

Analysis of the Latest Trojans on
Android Operating System

by Baodi Ning

Thesis submitted in fulfilment of the requirements for
the degree of

Master of Analytics

under the supervision of Dr. Yulei Sui
 and co-supervision of Dr. Jingling Xue

University of Technology Sydney
Faculty of Engineering and Information Technology

January 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Baodi Ning declare that this thesis, is submitted in fulfilment of the
requirements for the award of Master of analytics, in the Faculty of
Engineering and Information Technology at the University of Technology
Sydney.

This thesis is wholly my own work unless otherwise referenced or
acknowledged. In addition, I certify that all information sources and
literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other
academic institution.

This research is supported by the Australian Government Research
Training Program.

Signature:

Date: January 6th, 2021

Production Note:

Signature removed prior to publication.

Abstract

With the rapid advancements of electronics, the mobile operating system can accom-

modate various applications, which greatly facilitates people’s everyday life. With a user

group of more than 2 billion, the Android platform provides a diverse ecosystem for devel-

oping and publishing all sorts of applications. Although Google’s official application store,

Google Play, contains over 2 million apps, such a huge market also attracts hackers to make

profits through distributing malware.

Mobile malware has rocketed since 2009. As reported by Broadcom Inc., an industry-

leading security company, 2017 witnessed an increase of new mobile malware strains, com-

pared with the year of 2016. Additionally, more profit-driven malware emerged with the

growth of underground markets. Due to the fragmentation problem of the Android plat-

form, Android has long been the most targeted operating system suffering from attacks. To

keep pace with the cutting-edge anti-malware countermeasures adopted by cyber-security

businesses, malware developers have abused high-level obfuscation, virtual environment

recognition, conditional execution (logic bomb), run-time payload dropping, etc., to fool

their opponents (i.e., security defending products and reverse engineering tools). These

techniques are usually more obvious to trace during the evolution and diversification of a

malware family. In this thesis, we take a close look into both recent Android trojans and

one specific family of Android banking trojan, that infiltrates banking applications to steal

credentials or trick victims to type in their usernames and passwords through displaying

fake login interfaces. This thesis focuses on both statically reverse engineering the samples

and dissecting the programs to understand their internal logic and find the similar features

that could be used to assist security analysts, and dynamically monitor their behaviors in

emulators. From public and private sources, 2380 samples of trojans from 20 (sub)families

have been collected. As a result of the analysis, a lucid overview and improved apprehension

of Android trojans are provided. The results indicate that Android trojans evolves towards

possessing more malicious capabilities and more diverse permutations without losing their

core design, which would cause more limitations and ineffectiveness for modern security

solutions.

1

Acknowledgement

Throughout my research life pursuing a master’s degree, I have received a lot of support from

a wide range of people, both online and offline, some are friends or relatives while some have

never been in contact.

First, I would like to sincerely thank my supervisor, Sui, whose expertise and resources

are significant in both giving recommendations for revising the published articles as well as

this thesis and informing possible journals and/or conferences to submit potentially publishable

drafts. His insightful suggestions make my work more coherent and professional.

I would like to acknowledge my colleagues Guanqin Zhang, Zexin Zhong and Yanxin Zhang,

who have helped me with reviewing drafts. I want to thank them all for their advice on perfecting

the work to a higher level.

Also, I would like to thank some of the security professionals I have followed from Twitter,

who are very resourceful and let me know many useful tools for both reverse engineering and

analysis. Among them, @xabc0 a.k.a. Ahmet Bilal Can is the one that leads me into the world

of banking trojans and malware analysis by his posts. @pr3wtd a.k.a. Witold Precikowski is the

one who founded Apkdetect [1], and helped me with answering my questions when I encountered

some weird code in the reverse-engineered source code. @LukasStefanko a.k.a. Lukas Stefanko

also provided me with good ideas when I had some confusion when analyzing some malicious

payloads of Bankbot Anubis.

In addition, I would like to thank my parents. I appreciate their encouragement when I

felt frustrated or disappointed during my research. Their support made me through the plight.

Moreover, this dissertation would not be completed without the company and communication

from my friends, Wei Liu and Zhe, who have given me helpful suggestions and provided informa-

tive discussions based on their experiences of pursuing a PhD degree. Besides, the entertainment

with them refreshed my mind from intensive research.

Finally, I would like to thank Bilibili as well as Youtube for providing records of great courses

as well as amusing content for cheering and charging me up during my off-work hours.

2

Contents

1 Introduction 7

1.1 Android operating systems . 7

1.2 Android malware and Android banking trojan . 9

1.3 APK Structure . 14

1.4 Research Objectives . 15

1.5 Thesis Organization . 16

2 Literature Review 17

2.1 Android Trojan Evolution . 17

2.2 Android Malware Families Analysis . 17

2.3 Android malware detection . 18

2.3.1 Static Approaches . 19

2.3.2 Dynamic Approaches and Hybrid Approaches 20

2.4 Android Malware Clustering and Classification 21

3 Deep Analysis of Recent Android Trojans 22

3.1 Data Collection and Extraction . 22

3.2 Attributes of Recent Android Trojans . 27

4 Analysis of the Bankbot Anubis family 40

4.1 Anubis’s Approach . 41

4.1.1 Phase 1: Mobile Devices Cyber Attack . 41

4.1.2 Phase 2: Privilege Escalation . 42

4.1.3 Phase 3: C&C Server . 44

4.1.4 Phase 4: Decrypting the encrypted . 47

4.2 Data and Analysis . 47

4.2.1 Anubis Roadmap . 48

4.2.2 Development of Encryption . 50

4.2.3 AndroidManifest . 50

4.2.4 Hard-coded API classes and methods . 54

4.2.5 Opcode Sequences . 57

5 An Observation for Android Malware Detection 59

3

6 Conclusion and Future Work 64

Appendix A Publication List 78

Appendix B Figures 78

List of Figures

1 Market shares of different operating systems for mobile phones[2] 8

2 Number of applications available on Google’s official store[3] 8

3 Percentage of Android devices (i.e. Cumulative distribution in the screenshot)

that the application could run on w.r.t the minimum SDK version (i.e. Android

platfrom version in the screenshot) . 8

4 Distribution of Android versions based on the cumulative distribution data . . . 9

5 Banking trojans detected by Kaspersky from 2015 to 2019 14

6 Dissected file structure of an APK file . 15

7 The screenshot that the hashtags added by an analyst’s comment 23

8 The screenshot of the first five samples when searching with ”tag: trojan” on

Koodous platform . 23

9 The workflow of generating family names of Android trojans through utilizing

the Koodous platform . 24

10 The captured brief information that matches the family name (e.g. Anubis) input

in the search box in Apkdetect . 25

11 The captured detailed information that either matches or is somehow relevant to

the family name (e.g. Anubis) input in the search box in Apkdetect 25

12 The workflow of using Apkdetect for generating configuration information of the

samples . 27

13 Anubis Attack Procedures . 41

14 Infection Process . 42

15 Code Injection in Forged App . 43

16 Interface of Anubis Accessibility Extraction . 44

17 Anubis C&C Server Model . 45

18 The breakdown of the Anubis samples regarding configurations and versions . . . 48

19 Emergence of different versions of Anubis from January 2018 to July 2019 49

20 Top 4 frequent API classes used by four versions of Anubis 56

21 The name of the newly implemented module for new versions 57

4

22 Top 3 frequent (including overlapping) documented Opcode sequences of four

versions of Anubis . 58

23 The workflow of identifying suspicious and unsuspicious APKs 61

24 The AUC-ROC curve of the results . 63

B.1 ”3458” in Rotexy . 78

B.2 ”393838” in Rotexy . 78

B.3 How Anubis displays toast . 79

B.4 How Anubis tailors the text based on the language 79

B.5 Hard-coded ”Enable access for” in different languages 79

B.6 Base64 decoded image from the source code of most higher versions of Anubis . . 80

B.7 A sharper image from double Base64-decoded source code snippets of an Anubis

dropper . 80

List of Tables

1 Differences between different types of malware 10

2 The timeline of 20 (taking sub-families into account) Android trojans in the

collection . 26

3 The (abbreviated) dangerous and sensitive permissions requested by recent An-

droid trojans . 29

4 An overview of recent Android trojan (sub)families in regard to the categories of

permissions requested . 30

5 The (abbreviated) intents that are of interest to malware authors to trigger trojans 32

6 An overview of recent Android trojan (sub)families in regard to the categories of

intent actions used . 33

7 An overview of recent Android trojan (sub)families in regard to the anti-analysis

techniques . 35

8 An overview of recent Android trojan (sub)families in regard to the persistence

techniques . 37

9 An overview of recent Android trojan (sub)families in regard to the communica-

tion methods with C&C . 39

10 Frequently used permissions by Anubis . 52

11 Shared intent filters by all versions of Anubis . 53

12 API classes abused by different versions of Anubis 55

5

13 Top 3 documented API methods that are the most different in terms of their

average frequency . 56

14 Seven types of Dalvik Opcodes . 57

15 The statistics of the APK samples in the dataset 59

16 The confusion matrix of the results . 62

6

1 Introduction

1.1 Android operating systems

With the rapid improvement of integration techniques for microelectronics, mobile devices have

gradually become an indispensable part of people’s daily life, not only because of the portability

but also thanks to the diversity of mobile software (a.k.a. applications) that people can have

access to. As mobile devices integrate more convenient applications that can tackle real-life prob-

lems, people have become extremely dependent on such small devices, e.g. social networking,

news reading, video & audio playing and watching, digital marketing, etc.

