Ka
t v(p, z) = ∑

p′∈P
αa

p,p′(z)E(v(p′, Wt+1z)), p ∈ P, z ∈ Rd, t = 0, . . . , T − 1, (22)

acting on all function v : P×Rd → R where the required expectations exist. Furthermore,
we suppose that the reward and the scrap functions

rt : P×Rd × A→ R, rT : P×Rd → R,

are convex in the second argument. (23)

The numerical treatment aims determining approximations to the true value functions
(v∗t )

T−1
t=0 and to the corresponding optimal policies π∗ = (π∗t )

T−1
t=0 . Under some additional

assumptions, the value functions turn out to be convex and can be approximated by
piecewise linear and convex functions.

To obtain an efficient (approximative) numerical treatment of these operations, the
concept of the so-called sub-gradient envelopes was suggested in [22]. A sub-gradient Og f of a
convex function f : Rd → R at a point g ∈ Rd is an affine–linear functional supporting this
point Og f (g) = f (g) from below Og f ≤ f . Given a finite grid G = {g1, g2, . . . , gm} ⊂ Rd,
the sub-gradient envelope SG f of f on G is defined as a maximum of its sub-gradients

SG f =
∨

g∈G
(Og f ), (24)

which provides a convex approximation of the function f from below SG f ≤ f , and
enjoys many useful properties. Using the sub-gradient envelope operator, define the
double-modified Bellman operator as

T m,n
t v(p, z) = max

a∈A

SGrt(p, z, a)+ ∑
p′∈P

n

∑
k=1

ν
(k)
t+1SGαa

p,p′(·)v(p′, W(k)
t+1·)(z)

, (25)

where the probability weights (ν(k)t+1)
n
k=1 correspond to the distribution sampling (W(k)

t+1)
n
k=1

of each disturbance matrix Wt+1. The corresponding backward induction

vm,n
T (p, z) = SGrT(p, z), (26)

vm,n
t (p, z) = T m,n

t vm,n
t+1(p, z), t = T − 1, . . . 0, (27)

yields the so-called double-modified value functions (vm,n
t )T

t=0. Under appropriate assump-
tions on increasing grid density and disturbance sampling, the double-modified value
functions converge uniformly to the true value functions on compact sets (see [22]). The
crucial point of our algorithm is a treatment of piecewise linear convex functions in terms of
matrices. To address this aspect, let us agree on the following notation: Given a function f
and a matrix F, we write f ∼ F whenever f (z) = max(Fz) holds for all z ∈ Rd, and call F
a matrix representative of f . To be able to capture a sufficiently large family of functions by
matrix representatives, an appropriate embedding of the actual state space into a Euclidean
space might be necessary: For instance, to include constant functions, one adds a dimension
to the space and amends all state vectors by a constant 1 in this dimension.
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It turns out that the sub-gradient envelope operation SG acting on convex piecewise
linear functions corresponds to a certain row-rearrangement operator ΥG acting on the
matrix representatives of these functions, in the sense that

f ∼ F ⇒ SG f ∼ ΥG[F].

Such row-rearrangement operator ΥG, associated with the grid

G = {g1, . . . , gm} ⊂ Rd

acts on each matrix F with d columns as follows:

(ΥG[F])i,· = Fargmax(Fgi),· for all i = 1, . . . , m. (28)

If piecewise linear and convex functions ( fi)
n
i=1 are given in terms of their matrix represen-

tatives (Fi,·)
n
i=1, such that

fk ∼ Fk, k = 1, . . . , n.

then it holds that

SG(
n

∑
k=1

fk) ∼
n

∑
k=1

ΥG[Fk] (29)

SG(
n∨

k=1

fk) ∼ ΥG[tn
k=1Fk] (30)

SG( fk(W·) ∼ ΥG[FkW] k = 1, . . . , n, (31)

where the operator t denotes binding matrices by rows (for details, we refer the reader
to [22]) and to ([23]). The algorithms presented there use the properties (29)–(31) to calculate
approximate value functions in terms of their matrix representatives as follows:

Pre-calculations: Given a grid G = {g1, . . . , gm}, implement the row rearrangement operator
ΥG and the row maximization operator ta∈A. Determine a distribution sampling (W(k)

t )n
k=1

of each disturbance Wt with corresponding weights (ν(k)t )n
k=1 for t = 1, . . . , T. Given reward

functions (rt)
T−1
t=0 and scrap value rT , assume that the matrix representatives of their sub-

gradient envelopes are given by

Rt(p, a) ∼ SGrt(p, ·, a), RT(p) ∼ SGrT(p, ·)

for t = 0, . . . , T− 1, p ∈ P and a ∈ A. The matrix representatives of each double-modified
value function

v(m,n)
t (p, ·) ∼ Vt(p) for t = 0, . . . , T, p ∈ P

are obtained via the following matrix-form of the approximate backward induction (also
depicted in the Algorithm 1.

