A Dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

A Software Defined paradigm for mobile networks

A feasible SDN based architecture solution for 5G networks

Khaled Alghamdi

Autumn 2021

University of Technology Sydney, Faculty of Engineering and Information Technology School of Electrical and Data Engineering

Supervisor Prof. Robin Michael Braun

Co-supervisor A/Prof. Mehran Abolhasan

Certificate of Original Authorship

I, Khaled Alghamdi declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering at the University of Technology Sydney. This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

Dedication

I dedicate this thesis to my lovely father, mother, sister, beloved wife and our children for their love and support.

Acknowledgments

I would like to acknowledge all the support and encouragement received during my PhD research. Firstly, I would like to express my deep gratitude to Professor Robin Braun, who has been my supervisor and very good friend. His valuable guidance through this research was a great source of support and encouragement and always made me go that extra mile to solve the various problems that lead to this work. I cherished the opportunity to watch and learn from his knowledge and experience. His frequent insights and patience with me are always appreciated.

I also thank my co-supervisor, Professor Mehran Abolhasan, for supporting me throughout this work. Last but by no means the least, I wish to give special thanks to my lovely family, for their immense support and all of the sacrifices that they have made on my behalf. My parents always gave me constant support and tried to provide me with the best education they can afford. They have been an important driving force to encourage me behind this PhD research.

Journal Papers

These papers have been prepared and published during the course of my research.

- J-1. Khaled Alghamdi, Performance Benchmark for Handoff with the Software Defined Network in Cellular Networks: A Simulation Approach, International Journal of Scientific & Engineering Research, Volume 10, Issue 8, August-2019, ISSN 2229-5518
- J-2. Khaled Alghamdi, Deploying Hand Off Mechanism with the Software Defined Network vs Mobile IP for 5GNetwork: A Feasibility Study, International Journal of Scientific & Engineering Research, Volume 10, Issue 8, August-2019, ISSN 2229-5518
- J-3. Khaled Alghamdi, Robin Braun, Software Defined Network (SDN) and Open-Flow protocol in 5G Network, Scientific Research Publishing, Communications and Network (CN) journal", Vol. 12 No. 1 of February issue, 2020, ID: 6101747

Abstract

There is a sharp increase in mobile devices that access the Internet with the rollout of Third generation technology standard (3G) and subsequently Fourth generation technology standard (4G), Long-Term Evolution (LTE) technologies by the Mobile Network Operators (MNO). In the Asia-Pacific region, the 4G connections have grown up to \sim 1 billion as of January 2016. The inevitable increase in the Internet users' base and the mobile devices has led to Internet Protocol (IP) addresses to be run out soon where IPv6 will enable bringing more than ever Internet users. The LTE Advanced networks deployments can soon reach their lifetime where the preparation for the fifth generation technology standard (5G) network is also widespread and rolling out is already taking place. For example, Australian mobile network Telstra has already brought one-third of the population under 5G signal coverage. Currently, the solutions related to supporting IP mobility have various drawbacks including huge signalling overheads, handover inefficiency and service update effect time to name a few.

As the mobile networks evolve towards 5G, the infrastructure network will have the capability to handle operational complexities and support unforeseen services that are diverse and likely to grow with demand for applications that include M2M (machine-to-machine) modules, video surveillance, smart cities, mobile industrial automation, and vehicle connectivity [56]. These applications include requirements that are divergent and will trigger mobile network performance and capabilities requirements at their extremity with more scalability and flexibility to be included. SDN technology using cloud computing as a carrier will play a critical and enabling role in designing the 5G wireless networks for Quality of Experience (QoE), service performance and network resilience as parameters to give greater freedom for balanced operations in these networks.

In this thesis, an investigation was carried out with the Software-Defined Network (SDN) controllers architecture for addressing many of IP Mobility issues primarily focusing on handover optimisation case studies. It is demonstrated through handover network simulations that SDN can handle next-generation mobility handover situations with the help of proper SDN interfacing, control layout and control logic algorithms. The experiments conducted predominantly benefitted from the Open-Flow protocol based SDN control and data forwarding plane as a proof of concept for deploying into real-world devices for mobile network management. The simulations showed a definite and considerable performance gain when using SDN based

solution compared to the traditional Mobile IP for mobility management from the perspective of the user equipment.