Google declared in 2019 [4] that more than 2 billion Android devices were active. In addi-

tion, Fig. 1 shows that Android has started to become dominant in the market share against

other systems since 2012. The market share of Android came to its peak between 2018 and

2019, with more than 90 percent. The ever largest market share of either iOS or Symbian is less

than 45 percent. In line with the popularity of the Android operating system, Fig.2 reflects an

upward trend regarding the applications published by Google Play. The statistics of available

applications in the official store, Google Play peaked at March 2018, with 3.6 million. Although

the statistics fell from 3.6 to 2.6 million from March to September due to some policy, the vol-

ume of applications in Google play has never decreased since then. The wide acceptance of the

Android system can be attributed to the open-sourced trait of its source code, which facilitates

the API (short for Application Programming Interface) calling, testing and debugging process

for developers. However, the side effect of such property stands out due to the severe frag-

mentation issues. Figure 3 is the screenshot of the distribution dashboard that comes from the

official Integrated Development Environment (IDE) in April 2020, Android Studio for Android

developers when a new project is created and click on the “Help me choose” link under the

minimum SDK (short for Software Development Kit) dropdown. The cumulative distribution

data reflect the percentage of devices that your application could be run on, according to the

minimum SDK version selected. Based on these statistics, the distribution for each version is

shown in Fig.4. Only less than 10 percent of Android mobile users have upgraded to the latest

version, which makes modern anti-virus engines insensitive to those attacks that are aimed at

older versions [5, 6, 7, 8, 9]. Although the OS framework fragmentation prevents general exploits

from hackers, different vendors of Android OS customize their ecosystem by adding different

native libraries, which malware authors can abuse to evade the generic detection of anti-virus

engines [7, 8, 10, 11, 12, 13, 14, 15, 16]. Moreover, the speed for OEMs (Original Equipment

Manufacturers) and their vendors to fix previous vulnerabilities is slow enough for attackers to

7

Figure 1: Market shares of different operating systems for mobile phones[2]

Figure 2: Number of applications available on Google’s official store[3]

launch zero-day attacks based on the CVEs (Common Vulnerability and Exposures) found.

Figure 3: Percentage of Android devices (i.e. Cumulative distribution in the screenshot) that

the application could run on w.r.t the minimum SDK version (i.e. Android platfrom version in

the screenshot)

8

Figure 4: Distribution of Android versions based on the cumulative distribution data

1.2 Android malware and Android banking trojan

Malware is an umbrella word of malicious software. The term malicious refers to what could

cause damage to the computer system or more intuitively, extremely hinder the user experi-

ence once being run. However, the boundary of benign and malicious software is actually not

clear. For instance, some software are programmed to stealthily collect the device information

(e.g. android id, manufacturer, model, firmware version), keystroke whatever users are typing

and/or record users’ speeches. Finally all of these information or just the most representative

or recognizable group (through some local processing) of information is sent to the server that

has already been deployed for gathering user data. After being cleaned and classified, such data

could be sold to business companies for more accurate advertisement shooting. Such software

violate the privacy rights of users, but without other security applications, what is running at

the backstage can not be easily notified by end users. Moreover, such functionalities sometimes

exist in some innocuous applications which provides useful features, such as online shopping,

chatting and social networking. Such software is usually called PUA (Potentially Unwanted

Applicaitons), grayware or riskware. Since previous researches are inconsistent on the general

taxonomy of malware and on whether or not such PUA should be considered as malware, only

the categories that have been included most frequently are regarded as malware in this thesis.

Generally, Android malware can be classified into 7 categories. As shown in Table 1, the

differences between seven types of malware regarding six properties are displayed. The meanings

of the each sub-property is shown below:

1. Exisiting Form:

9

Table 1: Differences between different types of malware

Virus Worm Trojan Backdoor Spyware Rootkit Botnet

Existing Form

Parasitic X

Masquerade X X X X X X

Independent identity X

Propagation mode

Repackaging X X X X X X

Update attack X X X X X

Sideload X X X X X X X

Self-replicate X X

Attack target

Local files X X X X X

Network traffic X X X

Operating system X X X X X X

Major risks

Data theft X X X X X X X

Network paralysis X X X

System damage X X X

Spreading speed

Difficulty of being detected

(a) Parasitic: Attached itself to another executable in order to get executed whenever

the host executable is triggered by victim’s interaction.

(b) Masquerade: Disguised itself with legitimate apps’ meta-data, especially the exte-

rior icon and app name that are displayed to users during installation and in the

home screen after successful installation.

(c) Independent identity: Reproduce itself continuously and spread the copies through

networks or removable media running in the background without any user interac-

tion

2. Propagation mode:

(a) Repackaging: A series of reverse engineering as well as editing, compiling and sign-

ing. Malware authors first look for and download popular applications on Google

Play Store. After downloading, these APKs (Application Packages) are decom-

piled and disassembled for malware authors to analyze the source code and inject

malicious code snippets to the source code, then add adequate invoking Android

API (Application Programming Interface) methods to these malicious codes, add

resources (e.g. images and strings) for phishing if necessary, as well as modify the

manifest file so that these malicious actions can be executed during run-time. Af-

terwards, the integrated source code gets assembled and then gets compiled with

10

other resources into a package prior to signing with self-generated keys. Eventu-

ally, malware authors distribute the repackaged APKs to different third-party APK

stores that can accelerate its spread, because the criteria for publishing uploaded

APKs in such unofficial stores are relatively lenient, compared with the official

store.

(b) Update attack: After a successful installation of the seemingly benign APK, a

window that either notifies the user to agree on an update so that the application

can satisfactorily perform its functionalities, or simply exhibits a window which

tells the user that the installed APK is downloading updated content. Actually,

the files to be downloaded are the payload of a malware, that acts as a hot-fix or

plugin of the original APK.

(c) Sideload: In order to evade the detection engines [17] deployed in the official store

but also attract as many potential victims as possible for monetization, malware

authors first upload to the Google Play Store a simple APK like a calculator appli-

cation which provides identical functionalities with other calculator applications.

But the APK has already been injected with additional codes for communicat-

ing with a remote server from which the real malicious APK will be downloaded.

Besides, some malware authors even encrypt the core malicious codes into a mal-

formed file in the malicious APK. The core malicious portion would be decrypted

into the memory and get executed during runtime, but such part is able to evade

static detection on the device.

(d) Self-replicate: Malware copies itself continuously without any user interaction.

3. Major risks:

(a) Data theft: Hackers exfiltrate valuable data to the remote server. The types of such

data include but are not limited to SMSs, images, audios, videos, bank accounts

and credentials. The sensitive information would be either sent to some interested

companies for more accurate advertisement promotions or sadly end up in the hands

of cyber criminals for monetization.

(b) Network paralysis: If hackers can control the SMS and/or phone call module of the

infected devices, they are able to launch DOS (Denial-of-service) attack through

commanding the compromised devices to endlessly send SMSs or MMSs as well

as dial premium-rated numbers. As a consequence, the network module would be

overwhelmed by large amounts of traffic thus depleting the network resources of

the compromised smartphones. Eventually, the victims would be hindered from

accessing these modules.

11

(c) System damage: The damages that can be caused to the operating system in-

clude battery draining (e.g. constant process scanning), configurations altering

(e.g. change in wallpaper) and functionalities invalidating (e.g. SMS redirecting,

SMS blocking, call forwarding).

Virus [18, 19]: Virus refers to a kind of malicious program which parasitizes a benign ap-

plication so as to avoid being recognized, and infects other files under the same system once

being executed. Virus can land on the device either via a piggybacked software or through

silently side-loading from a remote server. After landing successfully, virus then explores the file

system to duplicate and inject itself to other files. Besides, virus can also perform other harmful

activities based on how malware authors have programmed. The threat of virus includes data

theft, software crash and/or denial-of-service (DOS) attacks.

Worm [20, 21, 22, 23, 24]: Worm is a type of malware that is notorious for its self-replication

and high spreading speed through networks. Thesis malicious programs usually arrive at devices

through social engineering like attachments in spam emails or instant messages. Once opened,

the user would be directed to a malicious website or automatically download the worm payload.

After installation, the worm runs silently at background and compromises the device without

arousing attention of the user. Worms can even take advantage of the victim’s restored email

session to further spread the infection. Furthermore, worms can exploit the vulnerabilities of

the operating system to commit malicious actions like modify and delete files. Most of time,

the mission of a worm is to deplete the system resources by nearly infinite replication and to

paralyze the network system, which is often followed by the attack of backdoor installation as

well as rootkit installation for seizing full control of the infected device. And eventually the

compromised device could just turn into a bot in the botnet.

Spyware [25, 26, 7]: Spyware is a type of malware that covertly gather information for

more accurate advertisement shooting. Spyware mostly hides in some third party libraries

used by the application and is relatively difficult to be detected, since the functionalities are

developed under a third-party SDK, with their own native implementations. Spyware explores

the operating system for any valuable or potentially valuable data, such as credit card numbers,

netbank accounts and credentials, netbank balances, email addresses, web browsing histories,

local audios, stored pictures and downloaded videos, chatting histories of social medias like

twitter, facebook, and even keystroke logs. Afterwards, spyware send all or just part of the

collected data that are considered worthy enough by malware authors to the remote server

deployed by malware developers.

Backdoor [7, 27]: Backdoor is a type of malware that can be considered as an unautho-

rized path which can assist attackers to push other malware into the compromised device once

12

installed. Backdoor is usually generated with the help of rootkit to exploit undocumented pro-

cesses in order to gain superuser privilege so that further attacks are able to bypass all security

countermeasures and will not be notified by users. Backdoor is always abused by hackers to

gain full control of a compromised device without user’s knowledge.

Rootkit [28, 26, 25, 24, 29, 7]: Rootkit is a type of malware that is capable of obtaining

remote access and control of the target device. Since rootkit exploits system-level vulnerabilities

to seize administrative privilege, it is hereby difficult to be identified and removed due to some

subsequent crucial alterations of the system configurations. Once rootkit successfully persists

on the infected device, it executes along with every boot or reboot of the device, intended to

open a portal (backdoor) for further attacks.