Initialization: Start with the matrices

VT(p) = RT(p), for all p ∈ P.

Recursion: For t = T − 1, . . . , 0 and for p ∈ P calculate

VE
t+1(p, a) = ∑

p′∈P

n

∑
k=1

ν
(k)
t+1αa

p,p′(·) ?
[
Vt+1(p′)W(k)

t+1

]
, (32)

Vt(p) = ta∈A

(
Rt(p, a) + VE

t+1(p, a)
)

. (33)
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Algorithm 1: Value Function Approximation.

for p ∈ P do
VT(p) ∼ SGrT(p, .), VT(p)← ΥG[VT(p)],
for a ∈ A, t = 0, . . . , T do

Rt(p, a) ∼ SGrt(p, ., a), Rt(p, a)← ΥG[Rt(p, a)]
end

end
for t ∈ {T − 1, . . . , 0} do

for p ∈ P do
for a ∈ A do

VE
t+1(p, a)← ∑p′∈P ∑n

k=1 ν
(k)
t+1(k)α

a
p,p′(·) ?

[
Vt+1(p′)W(k)

t+1

]
end

end
for p ∈ P do

Vt(p)← ta∈A
(

Rt(p, a) + VE
t+1(p, a)

)
end

end

Here, the term αa
p,p′(·) ? Vt+1(p′)W(k)

t+1 stands for the matrix representative of the
sub-gradient envelope of the product function

SG

[
z 7→ αa

p,p′(z) ·max
(

Vt+1(p′)W(k)
t+1z

)]
which must be calculated from both factors using the product rule. The product rule
has to be modified due to the assumption that in our context, the sub-gradient ∇g f of a
function f at a point g is an affine–linear function, which represents the Taylor approxi-
mation developed at g to the linear term. For such sub-gradients, the product is given by
∇g( f1 f2) = (∇g f1) f2(g) + f1(g)(∇g f2)− f1(g) f2(g). The concrete implementation of this
operation depends on how the matrix representative of a constant function is expressed. In
Section 6.1, we provide a code which realizes such a product rule, based on the assumption
that the state space is represented by probability vectors.

Having calculated matrix representatives (VE
t )T

t=0, approximations to expected value
functions are obtained as

vE
t+1(p, z, a) = max(VE

t+1(p, a)z) (34)

for all z ∈ Rd, t = 0, . . . , T− 1, a ∈ A and p ∈ P. Furthermore, an approximately optimal
strategy (πt)

T−1
t=0 is obtained for t = 0, . . . , T − 1 by

πt(p, z) = argmaxa∈A(rt(p, z, a) + vE
t+1(p, z, a)), p ∈ P, z ∈ Rd. (35)

In what follows, we apply this technique to our regime-switching Markov decision problems.

5. HMM-Modulated MDP as a Convex Switching Problem

Now, we turn to the main step—an appropriate extension of the state space P× S (as
introduced in Section 3). This procedure will allow treating our regime-switching Markov
decision problems by numerical methodologies described in the previous section.

With notations and conventions of Section 3, we consider the so-called positively
homogeneous function extensions: A function ṽ : P×Rd

+ → R is called positively homoge-
neous if ṽ(p, cx) = cṽ(p, x) holds for all c ∈ R+ and (p, x) ∈ P×Rd

+. Obviously, for each
v : P× Ŝ→ R the definition

ṽ(p, z) = ‖z‖v(p,
z
‖z‖ ), (p, z) ∈ P×RS

+
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yields a positively-homogeneous extension of v.
Given the stochastic kernel (18), we construct a probability space supporting a se-

quence (Yt)T
t=1 of independent identically distributed random variables, each following

the same distribution µ in order to introduce the random matrices (disturbances)

Wt = Γ>V(Yt), t = 1, . . . , T.