To accomplish a realistic simulation goal, careful consideration was given while selecting a network emulation platform which is flexible and can be modified and extended easily by external simulation processing modules. Mininet-WiFi emulator was selected and by synthesising SDN architecture a number of functionalities were implemented for the emulator which allowed designing realistic mobile network mobility use case scenarios and also scenarios pertaining to 5G networks applications for the network simulations. All the simulations carried out were extensively substantiated by the mobile network and SDN literature studies and reviews which helped define simulation parameters appropriately.

Nomenclature

General

3G	Third generation technology standard for broadband cellular networks
3GPP	3rd Generation Partnership Project
4G	Fourth generation technology standard for broadband cellular networks
$5\mathrm{G}$	Fifth generation technology standard for broadband cellular networks
5G-PPP	The 5G Infrastructure Public Private Partnership
ACL	Access-control lists
AN	Access network
ANDSF	Access Network Discovery and Selection Function
AP	Access point
API	Application programming interface
AR	Access Router
ARP	Address Resolution Protocol
BDDP	Broadcast Domain Discovery Protocol
BS	Base station / Cellular site
BSC	Base station controller
BTS	Base Transceiver Station
CAPWAP	Control And Provisioning of Wireless Access Points
CC	Component Carrier

- CDP Cisco Discovery Protocol
- CLI Command Line Interface
- CN Correspondence node
- CNet Core network
- COA Care of Address
- CoMP Coordinated Multipoint Transmission and Reception
- CPU Central processing unit
- C-RAN Cloud Radio Access Network / Centralised Radio Access Network
- CSMA Carrier-Sense Multiple Access
- CSN Circuit-Switched Network
- DCA Dynamic Controller Assignment
- DHCP Dynamic Host Configuration Protocol
- DiffServ Differentiated services
- DMM Distributed Mobility Management
- DNS Domain Name System
- DoS Denial-of-Service attack
- DPI Deep Packet Inspection
- eBPF extended Berkeley Packet Filter
- EDP Extreme Discovery Protocol
- EMMA Energy Management Monitoring Application
- EMS Element Management System
- eNodeB Evolved Node B
- EPC Evolved Packet Core
- ESP Encapsulating Security Payload
- ETSI European Telecommunications Standards Institute

FA	Foreign Agent
FBACK	Fast Binding Acknowledgement
FBU	Fast-Binding Update
FHMIP	Fast Handover Mobile IP
FN	Foreign network
FNA	Fast Neighbor Advertisement
gNodeB	Next Generation NodeB
GPRS	General Packet Radio Service
GPS	Global Positioning System
GPU	Graphics Processing Unit
GSM	Global System for Mobile Communications
GTP	GPRS Tunnelling Protocol
HA	Home Agent
HACK	Handover Acknowledgement
HDTV	High Definition Television
HetNet	Heterogeneous network
HI	Handover Initiation
HMIP	Hierarchical Mobile IP
HN	Home network
HSPA	High Speed Packet Access
HSS	Home Subscriber Server
IaaS	Infrastructure as a Service
ICMP	Internet Control Message Protocol
ICT	Information and Communications Technology
IDMP	Intra domain Mobility Management protocol

IETF	Internet Engineering Task Force
IMS	IP Multimedia Subsystem
IoT	Internet of things
IP	Internet Protocol
IPC	Inter-process communication
IP-IP	IP in IP
ISO	International Organization for Standardization
LAN	Local area network
LCoA	Local Care of Address
LLDP	Link Layer Discovery Protocol
LTE	Long-Term Evolution
M2M	Machine to machine
MAC	Media Access Control
MAG	Mobile Access Gateway
MAP	Mobility Anchor Point
MCN	Mobile Core Networks
MEC	Mobile Edge Computing
MIH	Media Independent Handover
MIP	Mobile IP
MME	Mobility Management Entity
MN	Mobile node
MNO	Mobile Network Operator
MPG	Mobile access gateway
MSC	Mobile Switching Center / Mobile Station Center
MTC	Machine Type Communication