Botnet [22, 24, 29, 7]: Botnet is a kind of malware that is created to allow malware authors to

remotely control and command the bot (penetrated device) to perform specific activities through

a server. Such server usually controls a series of compromised bots which can be used for more

aggressive purposes, i.e. launching DDoS (Distributed Denail of Service) attacks, deploying

spiders for exfiltrating data that are stored in centralized servers, planting other malware (e.g.

ransomware, adware) for monetization, etc..

Trojan [28, 22, 23, 25, 26, 29, 7]: As the word suggests, trojan represents one type of malicious

programs that can be regarded as any malware that masquerades itself using the cover (exterior

icon) of other benevolent applications with the intent of avoiding arousing suspicions from

end users, while at the same time has the capability to commit aggressive activities against

unauthorised local information. The term trojan is borrowed from the Ancient Greek story of

the deceptive Trojan horse that led to the occupation of the City Troy. Due to the fact that

most banks have developed their own applications for more convenient card management, trojan

developers have considered not only phishing victims into inputting their bank credentials to

an imitated fake bank login webpage, but also exploiting call forwarding as well as message

forwarding so as to tackle the call of transfer challenge from banks and capture the mTANs

(Mobile Transaction Authentication Numbers) generated by TFA (two-factor authentication)

policy. According to 5 latest annual reports of mobile malware evolution from Kaspersky [30,

31, 32, 33, 34], Fig.5 shows that the number of new banking trojans detected by Kaspersky kept

increasing from less than 0.5% in 2015 to around 3% in 2018. Although the proportion of new

banking trojans detected in 2019 has decreased, compared with the percentage in 2018, they

still comprised 2% of all the malicious Android applications detected.

13

95%

96%

97%

98%

99%

100%

2015 2016 2017 2018 2019

Other Android malware New banking trojans

Figure 5: Banking trojans detected by Kaspersky from 2015 to 2019

1.3 APK Structure

As a package, an APK file is saved in the ZIP format as an archive file format. To view the

contents inside an APK file, we simply need to change the .apk extension to .zip extension and

then extract the files inside with a archive extractor. As Fig. 6 illustrates, the files compressed

within an APK file typically include a directory named res storing necessary resources, a direc-

tory named META-INF storing the manifest information and other metadata about the java

classes carried by an APK, a file named AndroidManfiest.xml storing the structure, meta-

data, components and requirements of an APK and a file named classes.dex storing compiled

source codes. Besides, some APKs could contain a libs folder where Android developers imple-

ment additional native C or C++ codes in the format of shared objects (.so files); some APKs

may also contain a assets folder for storing raw resources like databases, audios or videos, in

which the files can be grouped into sub-folders and have flexible filenames[35]. Some malware

would store the encrypted malicious .dex file in the assets directory.

Under the res directory, there generally exist the following directories including:

• drawable and/or drawable-...dpi-vxx: These directories store the icons and images

used by the APK at runtime in PNG format with different pixel densities (DPI, dots per

inch) to fit different devices at various resolutions for different API levels.

• layout and/or layout-xxx: These directories store the layout xml resources that define

how an UI widget would be displayed.

• mipnap and/or mipmap-...dpi-vxx: These directories store the launcher icons which

are shown on the homescreen with different DPIs to fit different devices at various reso-

14

lutions.

• values: This directory stores the values for the resources used in the APK, such as colors,

dimensions, styles, integers, boolean values, resource IDs (in public.xml) to be referenced

and most importantly strings like APK name, firebase URL (Uniform Resource Locator)

and Google web service API keys.

• values-...: The values-vxx, values-...-vxx (e.g. values-v21, values-ldltr-v21) and/or

values-...dpi directories store style xml resources, dimension xml resources and/or draw-

able xml resources for specific API level (21 for the examples given) and above and for

device with specific DPI. The values-xx and/or values-xx-rxx (e.g. values-ca, values-

zh-rCN) directories store different string resources based on different languages (ca and

zh for the examples given).

The META-INF directory always contains three files, i.e. MANIFEST.MF, CERT.SF

and CERT.RSA. The MANIFEST.MF writes various information used in the runtime, for

instance, the list of filenames in the APK and the SHA1 digest encoded with base64 algorithm

of each file. The CERT.SF contains the list of filenames in the APK and the SHA1 digest

encoded with base64 algorithm of the listing itself. The CERT.SF contains the signed contents

of the CERT.SF file and the certificate chain of the public key that is used for signing the

contents.

APK

res

META-INF

classes.dex

AndroidManifest.xml

assets

libs

Figure 6: Dissected file structure of an APK file

1.4 Research Objectives

Due to the fact that the normal software and even the Android operating system are continuously

refreshing to fix the vulnerabilities and/or add more features, the techniques abused by the

15

malware authors are also constantly being upgraded to become compatible with both the old

environments and the new environments. This is because the new environments may easily

neutralize some functionalities of the previous tools used by the malware developers. Thus the

first aim of the project is to conduct studies of the techniques abused by recent popular Android

trojans. Besides, most of the state-of-the-art approaches for identifying these trojans, like some

machine-learning based approaches, are based on some previous knowledge (i.e. extracting useful

meta-data from both benign and malicious applications and generating those features that are

more distinctive than others when comparing the data from the benign with the data from

the malicious). This project also aims to propose an approach to identify suspicious Android

applications without utilizing prior knowledge. At last, to understand the core logic of the

Android trojans, a thorough analysis of an Android trojan family would be conducted. What

the readers can take away from this thesis are:

i. to know the core modules that are frequently abused by recent popular Android trojans

to perform dangerous behaviors.

ii. to understand how to identify suspicious Android applications without much prior knowl-

edge.

iii. to understand how a real-world Android trojan works.

1.5 Thesis Organization

This thesis is organised as follows:

• Section 2: This section presents a general of review of the literature of Android malware

analysis.

• Section 3: This section profiles the recent Android trojans in different perspectives.

• Section 4: This section presents a case study of a specific trojan family in several perspec-

tives.

• Section 5: This section presents a simple observation that can be used for identifying

suspicious (malicious) applications.

• Section 6: A brief summary of the thesis contents and its contributions are given in the

final chapter. Recommendation for future works is given as well.

16

2 Literature Review

2.1 Android Trojan Evolution

Having existed for more than 10 years, Android platform has progressively gained attentions

from both industries and malware authors. In spite of the implementations of different counter-

measures against malware, Android keeps attracting new malware authors to attack, because

of the expanding groups of users and its powerful functionalities. Although the first Android

trojan appeared in 2010, its functionality is restricted by the limitations of the platform. In

2017, Malwarebytes Labs announces that Android has possessed the capability of accommodat-

ing more composite applications, thus allowing for more vigorous malware [36]. The evidence of

the improving functionalities of trojans is stated in [37]. The addition of botnet functionalities

is what helps trojans to thrive [38]. Trojan Carberp only steals and collects SMS messages [39];

Trojan Hesperbot is capable of SMS spoofing and screen capturing [40]; GMBot first introduced

the overlay attacking technique for phishing users to enter credentials in fake windows; The

family Bankbot first came into sight in 2016, whose code takes the advantages of other Android

trojan families [41].

2.2 Android Malware Families Analysis

Up to now, the researches on Android malware mostly concentrate on generic analysis, for in-

stance, collecting different sets of samples and trying to categorize them into groups (detection,

clustering or classification), which neglects the specifics that a single family can present. As

far as we know, only two studies have comprehensively conducted analysis concerning a specific

malware family. Both R. Yu [42] and M. Alejandro et al. [43] have technically analysed the

variants of a ransomeware family and described the refinements that later generations intro-

duce. Regarding trojan, DroydSeuss both statically and dynamically dissects Banking Trojan

to find the shared artifacts of ABT like endpoint names with frequent itemset mining [44], which

could be used to correlate active campaigns. Y. Hu et al. take a deep look into the fraudulent

dating applications from many aspects (e.g. distribution, business model), these applications

lure the end users to purchase a premium services with fake/bot accounts [45]. Even though

these applications themselves do not target the device itself, they are used for bad purposes. N.

I. AMINuddIN et al. detect Android trojan based on dynamically extracted system calls [46].

However, some trojans that implement environment-aware techniques are able to evade such

approach. A detection framework regarding Android Banking Trojans (ABTs) is proposed by

C. Bai et al. [47]. In that study, they develop a suspicion graph which relates goodware and

17

ABT with API packages and create a feature space based on suspicion ranks and suspicion scores

obtained from the suspicion graph. Although they conduct analysis on 5 major ABT families,

their main goal is to find the features that can distinguish each family from other malware and

goodware, while our work is to dissect the technical details of trojan families. Y. Zhang et al.

investigate the effects of current obfuscation and deobfuscation techniques regarding the perfor-

mance of Anti-virus products and well-received detection approaches [48]. D. Wu et al. propose

an approach for detecting order violations in Android, which could also be used for analysing

some buggy Android malware [49]. Similarly, Y. Sui et al. present a event trace reduction tool

for accurately and effectively reporting bugs of an APK [50]. Y. Tang et al. investigate appli-

cation performance management (APM) libraries for their usage patterns. They find that some

APM libraries still employ deprecated APIs thus failing to perform satisfactorily and misuse of

APM libraries can lead to sensitive data leakage [51]. L. Wang et al. target a very important

topic under the COVID-19 pandemic background, i.e., coronavirus-themed Android malware

[52]. They build a coronavirus-themed dataset and study the attack vectors and mechanics

of such malware. CHIME models an APK into an Activity Transition Graph (ATG) that is

both context-sensitive and object-sensitive [53]. Such representation could also be valuable for

extracting useful information from an APK for further detection or classification tasks. In ad-

dition, L. Li et al. conduct a systematic literature review that outlines the challenges and the

methods regarding repackaged application detection in the research field [54]. They also collect

a dataset of repackaging pairs, which is meaningful for further repackage detection researches.