These disturbances are used to define the following stochastic kernels in P×RS
+:

K̃a
t ṽ(p, z) = ∑

p′∈P
αa

p,p′(
z
‖z‖ )E(ṽ(p′, Wt+1z)), (p, z) ∈ P×RS

+, t = 0, . . . , T − 1 (36)

acting on all functions ṽ : P×RS
+ → R where the above expectations are well-defined. A

direct verification shows that for each a ∈ A and t = 0, . . . , T − 1 it holds that

if ṽ is a positively homogeneous extension of v then
K̃a

t ṽ is a positively homogeneous extension of Ka
t v.

(37)

The kernels (36) satisfy the linear dynamics assumption (21) required in (22) and
define a control problem of convex switching type whose value functions also solve the
underlying regime-switching Markov decision problem.

Proposition 1. Given a regime modulated Markov decision problem whose dynamics are defined
by the stochastic kernel (18) with control costs given by (19) and (20), consider the value functions
(vt)T

t=0 returned by the corresponding backward induction

vT(p, ŝ) = rT(p, ŝ), (38)

vt(p, ŝ) = max
a∈A

(rt(p, ŝ, a) +Ka
t vt+1(p, ŝ)), p ∈ P, ŝ ∈ Ŝ, t = T − 1, . . . , 0.

Moreover, consider functions (ṽt)T
t=0 returned by

ṽT(p, z) = r̃T(p, z), (39)

ṽt(p, z) = max
a∈A

(
r̃t(p, z, a) + K̃a

t ṽt+1(p, z)
)
, p ∈ P, z ∈ RS

+, t = T − 1, . . . , 0.

where r̃t, r̃T are positively homogeneous extensions of rt, rT and K̃a
t is from (36). Then for

t = 0, . . . , T, it holds that

ṽt is positively homogeneous extension of vt (40)

Proof. Let us prove (40) inductively. Starting at t = T, assertion (40) holds since r̃T is a
positively homogeneous extension of rT . Having assumed that (40) holds for t + 1 with a
positively homogeneous ṽt+1, we apply observation (37) to conclude that

K̃a
t ṽt+1 is a positively homogeneous extension of Ka

t vt+1

thus adding r̃t(·, ·, a), which is a positively homogeneous extension of rt(·, ·, a) and maxi-
mizing over a ∈ A yields (40).
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To finish the proof, we verify (37). Given v, with a positively homogeneous extension
ṽ, for p ∈ P and z ∈ RS

+ it holds that

K̃a
t ṽ(p, z) = ∑

p′∈P
αa

p,p′(
z
‖z‖ )E(ṽ(p′, Γ>V(Yt+1)z))

= ∑
p′∈P

αa
p,p′(

z
‖z‖ )

∫
Y

ṽ
(

p′, Γ>V(y′)z
)
‖µ(dy′) (41)

= ∑
p′∈P

αa
p,p′(

z
‖z‖ )

∫
Y

v

(
p′,

Γ>V(y′)z
‖V(y′)z‖

)
‖V(y′)z‖µ(dy′). (42)

From the expression (41) we conclude that K̃a
t ṽ is indeed positively homogeneous. Setting

z = ŝ ∈ Ŝ, we observe K̃a
t ṽ(p, ŝ) = Ka

t v(p, ŝ), meaning that K̃a
t ṽ is a function extension of

Ka
t v.

6. Algorithm Implementations and Performance Analysis

The stylized algorithm presented in Algorithm 1 is appropriate for problems whose
scale is similar to that of the illustration provided in the next section. In this example,
although we have used a relatively slow scripting language R, all calculations are performed
within a few seconds. This shows a practical relevance of such implementations for small
and medium-size applications. However, to address larger problems, a significant increase
in calculation performance is needed and can be achieved by approximations, which are
based on a standard technique from big data analysis, the so-called next-neighbor search.
A realization of this concept within a package for the statistical language R is described
in [26]. With all critical parts of the algorithm written in C, this implementation shows a
reasonable performance which is examined and discussed in [26]. For technical details,
we address the reader to [23,27]. Let us merely highlight the main idea here. The point
is that the computational performance of our approach suffers from the fact that most of
the calculation time is being spent on matrix rearrangements required by the operator ΥG.
Namely, in order to calculate an expression

n

∑
k=1

ν
(k)
t+1ΥG[Vt+1(p) ·Wt+1(k)] (43)

as in (25), the row-rearrangement ΥG must be performed n times, once for each disturbance
matrix multiplication. This task becomes increasingly demanding for larger values of the
disturbance sampling sizes n, particularly in high state space dimensions. Let us omit t + 1
and p in (43) to clarify the idea of efficiency improvement developed in [23]. This approach
focuses on the two major computational problems

the rearrangement ΥG[VW(k)] of
large matrices V ·W(k)