MWG	Mobile Working Group
NAR	New access router
NDP	Nortel Discovery Protocol
Netconf	Network Configuration Protocol
NFV	Network Functions Virtualisation
NGMN	Next Generation Mobile Networks
NMS	Network Management System
NOS	Network operating system
NVF	Network functions virtualisation
OEP	Ongoing Exchange Protocol
OF	OpenFlow
OFDP	OpenFlow Discovery Protocol
OMAG	OpenFlow Mobile Access Gateway
ONF	Open Networking Foundation
ONOS	Open Network Operating System
OS	Operating system
OSI	Open Systems Interconnection model
OSS	Operations Support System
OTA	Over-the-air
OVS	Open vSwitch
OVSDB	Open vSwitch Database Management Protocol
PaaS	Platform as a Service
PAN	Personal area network
PAR	Previous access router
PCC	Primary Component Carrier

- PCRF Policy and Charging Rules Function
- PDN Packet Data Network
- P-GW Packet Data Network Gateway
- PLMN Public Land Mobile Network
- PMIP Proxy Mobile IP
- PoA Point of Attachment
- PoP Point of presence
- PRA Proxy Router Advertisement
- PSN Packet-switched network
- PSTN Public Switched Telephone Network
- QoE Quality of experience
- QoS Quality of service
- RAM Random-access memory
- RAN Radio Access Network
- RAT Radio Access Technology
- RCoA Regional Care of Address
- REST Representational state transfer
- RFC Request for Comments
- RMA Resource Management Application
- RN Relay node
- RNC Radio Network Controller
- RRM Radio resource management
- RSP Router Solicitation for Proxy
- RSSI Received Signal Strength Indicator
- RTT Round Trip Time

SaaS	Software as a Service
SCC	Secondary Component Carriers
SCTP	Stream Control Transmission Protocol
SDN	Software Defined Networking
SDO	Standard Development Organization
SDR	Software-defined radio
SDWN	Software-defined wireless network
S-GW	Serving gateway
SIP	Session Initiation Protocol
SLA	Service Level Agreements
SPOF	Single point of failure
SSID	Service set identifier
TCP	Transmission Control Protocol
TMN	Telecommunications Management Network
TTFB	Time to First Byte
UDP	User Datagram Protocol
UE	User equipment
UMTS	Universal Mobile Telecommunications Service
UTS	University of Technology Sydney
VLAN	Virtual LAN
VMs	Virtual Machines
VoIP	Voice over IP
VPN	Virtual Private Networking
WAN	Wide Area Network
WiMAX	Worldwide Interoperability for Microwave Access
WLAN	Wireless LAN
WLC	Wireless LAN controller
WTN	Wireless Token Network

Units

GB	gigabyte
Gbit	gigabit
Gbps	gigabit per second
GBps	gigabyte per second
GHz	gigahertz
GB/s	gigabyte per second
m	metre
m/s	metre per second
MB	megabyte
Mbps	megabit per second
Kbps	kilobits per second
MBps	megabyte per second
ms	millisecond
sec	second
Tbps	terabit per second

Conventions

Square brackets [] in computer command refers to the section of the command which needs to be replaced.

Dollar sign \$ represents a non-administrative user in the Linux Bash command prompt.

Italic text refers to an entity or a group of similar entities of a larger system.

Contents

Ι.	Elaborating the Proposition and reviewing the literature	11
1.	Introduction1.1. Research Motivation1.2. Research Topic and Contribution1.3. Research Objectives and Scope1.4. Dissertation Outline	13 15 17 18 19
2.	Overview of Mobile IP 2.1. Introduction 2.2. Entities in Mobile IP	21 21 21
3.	Operations in Mobile IP 3.1. Limitations Exposed by Mobile IP Architecture	25 26
4.	 Overview of Software-Defined Networking 4.1. Software-Defined Networking Based Control Plane	 29 30 34 37 41 45 46
5.	OpenFlow for Mobile IP5.1. Open Network Foundation Initiative for Wireless Transport Networks5.2. Software-Defined Networking for Cellular and Mobile Networks5.3. Relevance to 5G network issues5.4. Summary	49 53 53 57 58
11.	Proving the Propositions	59
6.	Experimental Procedures 6.1. Introduction	61 61