J. Gao et al. perform evolution studies on a market-scale application lineage regardingn the

vulnerabilities. Some key findings are that most vulnerabilities can survive for at least 3 up-

dates; some third-party libraries are the the root cause of vulnerabilities [55]. Y. Zhao et al.

conduct experiments regarding the effect of sample duplication in the machine-learning dataset

for machine-learning Android malware detection [56]. Their finding is that duplication in the

public datasets has limited influence on supervised malware classification models.

2.3 Android malware detection

Other literature is more focused on detection (i.e. a binary decision system that tells whether a

given sample is malicious or not), clustering (i.e. a decision system that can aggregate similar

samples into a group without any label from prior knowledge) or classification (i.e. a decision

system that can aggregate similar samples into a group with labels from initial knowledge).

We can partition the related work of Android malware detection in two classes: (i) run-time

monitoring of the invoked events, (ii) static analysis of the code to detect known patterns of

18

misbehaviors.

2.3.1 Static Approaches

In 2013, an approach named AndroSimilar was proposed by P. Faruki et al. [57]. It attains the

accuracy of 60% and follows the foot-print mechanism of known malware. Further it is used

to identify the unknown malware. AndroSimilar classifies an application as malware or benign

based on variable length signatures which are compared with signatures present in its database.

DroidAnalytics follows the approach of signature-based detection which extracts and analyses

the application at three levels [58]. It uses the principle of application signature along with API

calls to identify malware applications. It detects 2494 malware samples from 102 families of

malware database. Having said that, a higher than acceptable delay of false positive occurred

in the experiment results. Stowaway was designed to test whether the Android applications

were over-privileged or not [59]. It was applied to a set of 940 applications and found that

about 33% Android applications were over-privileged. R. Sato et al. proposed a lightweight

malware detection technique which analyses the Androidmanifiest.xml file [60]. It gains the

accuracy of 90% by comparing the extracted information from the manifest file with keyword

lists and also computes the malignancy score to judge the sample as malware or not. However,

it fails to analyse entire code. Y. Tang et al. investigated the vulnerabilities of links within

APKs from both attack and defense perspectives [61]. C. Y. Huang et al. detected 81% of

the malware samples by applying ML algorithms which follows the principle of labelling [62],

but it requires a second pass to determine whether the detected are malware or not. PUMA

achieved the accuracy of 80% by extracting the permissions from the Android applications and

used the machine learning approach to detect malicious applications [63], which lacks dynamic

analysis. D. Arp et al. proposed DREBIN which is a lightweight method to identify malware

applications by using the principles of joint vector space without using dynamic analysis [64].

DERBIN achieves the accuracy of 94% with a few false alarms and uses the machine learning

approach to detect malware applications. Androguard disassembles and decompiles the appli-

cations and then calculates normalised compression distance pairwise [65], which contributes

to reverse engineering but turns out to be time-consuming. H. Kang et al. adds developer’s

information as another feature in clustering malware groups [66], which is time-saving. Its per-

formance for detection and classification is 98% and 90% accurate respectively. But its dataset

is not enough. D. Octeau et al. employs the principle of connection between apps [67], which

provides a method for link detection and gains 636 million links over 30 minutes. The only

problem is that its probabilistic model seems to have some flaws. W. Tang et al. proposed a

security distance model which is based on the idea that if the application requires more than

19

one permission, then it poses a challenge to the security of Android devices [68]. KIRIN is a

lightweight tool which works on the principle of the certificate provided to the application and

it used at the time of installation [69]. An application is said to be malware only when it is

unable to pass all of its security tests. DroidMat is based on extracting information from the

Android Manifest.xml file [70]. To improve the effectiveness of the classifier, K-mean classifier is

used along with K-nearest neighbours algorithm. J. Hou et al. utilise the API calls, permissions

and manifest components as basic features for building mixed feature sets to be trained with

layer-by-layer Boosting model [71], which outperforms Random Forest and AdaBoost with an

accuracy of 92% and a precision of 93%. E. R. Wognsen et al. formed the first ever formal-

ized version of Dalvik Bytecode including java reflective features [72]. This approach is used to

identify malware by using the data flow analysis. W. Zhou et al. proposed DroidMOSS which

is a system that can measure the similarity of applications [73]. Fuzzy hashing is used to detect

changes made in the application by repackaging. This tool is limited to a small set of malware

database.

2.3.2 Dynamic Approaches and Hybrid Approaches

I. Burguera et al. proposed CrowDroid that uses dynamic analysis of Android applications

behavior to detect malware [74]. They used unsupervised machine learning algorithms to detect

malware from Android application and results were saved at the server, which achieves accuracy

between 85% and 100% depending on malware. The shortcoming rests on its instability when

dealing with increasing system call. A. Shabtai et al. proposed Andromaly which uses the

principles of machine learning algorithms to monitor devices and differentiate between benign

and malware applications [75]. Its accuracy lies between 80% and 90%.Unfortunately, it can

lead to battery drainage problem. M. Zhao et al. proposed AntiMalDroid which monitors

the behaviour of applications to detect malware and benign applications [76]. AntiMalDroid

compares the signature of the application with the signature present in its database of benign

and malware applications, but it is not cost-efficient. W. Enck et al. proposed TaintDroid which

does real-time analysis [77]. It provides virtualized execution environment which is leveraged

to deliver a real-time analysis. It tracks numerous sources of sensitive data and recognises the

data leakage. L. K. Yan and H. Yin proposed DroidScope which works on three levels of an

Android device, i.e., hardware, operating system and Dalvik virtual machine which enables in

facilitating custom analysis and detect privilege based attacks [78], but it fails to cover sufficient

code. A. Narayanan et al. proposed Context-aware Adaptive and Scalable Android malware

detector which is capable of detecting all types of malicious behaviour applications [79], but it

is adaptive to evolving malware. STREAM uses emulation based technique to detect privilege

20

based attack [80]. DroidAPIMiner extracts features at API level and evaluate different variables

with the generated dataset, which overcomes the shortcomings of permission-based mechanisms

and get a 99% accuracy [81]. S. Sheen et al. also looked at permission-based and API-based

features [82], but some of them may get lost at run-time. R. Vinayakumar et al. took advantage

of network parameters for all the features extracted, and attained 93.9% and 97.5% for dynamic

and static analysis respectively [83]. The drawback is that it cannot be used to detect unknown

malware. StormDroid combines popular features (i.e. Permission and sensitive API) with novel

features (i.e. API sequence and dynamic behaviors) and then deploys and streamlinglizes the

project [84]. The result shows that StormDroid achieves a good accuracy of 94%.

2.4 Android Malware Clustering and Classification

Previous works in the research field employed machine learning techniques to classify PC and

Android malware. On PC platform, J. Z. Kolter and M. A. Maloof extracted n-gram features

from dalvik bytecode to classify malware [85]. J. Kinable and O. Kostakis proposed a classifi-

cation model by converting malware samples into FCGs (Function Call Graph) [86]. Compared

with traditional malware that targets PCs, Android malware are often generated by poisoning

legitimate apps with malicious payloads and they usually invoke sensitive API calls to perform

malicious behaviors. Android is the major target of mobile malware. G. Suarez-Tangil et al.

proposed Dendroid [87], a tool that automatically classifies malware into families based on the

code structures. However, code layout could be easily obfuscated by bytecode-level transfor-

mation. C. Yang et al. proposed DroidMiner, which proposes a two-level graph model based

on behavioral information and picks out the sensitive paths that is more frequently reached by

malware [29]. Presented by M. Hurier et al. , EUPHONY is a lightweight tool that intends to

infer the family name of a given single malware according to the lexicons of the provided sample

[88]. AVCLASS , built by M. Sebastian et al. in 2016, relies on predefined labels or a ground-

truth list as an indispensable input so as to output the results [89]. The major methodology of

AVCLASS is plurality voting instead of majority voting as it is difficult for Anti-virus engines

to reach an over 50% of agreement. Y. Li et al. introduced their malware clustering approach

in 2017 [90]. Their method focuses on the similarity among the core parts of malicious code

inside each sample application. To extract those payloads, they manage to exclude the popular

legitimate third-party library code and attain a 90% of precision.

21

3 Deep Analysis of Recent Android Trojans

Although some literatures (like [9, 64, 91, 92, 47]) have analysed the technical details of some

Android malware thoroughly, the datasets collected by them are somehow obsolete. For instance,

even the most recent research [47] utilises the dataset during 2016-2017; The dataset used by

[92] ranges from 2010 to 2016. Therefore, A newer dataset of Android trojans is a pressing need.

3.1 Data Collection and Extraction

To collect newer samples of Android trojans, a simple script for crawling some public security

repositories has been written, especially the platform of Koodous [93] and Apkdetect [1]. To

illustrate, these platforms have already output labels or classification results given a sample.

Since Koodous is a collaborative platform for Android malware analysts, most labels are

produced by analysts through commenting with hashtag, as shown in Figure 7. Besides, Koodous

provides a REST API that can be used to fetch the search results more efficiently. The workflow

of extracting trojans with corresponding family name using Koodous API is shown in Figure

9. First, their API is used for requesting all the samples that are tagged with trojan and then

the corresponding MD5 file hashes as well as other labels if any are recorded. If a sample is

merely labeled with a single label trojan, such sample is discarded. Afterwards, those generic

labels like Detected and Malware are filtered out. Only the most meaningful label remain.

The meaningful label here refer to the label that is not generic and is the most suitable to be

regarded as the sample’s family name. The family name needs to be most unique among all

of its labels. If the number of the remaining labels is larger than 1, a manual inspection is

introduced to pick the most meaningful label that represent the family of a sample. Note that

if there is no meaningful label for a sample, such sample is also discarded.