(44)

and
the summation of matrices Υ[V ·W(k)] over

a large index range k = 1, . . . , n.
(45)

It turns out that one can approximate the procedure in (44) by replacing the row-rearrangement
operation with an appropriate matrix multiplication using next-neighbor techniques. To
address (45) each random disturbance matrix Wt is represented as the linear combination

Wt = W̄ +
J

∑
j=1

εj(t)E(j) (46)
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with non-random matrices W̄ and (E(j))J
j=1, and random coefficients (ε j(t))

J
j=1 whose

dimension J is preferably significantly lower than the dimension of the state space. Both
techniques are applicable and save a significant amount of calculations. Only the distur-
bances (Wt)T

t=1 are identically distributed, so that all pre-calculations have to be done only
once. However, since a detailed discussion of this approximation and its performance gain
are out of the scope here, we refer the reader to [23,26,27].

Note that an application of convex switching techniques under partial observations
requires some adaptations, due to the non-observable nature of the state space. More
precisely, the user must realize a recursive filter to extract believe states from the current
information flow, before optimal decisions can be made. In other words, filtering must
be followed by the application of the decision policy, returned from the optimization. A
stylized realization of this approach is depicted in Figure 1.

Information

State

Signal

Noise

Filter

Believe State

Environment

System

Action

Policy

Mix

Figure 1. Stylized implementation of the control flow within a realistic application.

6.1. An illustration

Let us consider a typical application of Markov decision theory to agricultural man-
agement [28] which addresses a stochastic forest growth model in the context of timber
harvesting optimization. The work [28] re-considers the classical results of Faustmann in
the framework of random growth and potential ecological hazards (for a derivation of
Faustmann’s result from 1849 and its discussion, we refer the reader to [28]). The idea is
that as a reasonable approximation, one supposes that the only stochastic element is the
growth of trees: That is, the timber volume per hectare defines the state. To facilitate the
analysis, this timber volume (cubic meter per hectare) is discretized as shown in the first
row of the Table 2. Furthermore, the costs of action (in USD per hectare) are shown in
the second row, assuming that the action means timber harvest for all states (state 2–state
6) followed by re-forestation with the exception of the bare land (state 1), where there is
re-forestation only. There are no costs if no action is taken, as seen from the third row of
Table 2.

Table 2. Discrete states and their control costs.

State 1 State 2 State 3 State 4 State 5 State 6

volume 0 29 274 530 728 868
acting –494 –117 3068 6396 8970 10,790
being idle 0 0 0 0 0 0

Given the state space P = {1, . . . , 6} and control costs as defined in Table 2, define the
action space A = {1, 2}, where 1 means being idle and 2 means acting. Assuming decision
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intervals of 20 years, a Markov decision problem is determined with the action-dependent
stochastic matrices

α1 =



1 0 0 0 0 0
0.1 0.1 0.7 0.1 0 0
0.1 0 0.1 0.7 0.1 0
0.1 0 0 0.1 0.7 0.1
0.1 0 0 0 0.1 0.8
0.1 0 0 0 0 0.9

, α2 =



0.1 0.9 0 0 0 0
0.1 0.9 0 0 0 0
0.1 0.9 0 0 0 0
0.1 0.9 0 0 0 0
0.1 0.9 0 0 0 0
0.1 0.9 0 0 0 0

.

Note that the transitions to state 1 (bare land) from higher state in α1 may be interpreted as a
result of a natural disaster, whereas those to a neighboring state may describe a randomness
in the forest growth. The matrix α2 describes the timber harvest followed by re-forestation.
The work [28] discusses an optimal policy for this model assuming an infinite time horizon
with a discounting which is inferred from the interest rate effects. The optimal policy is
compared to that from a non-random growth model, represented by the same parameters
with the exception of the free-growth transition α1, being replaced by

α1 =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1

.