	6.2.	Current Issues with Mobile IP and Research Relating to Software-	
		Defined Networking	61
	6.3.	Handover Mechanism between Long-Term Evolution and Wi-Fi Net-	
		work Systems	63
	6.4.	Drawbacks found in 4G Handover between Long-Term Evolution and	~ .
		Wi-Fi Network Systems	64
	6.5.	Different Handover Models for the Mobile IP Networks	65
	6.6.	Integrating Software-Defined Networking Controllers in 4G Network .	66
	6.7.	Hybrid Network Handover Model for SDN and Mobile IP Networks .	67
	6.8.	Integrating Software-Defined Networking and OpenFlow into Mobile	
		IP	70
	6.9.	Deploying Software-Defined Networking for Mobile IP Networks	70
		6.9.1. Handover Management within Software-Defined Networking	
		Controller Networks	70
	6.10.	Formulating Software-Defined Networking Controllers Strategy for	
		Mobile IP like Functionality	74
	6.11.	Research Methodology	75
		6.11.1. Introduction	75
		6.11.2. Software-Defined Networking Requirements Analysis	75
		6.11.3. Identifying of Experiment Platform	78
		6.11.4. Experiment Formulation	80
	6.12.	Simulation Environment	90
	6.13.	Simulation Setup and Configuration	91
	6.14.	Software-Defined Networking Handover and Mobility Management	94
7.	Expe	erimental Results	97
	7.1.	Seamless Handover Management	97
	7.2.	Handover Delay	110
	7.3.	Effect of forwarding and control plane performance	117
		7.3.1. Augmenting cellular network capabilities with Software-Defined	
		Networking controllers	123
		7.3.2. Software-Defined Networking compatibility for existing 4G cel-	
		lular networks	127
		7.3.3. Maintaining of the live user session and user equipment con-	
		nectivity \ldots	129
		7.3.4. Vertical handover capabilities	140
		7.3.5. Quality of Service provided by Software-Defined Networking .	146
	7.4.	Software-Defined Networking support for 5G cellular networks	148
		7.4.1. Multi connectivity handover management	149
		7.4.2. Fast handover capabilities	152
		7.4.3. Handover in base stations groups	155
		7.4.4. High bandwidth management	164
		7.4.5. Summary	166

	III. Drawing Conclusions 16		167	
8.	Cone 8.1. 8.2. 8.3. 8.4.	clusions Drawir Resear Discrep Sugges	and Suggestions for Future Work Ing Conclusions Concl	169 169 169 171 172
IV	′. Ap	pendi	ces	173
Α.	Mob A.1. A.2.	ile IP Introdu Captur networ	uction	175 175 175
В.	Soft	ware-D	efined Networking	183
С.	Software-Defined Networking 183 Network Simulation 189 C.1. Software Used in the Research 189 C.2. Simulation code snippets 189 C.2.1. Ryu controller association 194 C.2.2. Centralised handover management topology building in Mininet-WiFi Python API 194 C.2.3. Distributed handover management topology building in Mininet-WiFi Python API 195 C.2.4. Inbound handover management topology building in Mininet-WiFi Python API 196 C.2.5. Centralised and local hybrid handover management topology building in Mininet-WiFi Python API 196 C.2.6. Distributed and remote simultaneous handover management topology building in Mininet-WiFi Python API 197 C.2.6. Distributed and remote simultaneous handover management topology building in Mininet-WiFi Python API 198 C.2.7. Attaching custom methods to simulation network instance variable in Mininet-WiFi Python API 198 C.2.8. Automating network dynamics and data retrieval in Mininet-WiFi 199 C.2.9. Conducting Simulation Experiments with Mininet-WiFi 201		 189 189 194 194 195 196 197 198 199 201 	