Take the samples in Figure 8 as an example. The sample spider.cheese.sketch would generate

the label BlackRock as its family name, since the other three labels are all generic: The

Detected tag is produced based on the results given by the vendors of the platform; the

Malware tag is also another generic label that is too general; the label Trojan is one type of

malware but still not specific enough to be the family name of the sample. The remaining label

BlackRock is considered as the final label of the sample. The sample com.xlmfhz.cs would

not generate any label, since all the three labels are generic. Besides the first two labels that

have mentioned, the label Dropper refer to a type of malware that helps land the real trojan

to the device. The sample fatigue.hazard.horror has the same tags with spider.cheese.sketch,

thus generate the same label. Although alone.network.curve and behind.limit.track possess one

22

more label, banker, they also generate the same label BlackRock, as the label banker refer

to a general type of malware that target the victim’s bank card information. Compared with

the label BlackRock, it is less specific and unique in terms of the coverage.

Figure 7: The screenshot that the hashtags added by an analyst’s comment

Figure 8: The screenshot of the first five samples when searching with ”tag: trojan” on Koodous

platform

Apkdetect is similar with Koodous. The differences are that Apkdetect does not provide any

convenient API for queries and that the classification name produced by Apkdetect is based on

the matching of the configurations of different malware, which are observed and submitted by

security researchers. Due to the fact that Apkdetect does not possess a large volume of samples,

a manual collection method is adopted, i.e. before loading the webpage, a chrome browser where

the webpage is loaded is used. Specially, the network recording function is activated, which is

able to capture and preserve all requests and responses in logs. Upon typing in the family

name that is to be collected, the returned responses mainly include two parts, i.e. one with

brief information including uploaded file name, file type, its MD5 hash and the most probable

23

Parse the results
regarding each sample

Only
tagged

with Trojan

Discard

Get request
with tag:Trojan

param

Filter out common
generic labels including

Trojan

Have
other
labels

Output labels
and MD5 file

hash

Only one
other
label

Manual Inspection

Yes

Yes

Yes

No

No

No

Figure 9: The workflow of generating family names of Android trojans through utilizing the

Koodous platform

name produced (Figure 10); the other with more details, i.e. the configuration matched and the

control & command server extracted from the sample (Figure 11). The second part is parsed to

collect the MD5 hash, family name and matched configuration.

Specifically, Figure 12 illustrates the workflow of using Apkdetect for collecting the config-

uration information of the samples collected. First, the label of each MD5 hash collected from

Koodous is used to search for samples that are identified to belong to the same family, and the

configuration-MD5 pair regarding each sample is collected under such family. Afterwards, the

MD5 hashes collected from Apkdetect are compared with those from Koodous. Once there is a

duplicate MD5 hash, the MD5-label pair of the MD5 hash from the Koodous collection would

be discarded, whereas the configuration-MD5 pair from Apkdetect would be collected under its

family name. Due to the fact that Koodous does not generate any configuration information

of a given sample, after all duplicates are discarded, each sample of the Koodous collection

would be uploaded to Apkdetect to collect their configuration information. Since Apkdetect

would also generate the probable name of an uploaded sample, if the probable name given by

Apkdetect differs from the family name produced by Koodous, such sample (MD5-label and

24

Figure 10: The captured brief information that matches the family name (e.g. Anubis) input in

the search box in Apkdetect

Figure 11: The captured detailed information that either matches or is somehow relevant to the

family name (e.g. Anubis) input in the search box in Apkdetect

configuration-MD5 pairs) would be discarded from both collections. In the end, the statistics

of the data collected are illustrated in Table 2 with the corresponding timeline based on online

blog posts from security companies.

25

Table 2: The timeline of 20 (taking sub-families into account) Android trojans in the collection

Trojan
Number of

Samples
Discovered Month

Flexnet 53 2017-07 [94]

RedAlert 521 2017-09 [95]

Bankbot Anubis 722 2017-11 [96]

Catelites 97 2017-12 [97]

Gustuff 25 2018-04 [98]

Hydra v1 84 2018-07 [99]

BianLian 7 2018-10 [100]

Rotexy 5 2018-11 [101]

Cerberus v1 254 2019-06 [102]

Ginp v1 1 2019-06 [103]

Hydra v2 8 2019-06

Brata 3 2019-08 [104]

Ginp v2 1 2019-08

Ginp v3 37 2019-11

Hydra v3 18 2020-02

Cerberus v2 3 2020-04

BlackRock 15 2020-05 [105]

Cerberus v3 476 2020-08

Hydra v4 27 2020-08

Hydra v5 23 2020-10

Total 2380

26

Search with each unique
label (family name)

collected from Koodous

Parse the response
and collect each

configuration-MD5 pair
regarding the family name

Compare the MD5 hashes
from Apkdetect with those

from Koodous

If any
duplicate MD5

?

Yes

Discard the duplicate
MD5-label pair from the

Koodous collection
No

Upload to Apkdetect the
samples of each family
collected from Koodous

Collect the
configuration-MD5 pair

If the family name from
Apkdetect identical to

that of Koodous?
Discard the sample

No

Yes

Figure 12: The workflow of using Apkdetect for generating configuration information of the

samples

3.2 Attributes of Recent Android Trojans

Permissions. To dissect the mechanisms of how these trojans successfully attack Android de-

vices, it is prerequisite to understand how the functionalities of an APK are able to be conducted.

Android operating system has wrapped some java codes into functions or classes available for

being called. These convenient functions or classes are dubbed Android API (Application Pro-

gramming Interface) methods or classes, respectively. These API methods or classes are masked

by corresponding permissions. An APK would be given access to certain module if and only if

the corresponding permission is granted. Therefore, the permissions encoded in the Android-

Manifest file are a critical indicator of what actions an APK is intended to perform. Thus, the

permissions declared in AndroidManifest files of each collected sample are extracted by using

some reverse-engineering tools like Apktool [106]. Afterwards, The permissions that come from

the same (sub)family would be converted into an intersection set. The reason of extracting

the largest shared set of these permissions is that some samples could be injected with noisy

27

permissions that are not used and are intended to counter analysis, the core permissions are

those that have to be requested. At last, all the dangerous and/or sensitive permissions of one

(sub)family are picked out and form a new set X.

According to Google’s official documentation on Android development [107], each permission

is characterized by a protection level which aids developers to understand the potential risks as

well as the level of privilege implied in the permission. Here the permissions with dangerous or

signatureOrSystem protection level are considered sensitive permissions. However, according to

[108] and [109], the protection levels of some permissions are not always consistent, and even if

the protection level of a permission is labeled as dangerous by Google, it is still possible to be

classified as an indicator of a relatively benign feature (e.g. READ CONTACTS which is among

the top ten permission features in three classifiers in [108]). Nevertheless, in order to ensure

that the studied trojan is fully characterized, permissions that have been and are labeled with

dangerous or signatureOrSystem protection level are considered valuable for understanding the

attacks of trojans. Table 3 groups the sensitive permissions of X into ten categories concerning

their functionalities. Note that although the permission of RECEIVE BOOT COMPLETED

has always been and is labeled with a protection level of normal [109, 110], it is actually more

maliciously intended [108], which appears in the top ten malicious permission features of all

four classifiers. Thus, it is assumed that the risks implied in such permission are somehow

underrated. So this permission is also included as a sensitive permission.

With the ten categories of permissions, each trojan can be profiled by whether or not each

category of permissions are requested. Table 4 displays the permission-based profiling of the

20 recent Android trojans. As the table illustrates, all of the 20 trojan families are designed

to exfiltrate device information as well as personal records and/or receive commands from their

masters, i.e. the remote servers; Each of these trojan families endeavours to grab more advanced

privileges of the device so as to modify some configurations or neutralize the device for further

attacks to harvest more revenues (e.g. device locking for ransom and/or aggressive adware

planting); All of them are curious about what is happening or what has happened on the

infected device, they abuse the permissions that masks some system applications or functions to

steal the personal data. Besides, most of them want to keep monitoring the device so they abuse

the RECEIVE BOOT COMPLETED to be notified whenever the infected device has finished

booting. Also, the modules of messages and phone calls are of interest to most trojans since

they could either steal the history data of these modules for selling these more detailed private

information or more aggressively conduct SMS and/or call forwarding which is able to impede

victims from arousing suspicion.

28

Table 3: The (abbreviated) dangerous and sensitive permissions requested by recent Android

trojans

Abbreviation Permissions Abbreviation Permissions

SMS

(SMS/MMS)

READ SMS

RECEIVE SMS

SEND SMS

WRITE SMS

RECEIVE MMS

BROADCAST SMS

BROADCAST WAP PUSH

SEND RESPOND VIA MESSAGE

PKG

(Package)

BROADCAST PACKAGE REMOVED

REQUEST INSTALL PACKAGES

INSTALL PACKAGES

PACKAGE USAGE STATS

CALL

(Phone)

READ CALL LOG

CALL PHONE

READ PHONE STATE

PROCESS OUTGOING CALLS

MODIFY PHONE STATE

APP

(Application Info

and

OEM/System Application Related)

GET TASKS

REORDER TASKS

INTERACT ACROSS USERS FULL

INSTALL SHORTCUT

RECORD AUDIO

CAPTURE VIDEO OUTPUT

DISABLE KEYGUARD

WAKE LOCK

CONT

(Contacts)

READ CONTACTS

WRITE CONTACTS

BOOT

(Boot Completed)
RECEIVE BOOT COMPLETED

SYS

(System/File)

SYSTEM ALERT WINDOW

WRITE EXTERNAL STORAGE

READ EXTERNAL STORAGE

MOUNT UNMOUNT FILESYSTEMS

MODIFY AUDIO SETTINGS

BIND DEVICE ADMIN

BIND JOB SERVICE

BIND ACCESSIBILITY SERVICE

WRITE SYNC SETTINGS

NET

(Network)

NFC

INTERNET

CHANGE NETWORK STATE

CHANGE WIFI STATE

CHANGE WIFI MULTICAST STATE

LOC

(Location)

ACCESS COARSE LOCATION

ACCESS FINE LOCATION

ACC

(Accounts)

MANAGE ACCOUNTS

GET ACCOUNTS

AUTHENTICATE ACCOUNTS

29

Table 4: An overview of recent Android trojan (sub)families in regard to the categories of

permissions requested

Trojan
Permission Categories

SMS PKG CALL APP CONT BOOT SYS NET LOC ACC

Bankbot Anubis X X X X X X X X X

BianLian X X X X X X X

BlackRock X X X X X X X X

Brata X X X X

Catelites X X X X X X X X

Cerberus v1 X X X X X X X

Cerberus v2 X X X X X X X X

Cerberus v3 X X X X X X X X

Flexnet X X X X X X X

Ginp v1 X X X X X X X X X

Ginp v2 X X X X X X X X X

Ginp v3 X X X X X X X X X

Gustuff X X X X X X X X

Hydra v1 X X X X X X

Hydra v2 X X X X X X

Hydra v3 X X X X X X

Hydra v4 X X X X X X X

Hydra v5 X X X X X X X

RedAlert X X X X X X X X

Rotexy X X X X X X X

30

Insights from Permissions: Android trojans heavily rely on the functionalities that

are related to the system/file modules provided by the Android operating system. These

functionalities are the building blocks of all the subsequent attacks. Besides, the network

functionalities also play an important role to perform data exfiltration for an Android trojan.