This non-random model resembles the well-known results of Faustmann, claiming that
the only optimal strategy is a roll-over of harvesting and re-planting after a number of years.
In the above Markov decision problem, the discount factor is set to κ = (1 + g)20 = 0.61
(corresponding to g = 2.5% annual interest rates). Here, it turns out that it is optimal to
reforest in state 1, do nothing in state 2 and 3, and cut and reforest in states 4, 5, and 6.
That is, the resulting roll-over is three times the decision period, 60 years. In contrast, the
random model suggests that in the presence of ecological risks, it is optimal to reforest in
state 1, do nothing in state 2, and cut and reforest in states 3,4, 5, and 6, giving a shorter
roll-over of two decision periods, 40 years.

Using our techniques, the optimal forest management can be refined significantly.
Major improvement can be achieved by incorporating all adverse ecological situations into
a selection of transition matrices representing a random forest evolution within appropriate
regimes. The regime switch can be monitored and estimated using stochastic filtering tech-
niques as described above. For instance, the potential climate change with an anticipated
increase of average temperature and extended drought periods can be managed adaptively.
In what follows, we consider a simplified numerical example based on the stochastic forest
growth model presented above.

First, let us replicate the results of [28] in the following code

1 rm(list=ls(all=TRUE)) # remove all objects
2 ##########################################
3 reward<-function(t, a)# define reward function
4 { if (a==2) result<-c(-494, -117, 3068, 6396, 8970, 10790)
5 else result<-c(0, 0, 0, 0, 0, 0)
6 return(result)
7 }
8 #########################################
9 discount<-0.61# introduce discount factor

10 ##############################################
11 alpha<-array(data=0, dim=c(6,6,2))# set transitions
12 alpha[,,2]<-matrix(c(0.1, 0.9, 0, 0, 0, 0,
13 0.1, 0.9, 0, 0, 0,0,
14 0.1, 0.9, 0, 0, 0,0,
15 0.1, 0.9, 0,0, 0, 0,
16 0.1, 0.9, 0, 0, 0, 0,
17 0.1, 0.9, 0, 0, 0, 0 ), byrow=TRUE, ncol=6)
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18 alpha[,,1]<-matrix(c(1, 0, 0, 0, 0, 0,
19 0.1, 0.1, 0.7, 0.1, 0,0,
20 0.1, 0, 0.1, 0.7, 0.1,0,
21 0.1, 0, 0,0.1, 0.7, 0.1,
22 0.1, 0, 0, 0, 0.1, 0.8,
23 0.1, 0, 0, 0, 0, 0.9 ), byrow=TRUE, ncol=6)
24 ###############################################
25 bellman<-function(t,val)# define backward induction step
26 { container<-array(data=0, dim=dim(alpha)[2:3] )
27 for (a in 1:dim(alpha)[3]) container[,a]<-reward(t, a) + discount*alpha[,,a]%*%val
28 result<-cbind(apply(FUN=max, X=container, MARGIN=1),
29 apply(FUN=which.max, X=container, MARGIN=1) )
30 }
31 ##############################################
32 # RUN
33 #############################################
34 t_final<-10; val<-reward(t_final, 2)
35 t<-t_final # initialization
36 ########################################
37 while (t>0){# recursion
38 t<-t-1
39 result<-bellman(t, val)
40 val<-result[,1] }
41 #####################################
42 result # show value function and policy
43 #[,1] [,2]
44 #[1,] 1024.141 2
45 #[2,] 2660.412 1
46 #[3,] 4586.141 2
47 #[4,] 7914.141 2
48 #[5,] 10488.141 2
49 #[6,] 12308.141 2

Indeed, the above plot shows that in the stochastic forest growth model, it is optimal
to do nothing in state 2, but harvest and replant in all other states—an optimal roll-over of
two periods, 40 years. Running the same algorithm for the deterministic growth, returns
the value functions and policies given below—an optimal roll-over over three periods,
60 years.