Bibliography

203

List of Figures

1.1.	Software-Defined Networking fundamental architectural components and their interfacing.	14
2.1.	Functional diagram for Mobile IP showing major network components and their interrelations.	22
3.1.	Sequence diagram for Mobile Node registration in Mobile IP	27
4.1.	Network Functions Virtualisation using Hypervisor and operating system containers.	30
4.2.	Programmable networking in Linux kernel using eBPF to achieve net- work programmability.	31
4.3.	An overview of Software-Defined Networking architecture showing	0- 00
4.4.	Software-Defined Networking architecture based on OpenFlow protocol.	$\frac{33}{35}$
4.5.	Fundamental components of a flow entry in the flow table of Open- Flow supported devices	36
4.6.	Main modules of a SDN controller to facilitate a comprehensive net-	20
4.7.	Organising Software-Defined Networking controllers based on net-	38
4.8.	work requirements	40
4.9.	hardware firmware	40
	forming in-band control.	42
4.10.	A 5G networking model based on network slicing powered by SDN. $$.	43
4.11. 4.12.	Integrating network slicing feature into existing cellular network The process of directing and attaching end users packets for achieving	47
	network slicing goals via Software-Defined Networking	48
5.1. 5.2	OpenFlow enabled LTE/Evolved Packet Core architecture	49
0.2.	computing	51
5.3.	Software-Defined Networking implementation in the cloud using Open- Stack, OpenDaylight and OpenFlow.	52

5.4.	Fundamental difference between NFV and SDN architectures for managing network	55
6.1.	Handover management optimisation approach in Software-Defined Networking and Mobile IP	62
6.2.	Handover of h1 host as it disassociates from source SDN (S1) to target SDN (S2) domain with the Southbound API	68
6.3.	Handover mechanism for a non-SDN to SDN network using a middle- ware or wrapper for the Element Management System or the Network Management System and the Northbound API of the SDN Network [5].	69
6.4.	Centralised SDN controller setup for mobile network.	72
6.5.	Discrete SDN controllers network for geographically distant base sta- tions mobile network.	73
6.6.	Workflow diagram for modelling and simulation of SDN for mobile networks	76
6.7.	A SDN controller in network as a dynamic system where the states of the system change with the time	77
6.8.	Software-Defined Networking forwarding device can be modelled as a state machine with variables preserving their states until an inter- vention is made by the SDN control plane controller	81
6.9.	Handover simulation using OpenFlow switch as access point and host as user equipment	01 80
6.10.	Snapshot of Mininet-WiFi emulator terminal output showing han- dover of h2 host from s1 OpenFlow switch to s2 OpenFlow switch using moveHost method and clearing all the flow entries in both s1 and s2 using doct command	02
6.11.	Snapshot of Mininet-WiFi emulator terminal output showing topol- ogy links among hosts h1, h2, h3, h4 and OpenFlow switches s1, s2	00
6.12.	Snapshot of Linux terminal output showing OpenFlow switches s1 and s2 flow entries states using ovs-ofctl command for before and	83
	after handover of host h2	84
6.13.	Diagram of Software-Defined Networking controller mobile node access point tracking strategies for mobility management.	85
6.14.	The architecture of a network scenario simulation program	86
6.15.	Network simulation intervention in Mininet-WiFi program by adding custom member methods/functions into Mininet instance variable	
	during simulation runtime	87
6.16.	Network simulation operator activities automation implementation in	
	Mininet-WiFi simulation program.	89
6.17.	Fundamentals steps for setting up topology inside the Mininet-WiFi for running a handover simulation.	93

6.18.	Location of sta1(user equipment) moved from one access point (ap1) to another (ap2).	. 95
6.19.	Software-Defined Networking controller access point management con- figurations where dashed line represents control link	. 96
7.1.	Handover of u1 user equipment managed by C1 SDN controller	. 98
7.2.	Mininet-WiFi emulator terminal output showing simulation and de- vices settings	. 100
7.3.	Linux terminal output (simulation host machine) showing virtual access points status.	. 101
7.4.	Mininet-WiFi emulator terminal output and Wireshark application window showing results for ap1 access point	. 102
7.5.	Mininet-WiFi emulator terminal output showing Ping and ifconfig commands results for u1 user equipment when u1 is under ap1 access point.	. 103
7.6.	Mininet-WiFi emulator terminal output showing Ping and ifconfig commands results for u1 user equipment when u1 is under ap2 access	10.4
77	point	. 104
1.1.	under controllers configuration 2	. 105
7.8.	Mininet-WiFi emulator terminal output showing forwarding devices flow tables' entries under controllers configuration 2	. 106
7.9.	Mininet-WiFi emulator terminal output showing simulation settings under controllers configuration 3.	. 107
7.10.	Mininet-WiFi emulator terminal output showing forwarding devices flow tables' entries under controllers configuration 3	. 108
7.11.	Mininet-WiFi emulator terminal output showing simulation settings under controllers configuration 4.	. 109
7.12.	Mininet-WiFi emulator terminal output showing forwarding devices flow tables' entries under controllers configuration 4	. 110
7.13.	Mininet-WiFi emulator terminal output showing simulation settings under controllers configuration 5	. 111
7.14.	Mininet-WiFi emulator terminal output showing forwarding devices flow tables' entries under controllers configuration 5	. 112
7.15.	Mininet-WiFi emulator terminal output showing Ping command re- sults for u1 user equipment when u1 was moved from ap1 to ap2 access point under controllers configuration 5.	. 112
7.16.	Handover delay and associated packets rate when u1 user equipment moves from ap1 to ap2 access point under controllers configuration 1.	114
7.17.	Network traffic delay and associated packets rate when u1 user equip- ment was connected again with ap2 access point after losing connec- tion to the access point under controllers configuration 1	. 115