Therefore, from the user side, whenever an application request and prompt an abnormal

permission for approval, the end user should always inspect the functionalities behind such

permission but also think twice before granting the permission. If an application often

consume more network data than other similar applications, the user should be careful of

using such application and/or even consider uninstalling it.

Intent-filters. An APK can consist of four types of components (activitity, service, broad-

cast receiver, content provider), which are also entry points through which the system or the

user can enter the application. Three out of four types, activities, services, and broadcast re-

ceivers, can be activated by intents, which can be considered as asynchronous messages that

wrap corresponding system-wide events. Thus malwares fully exploit such mechanism to trigger

specific components for launching their attacks. Therefore, the intents within intent filters of a

sample can reflect what events are of interest for a sample as well as how the components can be

triggered. Besides, according to Google’s official documentation, some intents are actually not

normal intent since they can only be delivered by the system. These intents are usually what

malwares listen to.

The intents within intent filters can be extracted also by using Apktool. Afterwards, The

intents that come from the same (sub)family would be converted into an intersection set. At

last, all the (protected) intents of one (sub)family are picked out and form a new set Y. Table 5

displays the grouped intents that are of interest to trojans for activation, and the starred intents

are documented as protected intents by Google. As can be seen in Table 6, all trojan families are

designed to be triggered upon some system events, which means that the device has already been

compromised. 19 out of 20 trojan (sub)families listen to boot events to avoid being interrupted

by booting activities, thus being persistent. Also, except Brata, all trojans are given the missions

to listen to SMS events, which could help them steal any SMS and/or MMS. 17 out of 20

(sub) families have modules for listening to admin events, which is indicative of the techniques

exploited by these trojans to either become a system application or disable the victim’s current

administrative privilege. 14 out of 20 could also act as downloaders. They are interested in events

of package changes for inviting other malicious payloads into the infected device. Comparatively,

Rotexy is the most sensitive trojan family of all, since nearly all the categories of intents listed

31

Table 5: The (abbreviated) intents that are of interest to malware authors to trigger trojans

Abbreviation Intents Abbreviation Intents

DRM

(Dream)
ACTION DREAMING STOPPED*

PLUG

(Headset Plug)
ACTION HEADSET PLUG

MAIN

(Main Activity)
ACTION MAIN

GCM

(Google Cloud

Messaging)

ACTION TASK READY

SCR

(Screen)

ACTION SCREEN OFF*

ACTION SCREEN ON*

CALL

(Phone Events)

ACTION PHONE STATE CHANGED

ACTION NEW OUTGOING CALL*

BOOT

(BOOT Completed)

ACTION BOOT COMPLETED*

ACTION LOCKED BOOT COMPLETED*

QUICKBOOT POWERON

C2DM

(Cloud to Device

Messaging)

RECEIVE

REGISTRATION

UNREGISTRATION

NET

(Network)

CONNECTIVITY CHANGE

WIFI STATE CHANGED

PKG

(Package)

ACTION PACKAGE ADDED*

ACTION PACKAGE REMOVED*

ACTION EXTERNAL APPLICATIONS AVAILABLE*

ADMIN

(Administration)

ACTION DEVICE ADMIN ENABLED

ACTION DEVICE ADMIN DISABLED

ACTION DEVICE ADMIN DISABLE REQUESTED

BATT

(Power/Battery)

ACTION POWER CONNECTED*

ACTION POWER DISCONNECTED*

ACTION BATTERY LOW*

ACTION BATTERY OKAY*

SYS

(System Events)

ACTION APP ERROR

ACTION TIME TICK*

ACTION USER PRESENT*

AccessibilityService

SMS

(SMS/MMS)

ACTION SEND

ACTION SENDTO

SMS RECEIVED

SMS DELIVER

WAP PUSH DELIVER

ACTION RESPOND VIA MESSAGE

are what Rotexy listens to. It can be noted that Rotexy even listens to the plug events of the

headset as well as the battery conditions. Although more intent actions to listen to could more

easily cause suspicion and even get killed by some security applciations, the attacks prepared

by the trojan authors are able to be performed more frequently. Moreover, it can be noticed

that Gustuff utilizes GCM for potential information exfiltration and/or command delivery as a

Control & Command server while Rotexy abuses C2DM as a channel for communications.

Insights from Intent-filters: Android trojans register a wide range of intent filters so

that they can be triggered frequently to keep active. Therefore, from the user side, whenever

an application is monitored to be always running in the background and to always appear

at the top of the back stack, the end user should become vigilant, since they are very likely

to be the symptoms that the device has been compromised.

Anti-analysis

To avoid being detected or noticed by either anti-virus applications or the user himself,

malware writers usually employ some techniques to hinder the analysis or monitoring. Table

7 displays the anti-analysis techniques that are used by these trojans. In order to evade static

32

Table 6: An overview of recent Android trojan (sub)families in regard to the categories of intent

actions used

Trojan
Categories of Intent Actions

DRM PLUG MAIN GCM SCR CALL BOOT C2DM NET PKG ADMIN BATT SYS SMS

Bankbot Anubis X X X X X X X X

BianLian X X X X X X X X X

BlackRock X X X X X

Brata X X

Catelites X X X X X X

Cerberus v1 X X X X X X

Cerberus v2 X X X X X X

Cerberus v3 X X X X X X

Flexnet X X X X X X

Ginp v1 X X X X X X X

Ginp v2 X X X X X X X

Ginp v3 X X X X X X X

Gustuff X X X X X X

Hydra v1 X X X X X X X X X

Hydra v2 X X X X X X X X X

Hydra v3 X X X X X X X X X

Hydra v4 X X X X X X X X X

Hydra v5 X X X X X X X X X

RedAlert X X X X X

Rotexy X X X X X X X X X X X X

33

analysis, malware authors can take several countermeasures to increase the difficulties for ana-

lysts to find out the real malicious payload. Such measures include renaming, string encryption,

dynamic payload and native payload loading. Renaming, or more specifically, variable, method

and class names renaming is a technique that renames any meaningful variable, method and

class name into randomly generated meaningless names. The advantage of this technique is

that if some anti-virus engines employ a detection mechanism based on name matching, the

malware can easily evade such detection. In addition, the renaming strategy also increases the

time cost for human analysts to find its malicious parts. The disadvantage of it is that it is not

capable of escaping the detection approaches that are based on APIs or other literals. String

encryption is a technique that encrypts most or all the sensitive plaintext encoded in the source

code with some public encryption algorithm like AES, or even implement their own algorithm

of ciphering plantext. The advantage of this technique is that some detection engines would fail

to identify the malware if its detection is based on string matching, and human analysts would

also have to take time to figure out the real string. The disadvantage of it is that it is still not

able to escape API-based detections, In order to escape the static scanning of API records in the

reverse-engineered source code, malware authors employ a dynamic loading method by using

classloader API class. They can encrypt the real malicious payload in some location (usually

in the assets folder) and decrypt it at run-time. By doing so, the static API-matching tactics

would fail. Similarly, malware authors can also choose to hide sensitive APIs and/or strings in

native libraries, which would be invoked only at run-time to defeat mainstream static analysis

that focuses on Dalvik bytecode.

Although the techniques above seem promising when dealing with static analysis, all of

them would not manage to escape from dynamic analysis, since all the malicious intentions

would be exposed when the malware is executed. In order to evade such detection scheme,

malware authors employ techniques based on an observation that most dynamic analysis are

conducted on emulators rather than real devices to avoid causing any unrecoverable exploit to

the real system. Thus the device parameters like manufacturer, ID are indicative of whether the

environment is a sandbox environment, since these parameters of most emulators are actually

fixed and can not be modified easily. Besides, some network traffic capturing tools like wireshark

[111] or fiddler [112] are able to monitor any communications between the endpoint and remote

servers by introducing an intermediate proxy server. To avoid being identified by such tools,

some trojan authors would try to encrypt the communication between the Command & Control

server and the bot. By doing so, even if the network traffic would be obtained, if analysts can not

figure out the encryption algorithm, they still can not understand what is happening. Moreover,

to avoid being killed by security applications and to evade performing malicious activities in

34

Table 7: An overview of recent Android trojan (sub)families in regard to the anti-analysis

techniques

Anti-analysis

Evade Static Analysis (ESA): Renaming (RN), String Encryption (SE),

Dynamic Loading (DL), Native Payload (NP)

Evade Dynamic Analysis (EDA): Check Device Info (CDI), Encrypt Communication (EC),

Check Installed App (CIA) & Check Running Processes (CRP), Verify Sensor Data (VSD)

Trojan
ESA EDA

RN SE DL NP CDI EC CIA and/or CRP VSD

Bankbot Anubis v1 X X

Bankbot Anubis Obfuscated X X X X X X X

Bankbot Anubis v2 X X X X X X X

Bankbot Anubis v2.5 X X X X X X X

BianLian X X X X X X

BlackRock X X X X X

Brata X X X

Catelites X X X

Cerberus v1 X X X X X X

Cerberus v2 X X X X X X

Cerberus v3 X X X X X X

Flexnet X X

Ginp v1 X X

Ginp v2 X X

Ginp v3 X X X

Gustuff X X X X

Hydra v1 X X X X

Hydra v2 X X X X

Hydra v3 X X X X

Hydra v4 X X X X

Hydra v5 X X X X

RedAlert X X X X X

Rotexy X X X X X X

35

an emulated environment, some trojans are able to extract and exfiltrate the list of installed

applications as well as the currently running processes so that the Command & Control server

would deliver different commands based on different infected environments. If the infected

environment is an emulated environment, the C&C server would command the trojan to keep

silent and behave normally. More interestingly, some trojans would try to acquire the sensor

data to ensure that the infected device is not still all the time. If the infected device is still for

a long time, then such device could be regarded as a potential emulated environment.