1 #[1,] 1227.540 2
2 #[2,] 3012.010 1
3 #[3,] 4948.456 1
4 #[4,] 8117.540 2
5 #[5,] 10691.540 2
6 #[6,] 12511.540 2

Now let us illustrate an adaptive forest management in presence of regime-changing
risk. First, let us specify the hidden Markovian dynamics of the information process
(Yt)T

t=1. For this, a stochastic matrix Γ = (Γs,s′)s,s′∈S and a family of measures (µs)s∈S must
be specified, according to (15). For simplicity, we suppose that the state comprises two
regimes S = {s1, s2} and that an indirect information (Yt)T

t=1 is observed within the interval
[0, 1], after appropriate transformation. For instance, Yt could measure a percentage of rainy
days over a pre-specified sliding window over a past period. Alternatively, Yt may stand
for a specific quantity (average temperature) with distribution function typical for this
quantity in the normal regime, applied on its recording. With this assumption, we consider
s1 as a regular regime, under which the observations follow a beta distribution β(s1) with
specific parameters defined for the state s1, whereas in the presence of environmental
hazards, in the regime s2, the observation follows a beta distribution β(s2) with other
parameters typical for s2. Finally, let us suppose that the regime change matrix

Γ =

[
γ1, 1− γ1

1− γ2 γ2

]
describes a situation where the regular regime is more stable 1 ≥ γ1 > γ2 > 0. The
following code illustrates a simulation of such observations and the corresponding filtered
information with results of filtering procedure depicted in Figure 2
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1 rm(list=ls(all=TRUE))
2 set.seed(69)
3 gamma1<-0.99
4 gamma2<-0.9
5 Gamma<-matrix(data=c(gamma1, 1-gamma1, 1-gamma2, gamma2), nrow=2, byrow=TRUE)
6 shapes<-matrix(data=c(1, 3, 3, 1), nrow=2)
7 y<-function(regime)
8 { return(rbeta(n=1,shapes[regime,1],shapes[regime,2]))}
9 dens<-function(observaton)

10 { return(c(dbeta(observaton, shapes[1,1],shapes[1,2]),
11 dbeta(observaton, shapes[2,1],shapes[2,2])))
12 }
13 #######################################
14 regimes<-vector(mode="numeric",length=200)
15 observations<-vector(mode="numeric",length=length(regimes))
16 regime<-1
17 for (j in 1:length(regimes)) {
18 regimes[j]<- which(rmultinom(n=1, size=1, prob = Gamma[regime,])==1)
19 observations[j]<-y(regime)
20 regime<-regimes[j]}
21

22 plot(regimes-1, type="l", ylim=c(0,1))
23 points(observations, type="l", col="red")
24 ##########################################
25 believ<-c(0.5,0.5)
26 belives<-matrix(data=0,nrow=length(regimes), ncol=ncol(Gamma))
27 for (j in 1:length(regimes)) {
28 believ<-t(Gamma)%*%(dens(observations[j])*believ)
29 believ<-believ/sum(believ)
30 belives[j,]<-believ
31 }
32 points(belives[,2], type="l", col="blue")
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Figure 2. Believe state evolution: Observations depicted by red line, the probability that the system
is in the regime 2 by black (true state) and blue (filtered believe) line.

Let us address an implementation of the Algorithm 1. Having defined the appropriate
operators

1 ##################################################
2 rm(list=ls(all=TRUE))
3 #################################################
4 #################################################
5 make_max<-function(L1,L2) # maximization
6 { value1<-apply( L1*G, FUN=sum,MARGIN=1)
7 value2<-apply( L2*G, FUN=sum,MARGIN=1)
8 L<-L1
9 L[value1<value2,]<-L2[value1<value2, ]

10 return(L)}
11 ################################################
12 make_max.where<-function(L1,L2) # maximization
13 { value1<-apply( L1*G, FUN=sum,MARGIN=1)
14 value2<-apply( L2*G, FUN=sum,MARGIN=1)
15 result<-rep(1, length(value1))
16 result[value1<value2]<-2
17 return(result)}
18 ################################################
19 Y<-function(L) # row-re-arrangement
20 {return(L[apply(L%*%t(G), FUN=which.max, MARGIN=2),])}
21 ##################################################
22 make_const<-function(L)
23 {
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24 value<-apply( L*G, FUN=sum,MARGIN=1)
25 matrix(data=value, byrow=FALSE, nrow=grid_size, ncol=regime_size)
26 }

we introduce arrays as data containers

1 ###################################################
2 state_size<-6 # six states of the forest
3 regime_size<-2 # two regimes
4 action_size<-2 # two actions
5 grid_size<-100 # number of grid points
6 sample_size<-200 # size of distribution sampling
7 #################################################
8 G<-array(data=0, dim=c(grid_size, regime_size)) # grid matrix
9 Gamma<-array(data=0, dim=c(regime_size, regime_size))