7.18.	Mininet-WiFi emulator terminal output showing forwarding devices flow tables' entries when flows are installed based on the network traffic conditions and when flows are installed preemptively under	
	controllers configuration 1	. 116
7.19.	Handover delay and associated packets rate when a proactive control strategy was utilised when u1 user equipment moves from ap1 to ap2	110
	access point under controllers configuration 1	. 118
7.20.	Maximum and minimum delay for traditional and proactive flow man- agement of forwarding devices when u1 user equipment moves from ap1 to ap2 access point under controllers configuration 1	119
7.91	Minimum average maximum and standard deviation of delay for	. 110
1.21.	when u1 user equipment moves from ap1 to a different access point under controllers configuration 1 to 5	119
7 22	Handover delays for different SDN controller solutions	120
7.22.	CPU usage by SDN controller solution on the hosting platform for	. 120
7.20.	maintaining limit handovers for low to high performance loading.	. 121
7.24.	Memory usage by SDN controller solution for maintaining limit han-	100
7 05	CDU soul CDN for a line bound time the bott in the	. 122
(.25.	for maintaining limit handovers for low to high performance loading.	. 123
7.26.	Connection delays at the users end for maintaining live connections for low to high network performance loading.	. 124
7.27.	Extending the capabilities of an existing cellular network with SDN controllers.	. 125
7 28	Arranging controllers based on cellular network fronthaul and back-	
7 .20.	haul requirements.	. 126
7.29.	Packet loss percentage when no communication was established be- tween the controllers	. 127
7.30.	Packet loss percentage during increased network traffic loading when	
	managed by controllers of different layout.	. 128
7.31.	LLDP packet travel path during handover for Sta4, Sta5, and Sta6 $$	
	user equipment	. 128
7.32.	Access points and user equipment setup in Mininet-WiFi for handover simulation when u1 moves between ap1 and ap2 while maintaining a	190
	remote link with ap3.	. 130
7.33.	Average of handover delays for user equipment moving from one access point to another access point while maintaining the link with a third	
	remote access point.	. 131
7.34.	Three access points setup in Mininet-WiFi to test new connections delay in the crowded live connections.	. 132
7.35.	New connection delays in the crowded live connections between 20 and 50 user equipment	. 134