As shown in Table 7, all trojans except Flexnet extract the list of installed applications

or running processes prior to sending to the C&C server. The popularity of such technique

could be due to the fact that the installed applications as well as the current running processes

are actually quite informative of both the compromised environment and the potential targets

that are valuable to be overlayed by phishing pages. All trojans except two abuse the dynamic

loading technique to hide their real payloads. However, no trojan employs packing or shelling

technique which encrypts the payload into native code to evade static analysis. This could be

due to an observation that some anti-virus products are sensitive to such packing or shelling

technique which would even report a packed benign APK as malicious [113], since some of

the products themselves would inject some unwanted modules to the submitted APKs, which

would definitely trigger some anti-virus engines. Additionally, the products of reinforcement-

ing APKs also would bring about obvious library names [114] that would be used to identify

the products themselves. As the writer himself experienced, most of these packing services

these days also detect the submitted samples so that the samples do not include any violent

intentions. 14 out of 20 sub(families) have implementations to check the device’s parameters,

like os.Build.PRODUCT, os.Build.MANUFACTURER and os.Build.MODEL. Higher versions

of Anubis employ a communication encryption and decryption technique which hard-codes the

key within the source code, while Hydra and BlackRock borrow JSCH (Java Secure Channel)

for safeguarding the traffic. RedAlert encodes the traffic in Base64 format [115], and Rotexy

encrypts the traffic with AES algorithm [116].

Insights from Anti-analysis: Android trojans utilize various techniques to bypass anti-

virus applications so that they are able to land on the device safely. These techniques

ensure that only when the environment is ideal would the Android trojans perform their real

functionalities. The traditional detection methods like static reverse engineering analysis

and dynamic sandbox-based analysis are gradually becoming outdated. This could mean

that hybrid analysis would become a trend for dissecting and detecting new Android trojans.

36

Persistence

Table 8: An overview of recent Android trojan (sub)families in regard to the persistence tech-

niques

Trojan
Persistence

Delete Created Files Delete New SMS Hide Shortcut Privilege Escalation Monitor Uninstallation AV Disabling Screen Off/Lock

Bankbot Anubis v1 X X X X X X

Bankbot Anubis Obfuscated X X X X X X X

Bankbot Anubis v2 X X X X X X X

Bankbot Anubis v2.5 X X X X X X X

BianLian X X X X X X

BlackRock X X X X X

Brata X X X X

Catelites X X X X X X

Cerberus v1 X X X X X

Cerberus v2 X X X X X

Cerberus v3 X X X X X

Flexnet X X X X X X

Ginp v1 X X X X

Ginp v2 X X X X

Ginp v3 X X X X X X

Gustuff X X X X X X

Hydra v1 X X X X X X X

Hydra v2 X X X X X X X

Hydra v3 X X X X X X X

Hydra v4 X X X X X X

Hydra v5 X X X X X X

RedAlert X X X X

Rotexy X X X X

After successfully landing on the device, trojans need to maximise its possible living spans

for launching attacks and harvesting revenunes. To achieve this, they can hide their traces (e.g.

shortcut, SMS history, notification and/or alert window) after being executed to avoid uninstal-

lation, more aggressively redirect the user to the main screen if the trojan monitors that the user

tries to uninstall the trojan from the settings, disable existing anti-virus applications, and/or

grab admin privilege. Table 8 displays the techniques abused by these trojans to keep persis-

tent on the device. By calling PackageManager.setComponentEnabledSetting(componentName,

COMPONENT ENABLED STATE DISABLED, DONT KILL APP), all trojans can hide their

icon from the screen. Also, all trojans pursue a higher level of privilege to avoid being killed.

All trojans except Catelites, RedAlert and Rotexy abuse the accessibility privilege to monitor

whether any uninstallation (like buttons with text delete or remove) action is happening,

while Catelites, RedAlert and Rotexy registers themselves as new admistrators. All trojans

implement screen control functions by using DevicePolicyManager.lockNow. 16 out of 20 tro-

jan (sub)families are beware of any Anti-virus applications on the device. Anubis and Cerberus

build an app.AlertDialog with uncancelable icon to coerce victims to manually deactivate Google

Protect. Ginp v3 as well as Hydra also implement an auto-click module for disabling Google

37

Protect. Catelites, Flexnet and Gustuff encode 20+ keywords from the package names of some

popular Anti-virus products and scan the device’s installed applications and running processes

to check whether there is any match with these key words. Only 9 of the (sub)families actually

delete the new SMS created by using ContentResolver.delete(SMS Uri, (String) null, (String[])

null). It can be seen that although three versions of Hydra implement SMS removal, such

technique is not of interest to the other two versions.

Insights from Persistence: Android trojans are designed to become the Superuser of the

target device. Only based on the power of the Superuser can Android trojans become the

real devil. They hide what they create to blind the victims. Even if the victims realise their

existence, to uninstall them or even to interact with the compromised device is a difficult

task. Thus, from the user side, it is reasonable to always keep skeptical of anything unusual

that occurs on the device. Once found, it is further recommended to inspect the device with

the help of some famous third-party anti-virus applications.

Command and Control (C&C)

Command and Control server (C&C) refers to the server that has been possessed by cyber-

criminals under certain domains and deployed with protocol parsing template as well as some

critical resources which may have high risks of being detected by security countermeasures on

target devices based on the attack flow expected. It can be regarded as a counsellor, which

both collects valuable information and gives different commands judging by different condition

parameters returned by the bot (i.e. trojan that has been planted successfully on some endpoint).

Since the C&C servers of some samples collected have already been taken down, so some of the

analysis can only be achieved by looking into the reverse-engineered source code.

Table 9 shows how different (sub)families communicate with their C&C servers. Anubis

construct its own communication data with self-defined delimiters, like |sockshost=, |user=,

|pass=. BianLian utilises the Firebase Messaging service for commanding the modules. Flexnet

directly append the request parameters like IMEI, country, number and operator, after a specific

PHP address. Other trojan (sub)families communicate with their C&C servers with JSON

formatted messages. Interesting, only Rotexy has a backup plan in case of the takedown of its

C&C. The role of C&C can also be fulfilled by sending specific SMS to the infected devices like

”3458” to revoke device administrator privileges from the app and “393838” to change C&C

address to the one in the SMS, which is a wise strategy.

38

Table 9: An overview of recent Android trojan (sub)families in regard to the communication

methods with C&C

Trojan
C&C

Internet SMS Command Encoding

Bankbot Anubis v1 X Custom Protocol

Bankbot Anubis Obfuscated X Custom Protocol

Bankbot Anubis v2 X Custom Protocol

Bankbot Anubis v2.5 X Custom Protocol

BianLian X Custom Protocol

BlackRock X JSON

Brata X JSON

Catelites X JSON

Cerberus v1 X JSON

Cerberus v2 X JSON

Cerberus v3 X JSON

Flexnet X Custom Protocol

Ginp v1 X JSON

Ginp v2 X JSON

Ginp v3 X JSON

Gustuff X JSON

Hydra v1 X JSON

Hydra v2 X JSON

Hydra v3 X JSON

Hydra v4 X JSON

Hydra v5 X JSON

RedAlert X JSON

Rotexy X X JSON

39

Insights from C&C: Android trojans is designed to communicate with their master servers

(C&C) to exfiltrate the victims’ personal data to their C&C as well as receive commands

from their C&C. Communication with the remote server is an essential part if the trojan

developers want to gain more revenue, since they can further launch customized scams

according to different conditions of different victims. Although some trojans employ JSON

protocol for communication, it is still futile to capture the network traffic for analysis, since

the messages have already been encrypted from both the trojan side and the server side

and only get decrypted locally, let alone custom protocols. However, from the user side, the

packet rate (number of packets per second) of the device would be higher than usual if the

device gets compromised by trojans, since the trojans are constantly uploading data and

receiving data or even downloading files. Some network monitoring applications hence are

of assistance in revealing abnormal applications on the Android device.

4 Analysis of the Bankbot Anubis family

According to G Data, a German cyber-security company [117], more than 94.2 million malicious

apps in total have been detected by the end of this June, and more than 10 thousand new Android

malware have been published per day [118]. Android OS is the second most attractive targeted

OS for cyber-criminals. It will both incur potential risks to the protective mechanisms and

pose severe financial threats to end-users. [7, 119]. Anubis Banking trojan, a type of financial

malware, has broadly spread since 2018. By the end of 2018, the total number of detected

banking trojan had exceeded 25 thousand as the proportion of banking trojan detected by

Avast had quadrupled from the start of 2017 to September 2018 [120]. Motivated by the high

threat level of banking trojans and by the lack of the publicity of knowledge in defense of its

intrusive attack, we conducted detailed analysis of the attack mechanism of Anubis in four

versions.