10 alpha<-array(data=0, dim=c(state_size, state_size, regime_size, action_size))
11 Alpha<-array(data=0, dim=c( grid_size, regime_size, state_size, state_size, action_size))
12 Alphaconst<-array(data=0, dim=c( grid_size, regime_size, state_size, state_size, action_size))
13 scrap<-array(data=0, dim=c(1, state_size)) # scrap matrix
14 reward<-array(data=0, dim=c(1, state_size, action_size)) # reward matrix
15 distrsample<-array(data=0, dim=c(1, sample_size)) # distribution sampling
16 disturbance <-array(data=0, dim=c(regime_size, regime_size, sample_size)) # disturbances
17 Vfun<-array(data=0, dim=c(grid_size, regime_size, state_size))
18 Efun<-array(data=0, dim=c(grid_size, regime_size, state_size))
19 Cfun<-array(data=0, dim=c(grid_size, regime_size, state_size, action_size))
20 Reward<-array(data=0, dim=c(grid_size, regime_size, state_size, action_size))
21 Scrap<--array(data=0, dim=c(grid_size, regime_size, state_size))
22 Decision<-array(data=0, dim=c(grid_size, state_size))

these containers are filled with appropriate quantities:

1 G[,1]<-seq(from=0, to=1, length=grid_size)
2 G[,2]<-1-G[,1] # fill the grid with equidistant points
3 gamma1<-0.99 # regime 1 is stable, regular
4 gamma2<-0.99 # regime 2 is unstable, hazard
5 Gamma<-matrix(data=c(gamma1, 1-gamma1, 1-gamma2, gamma2), nrow=2, byrow=TRUE)
6 alpha[,,1,2]<-matrix(c(0.1, 0.9, 0, 0, 0, 0,
7 0.1, 0.9, 0, 0, 0,0,
8 0.1, 0.9, 0, 0, 0,0,
9 0.1, 0.9, 0,0, 0, 0,

10 0.1, 0.9, 0, 0, 0, 0,
11 0.1, 0.9, 0, 0, 0, 0 ), byrow=TRUE, ncol=6)
12 alpha[,,1,1]<-matrix(c(1, 0, 0, 0, 0, 0,
13 0.1, 0.1, 0.7, 0.1, 0,0,
14 0.1, 0, 0.1, 0.7, 0.1,0,
15 0.1, 0, 0,0.1, 0.7, 0.1,
16 0.1, 0, 0, 0, 0.1, 0.8,
17 0.1, 0, 0, 0, 0, 0.9 ), byrow=TRUE, ncol=6)
18 alpha[,,2,2]<-matrix(c(0.1, 0.9, 0, 0, 0, 0,
19 0.1, 0.9, 0, 0, 0,0,
20 0.1, 0.9, 0, 0, 0,0,
21 0.1, 0.9, 0,0, 0, 0,
22 0.1, 0.9, 0, 0, 0, 0,
23 0.1, 0.9, 0, 0, 0, 0 ), byrow=TRUE, ncol=6)
24 alpha[,,2,1]<-matrix(c(1, 0, 0, 0, 0, 0,
25 0, 0, 1, 0, 0,0,
26 0, 0, 0, 1, 0,0,
27 0, 0, 0,0, 1, 0,
28 0, 0, 0, 0, 0, 1,
29 0, 0, 0, 0, 0, 1 ), byrow=TRUE, ncol=6)
30 for (a in 1:action_size)
31 for (i in 1:grid_size)
32 for (j in 1:regime_size)
33 Alpha[i,j,,,a]<-alpha[,,j,a]
34 for (a in 1:action_size)
35 for (p1 in 1:state_size)
36 for (p2 in 1:state_size)
37 Alphaconst[,,p1,p2,a]<-make_const(Alpha[,,p1,p2,a])
38 scrap[1,]<-c(-494, -117, 3068, 6396, 8970, 10790)
39 reward[1,,2]<-c(-494, -117, 3068, 6396, 8970, 10790)
40 for (p in 1:state_size)
41 for (a in 1:action_size)
42 Reward[,,p,a]<-Y(matrix(reward[1,p,a], nrow=1, ncol=regime_size)) # convex lin comb like in Alpha
43 for (p in 1:state_size)
44 Scrap[,,p]<-Y(matrix(scrap[1,p], nrow=1, ncol=regime_size)) # convex lin comb like in Alpha
45 distrsample[1,]<-seq(from=0, to=1, length=sample_size)
46 shapes<-matrix(data=c(1, 3, 3, 1), nrow=2)
47 dens<-function(observaton)
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48 { return(c(dbeta(observaton, shapes[1,1],shapes[1,2]),
49 dbeta(observaton, shapes[2,1],shapes[2,2])))
50 }
51 kernel<-array(data=0, dim=c(regime_size, sample_size))
52 for (y in 1:sample_size)
53 kernel[,y]<-dens(distrsample[y])
54 for (j in 1:regime_size)
55 kernel[j,]<-kernel[j, ]/sum(kernel[j,])
56 for (y in 1:sample_size)
57 disturbance[,,y]<- t(Gamma)%*%diag(kernel[,y])
58 discount<-0.61# introduce discount factor