7.36. Mininet-WiFi topology setup for session continuity test of the user	
equipment when moving between distance access points while main-	
taining data link to the Internet remote server	135
7.37. Network reachability user equipment from different access points to	
the remote host	136
7.38. Network reachability user equipment from different access points to	
the remote host with smart SDN solutions	137
7.39. Unified control clouds of two different control networks for providing	
IP mobility services to the radio access network.	139
7.40. Mobility delays introduced by unified control strategies.	140
7.41. Mininet-WiFi graph showing u2 user equipment is connected to the	
ap2 base station via both wired and wireless links	142
7 42 Delays experienced by user equipment u2 in Mininet-WiFi vertical	± ± =
handover simulation by swapping of u2 underlying network interfaces	143
7.43 Mininet-WiFi output of ifconfig command showing u2 user equipment	1 10
with multiple wireless lan interfaces	144
7.44 Mininet-WiFi output of ifconfig command showing an1 access point	111
with multiple wireless lan interfaces	1/5
7.45 Miningt WiFi output of inconfig command showing up user equip	140
mont is associated with multiple ESSID	146
7.46. User equipment link establishment delays for a vertical handover with	140
different underlying links swapping	147
7 47 Quality of Service improvement in Software Defined Networking by	147
(.47. Quality of Service improvement in Software-Defined Networking by	110
applying smart solutions in the control plane.	148
7.48. Simulation setup for multiple user equipment simultaneous handover	140
between two base stations in close range in Mininet-WiFi.	149
(.49. Simultaneous handover of one to many user equipment between two	150
base stations in Mininet-WiFi.	150
(.50. Delays for simultaneous handover of one to many user equipment	1 2 1
between two base stations in close range in Mininet-WiFi.	191
(.51. Access point processing delays in Mininet-WiFi for simultaneous han-	
dover of one to many user equipment between two access points in	150
close range.	152
7.52. Simultaneous handover of many to many user equipment between two	1 - 0
access points in close range in Mininet-WiFi	153
7.53. Delays for simultaneous handover of many to many user equipment	1 - 0
between two base stations in close range in Mininet-WiFi	153
7.54. User equipment passing through variable number of access points	
network in Mininet-WiFi.	154
7.55. Average of packet losses during stress test on an SDN solution for	
handling limit number of access points for rapid handovers	156
7.56. Path delay introduced during a handover when user equipment changes	
access point at a rate of 2 access points per second for three different	
network sizes.	157

7.57.	Forwarding delay introduced during a handover when user equipment changes access point at a rate of 2 access points per second for three different control network sizes	158
7.58.	Path delay introduced during a handover when user equipment changes access point at a rate of one access point per second for three different	100
7.59.	control network sizes	159
7.60.	different control network sizes	160
	delays for random movement of user equipment in crowded base sta- tions	161
7.61.	Handover delays for random movement of user equipment in crowded base stations where packet in hop tracing results in an uninterrupted	1.00
7.62.	Hierarchical control platform design in Mininet-WiFi for improving	162
7.63.	Packet delay from Software-Defined Networking hierarchical control paradigm	164
7.64.	A star control platform design in Mininet-WiFi for achieving high network fidelity and throughput.	165
7.65.	High bandwidth management by SDN controller for three different network tiers.	166
A.1.	A foreign agent is responsible for registration operation in Mobile IP[102]	176
A.2.	Message exchange in the registration of the mobile node consisting of a foreign agent and without an foreign agent[53]	177
A.3.	Inter-system change message sequence between 3GPP access and non- 3GPP[39]	178
A.4. A.5.	Hierarchical Mobile IP (HMIP)[29]	179
A.6.	Received signal quality (RSRQ) and received signal level (RSRP) for Sydney Optus Long-Term Evolution eNodeB no. 140681 after Intra-	179
A.7.	cell handover	180 181
B.1.	Architecture of Software-Defined Networking[15].	184
B.2.	Integrating Network Functions Virtualisation into OpenFlow Software- Defined Networking[15].	185
В.З.	Base stations interference management using OpenFlow-enabled cen- tralised control[124].	185

B.4.	Routing mobile packets using centralised SDN control forwarding	
	plane[124]	186
B.5.	OpenFlow controller switch architecture[50]	186
B.6.	Mobile node registration message communication in OpenFlow Software-	
	Defined Networking[106]	187
B.7.	Ryu controller architecture[50].	188
B.8.	Messages can be exchanged from the controller to OpenFlow switches	
	using Link Layer Discovery Protocol[96].	188
C.1.	Trade-offs of different wireless experimental platforms[127]	190
C.2.	Components and connections in Mininet-WiFi emulating a two hosts	
	$network[46]. \ldots \ldots$	191

List of Tables

6.1.	Workstation used for carrying out simulations for the research 92
7.1.	Connection and session packet loss for different number of new UE connection requests
7.2.	Average handover delay of user equipment in milliseconds passing
	through variable number of access points network in Mininet-WiFi 155
A.1.	Features comparison of different mobile network generations[41] 177
B.1.	Response Time with the RYU controller[120]
C.1.	Software used mainly during the research