After such initialization, the backward induction is run:

1 Vfun[,,]<-Scrap[,,] ; tt<-10 # value function and time horizon
2

3 while (tt>0){
4 tt<-tt-1
5 for (p in 1:state_size) {
6 Efun[,,p]<-0
7 for (j in 1:sample_size) Efun[,,p]<-Y(Efun[,,p])+Y(Vfun[,,p]%*%disturbance[,,j])}
8

9 for (a in 1:action_size)
10 for (p1 in 1:state_size) {Cfun[,,p1,a]<-0
11 for (p2 in 1:state_size) {Econst<-make_const(Efun[,,p2])
12 Cfun[,,p1,a]<- Cfun[,,p1,a]+Alphaconst[,,p1,p2,a]*Efun[,,p2] +
13 Alpha[,,p1,p2,a]*Econst -Alphaconst[,,p1,p2,a]*Econst}}
14

15 for (p in 1:state_size)
16 for (a in 1:action_size)
17 Cfun[,,p,a]<-Y(Reward[,,p,a]) + discount*Y(Cfun[,,p,a])
18

19 for (p in 1:state_size){
20 Vfun[,,p]<-make_max( Cfun[,,p,1],Cfun[,,p,2]) # maximize
21 Decision[,p]<-make_max.where( Cfun[,,p,1],Cfun[,,p,2])}
22 print(tt)
23 }
24

25 plot(x=G[,2], y=apply(X=Vfun[,,2]*G, FUN=sum, MARGIN=1), col='black', type='l', xlab=NA, ylab=NA)
26 plot(x=G[,2], y=Decision[,3], col='black', type='l', xlab=NA, ylab=NA)

The Figure 3 depicts the value function for the state p = 2 depending on the believe
state, such that the x- axes is interpreted as the conditioned probability that the system is
in the deterministic growth regime. That is, the end points of the graph represent values
of the expected return of the optimal strategy under the condition that it is known with
certainty that the system starts in random growth (left end) or in deterministic growth
(right end). Observe that those values are close to 2660.412 and 3012.010 obtained in the
classical Markov decision setting. Naturally, the uncertainty about the current regime
yields intermediate values, connected by a convex line.

0.0 0.2 0.4 0.6 0.8 1.0

270
0

280
0
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300
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Figure 3. Value function for the state 2 depending on believe probability.

The Figure 4 illustrates the choice of the optimal action for the state p = 3 depending
on the believe state depicted in the same way as in Figure 3. Again the end points of the
graph represent optimal actions conditioned on certainty about the current regime. As
expected, the optimal decision switches from a = 2 (act) to a = 1 (be idle) at some believe
probability of approximately 0.55.



Algorithms 2021, 14, 291 18 of 19

0.0 0.2 0.4 0.6 0.8 1.0

1.0
1.2

1.4
1.6

1.8
2.0

Figure 4. Optimal action for the state 3 depending on believe probability.

7. Conclusions

Having utilized a number of specific features of our problem class, we suggest a
simple, reliable, and easy-to-implement algorithm that can provide a basis for rational
sequential decision-making under uncertainty. Our results can be useful if there are no
historical data about what could go wrong, or when high requirements on risk assessment
are proposed. In such situations, we suggest encoding all relevant worst-case scenarios
as potential regime changes, making conservative a priori assumptions on regime change
probabilities. Using our algorithm, all optimal strategies can be efficiently examined in
such a context, giving useful insights about parameter sensitivity and model risk associated
with this sensitivity. The author believes that the suggested algorithm can help gaining a
better understanding of risks and opportunities in such context.
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