Although there are plenty of researches on Android malware, most of them focus on either

malware detection [121] or malware classification (clustering) [122], some study the obfusca-

tion techniques employed on Android malware [123], few have been interested in analysing the

evolutionary patterns within a single family. This section aims to fill such gap by performing

a thorough analysis of a specific Android malware family, which provides a new approach for

understanding Android malware from low-level features to high-level behaviors.

In this section, we intend to provide a comprehensive insight on an obnoxious Android

banking trojan named Anubis, which has been distributed mainly in Europe and Asia and

40

Download & Install Malicious Apps C&C Server Anubis Encrypted FilePrivilege Escalation

Figure 13: Anubis Attack Procedures

has shaped into extreme polymorphism [124], with over 17,000 samples captured on 2 open

server panels for one time, according to Trend Micro, a multinational cyber security and defense

company. The main contributions of this work can be summarized as follows:

• We describe the Anubis family from both run-time behaviors and implementation details.

• we study the overlay attack mechanism and how such mechanism is successful for tricking

users

• we conduct different levels of analysis to find connections and variations among different

versions of Anubis family

4.1 Anubis’s Approach

The threat model of Anubis can be summarized as Figure 13, covering malware downloading

and installing, run-time phishing-based privilege request, sensitive data exfiltration and further

attacks based on the communications with the C&C server.

4.1.1 Phase 1: Mobile Devices Cyber Attack

Since the policy of Android open-source, all Android users not only gain access to billions of

mobile-phone application free of charge and easy-install, but also suffer from the highest vulner-

able attacks. Developers can easily publish Android applications in an App-marketplace, which

is the rudimentary weakness: various applications which contain malicious codes can be pub-

lished to the third-party market without any intensive code inspection or supervision. Although

Google has deployed security mechanisms, like Bouncer[17] and Play Protect[125], which check

and scan the applications that have been uploaded to its platform, malware authors still have

ways to elude detection (e.g. program obfuscation or downloader a.k.a update attack[126, 127]).

In Figure 14, Anubis authors normally use the forgery methods to attach the ”non-malfunction”

downloaders to the popular applications in the App-markets then republish them back. Anu-

bis downloader is a download toolbox, which doesn’t contain any malicious functionality, for

downloading the real payload of the Anubis. While most of safeguarding mechanisms of code

41

Resources

Source Code

Android AppMarket

Developer

Downloader
Attachments

Obfuscation
Malware Author

+

+

Publish

.xml file
Manifest file

+

.apk file
+

Republish Download

Payload

App-User

Installation
+

Download

Figure 14: Infection Process

inspection and analysis are based on the ’developer-side’: source code inspection, manifest file

pre-execution test and resources file checkup. The official Android App-market can’t afford a

large scale of in-depth iteration of checking ”in-apps” download in the code resources due to the

high cost of resources and time. The real payload then manages to bypass the security check

and is able to be downloaded into user’s devices. Figure 15 gives the real-world code example

that the attacker just manipulated the manifest-xml file in order to show updating notification

to users while actually download the mal-functional application package from another server,

which contains the real malicious payload of Anubis for higher privilege in system.

4.1.2 Phase 2: Privilege Escalation

In Figure 15, as users execute the downloader App, the downloader then fetches the full pack-

age of the malicious application containing the real payload of Anubis by rendering the an-

droid.permission block for INSTALL REFERRER. Once the downloaded application is executed

on the device, Anubis applies a devious method to render the android.widget.Toast block for

requesting access to ACCESSIBILITY module in the phone. It is the core module used to ask

users to grant ACCESSIBILITY access to the malicious application named ”Google Service”.

However, the fact is that the accessibility module is a powerful functionality on the device,

for example, Anubis can obtain window content, monitor changed events and even simulate

42

<receiver android:name=“xxx.AppInstallReferrerReceiver"
android:permission="INSTALL_PACKAGES" >
 <intent-filter>
 <action android:name="vending.INSTALL_REFERRER"/>
 </intent-filter>
</receiver>

xxx.xmlDownloader manifest

<service android:name=“xxx.AppMeasurementJobService"
android:permission="BIND_ACCESSIBILITY_SERVICE"
android:enabled="true" android:exported=“true”/>

xxx.xmlPayload manifest

public String[] check_p = new String[]{
"android.permission.SEND_SMS",
"android.permission.WRITE_EXTERNAL_STORAGE",
"android.permission.READ_CONTACTS",
"android.permission.ACCESS_FINE_LOCATION",
"android.permission.CALL_PHONE",
"android.permission.RECORD_AUDIO"};

xxx.javaSource code insertion

protect void onCreate(){
 zzzzz
 requestPermissions(this.insert_var.f_int);
���zzzzz�}�

Figure 15: Code Injection in Forged App

43

Figure 16: Interface of Anubis Accessibility Extraction

user’s actions without interactions. With limited knowledge, unprofessional device users may

become confused by the content shown in Figure 16 and just approve of the request. Then the

device now is infected with the Anubis Trojan. The main targets of Anubis are banking and

financial-related Apps (e.g. Stock holders trading applications, Amazon or eBay online payment

stores.)

Figure 15 illustrates a fatal functionality in the source code of Anubis. The permission

strings are utilized to check whether these permissions are granted or not after Anubis gains

the accessibility access of the device. If one of these permissions is not granted, Anubis would

request it again. Afterwards, the attackers have the ’devastated’ privileges to devices which

include but are not limited to:

• making calls and sending SMS.

• stealing storage content including contact list.

• capturing screenshots.

• toggling off and altering administration.

• receiving commands from attackers.

• collecting device and location information.

• Recording the audio

4.1.3 Phase 3: C&C Server

C&C servers serve as control and command centers that store the stolen data from victims,

collect and send the commands from attackers. Most attackers implement cloud-based deploy-

ments, which is the core quarter for Anubis Trojan to steal data, spread malware, mock requests

44

 Bot Master

Control & Command Instructions

Figure 17: Anubis C&C Server Model

45

from the infected Android devices, containing the installed banking apps if any as well as whether

any of these apps is running at the top of the process stack at the moment. Once certain condi-

tion is met, corresponding phishing webpage as well as some commands would be delivered to

the infected devices, then the page would be popped up through webview API and overlay on

top of the targeted app. Besides, Anubis would perform specific tasks based on the commands

received. Most users might not notice that the overlay page layout and the real banking page

layout are actually different. As soon as some careless users input their login credentials, the

payload would invoke the keystroke module or take a screenshot stealthily and then upload the

critical information to the Command and Control server. When malware authors collect the

credentials, they would use them to log into the bank to perform a money transfer. However,

most banks would be aware of such abnormal behavior thus challenging the operator for their

authenticity by sending authentication code or directly calling the user. To deal with this, mal-

ware authors exploit SMS and call forwarding techniques to blind users and finally confirm the

genuineness to the bank to make the transfer successful.

Furthermore, the C&C server can also instruct the compromised device through the RAT

(Remote Access Tool) module carried by Anubis payload. The functionalitiess of these orders

mainly include stealing local SMS and contacts info, sending SMS, requesting certain permis-

sions, pushing notifications, call forwarding, sound recording, screen shooting, keylogging, file

downloading and deleting as well as local data crypting and decrypting (after paying ransom).

46

4.1.4 Phase 4: Decrypting the encrypted

St r ing dex path = d e c a r r (new byte [] (4 2 , 1 5 , 4 4 . . . 108 ,85 ,−7)) ;

// image/ f i l e s

Listing 1: A pseudo code snippet in an Anubis sample that decrypts a byte array into a path-like

string

Most of the Anubis samples utilize a packer technique. To illustrate, after landing on the

devices, the payload does not expose itself directly, but is mostly hidden in other resource directo-

ries like ‘image’, ‘templates’, ‘assets’ or even ‘layout’ with innocuous names (e.g. ‘files’,‘images’,

‘main.tpl’, ‘extend.bak’ or ‘about.xml’). The real and only class that is called is the ’Application’

class, with methods that are responsible for functionalities like reading the real but encrypted

classess.dex file in bytes, decrypting the bytes, outputing the decrypted bytes into certain path

as a jar file, reflecting the run-time class(i.e. decrypted class), and deleting the output files(one

.jar file and one .dex file) after loading the class with java.lang.ClassLoader.loadClass method.

Wisely, the malware author encrypts all the used key methods’ and classes’ names as well as

literals into byte arrays with RC4 routine taking a fixed byte array as the encryption key. An

example of the obfuscated path literal for the real dex file can be seen in Listing 1. Therefore, to

acquire the real payload, we can focus on either run-time file-removing API hooking or statically

re-implement the decryption routine. Besides, the real C&C server address is usually fetched

through reading and decrypting the base64-encoded[128] content from an intermediate web ad-

dress. Interestingly, the commands received from the C&C server, the information sent to the

server are encrypted with RC4[129] cipher, whose key is always hard-coded in the source code,

which is actually not hard to find. What’s more, a ransomware-like cryptor could encrypt all

the local files with RC4 cipher using the same key. Actually, A more secure way for encryption

and decryption could be using an asymmetric cipher.

4.2 Data and Analysis

Virustotal Intelligence [130] database is one of the largest commercial databases which collects

most of the potentially malicious Android packages. However, due to it is high cost, it is

not the best choice for our research. As an alternative, we collect our research data from

other similar open-source mobile threat intelligence platforms with considerable APK (Android

package) repository such as Koodous and Apklab.io [131]. Both Koodous and Apklab.io are the

open-source platform which collected a large repository of APK samples for free downloading.

However, Koodous is a collaborative platform which lacks systematic long-term maintenance.

47

As a result, some related samples are out of the range of their repository. Apklab.io is another

mobile threat intelligence platform launched by Avast, a cybersecurity software company. It has

collected big data of malicious applications and can satisfy the need of searching for all kinds of

samples. However, unfortunately, it only allowed the invited users to download 10 samples per

day. As a result, the combination of these two resources is a recommended way to accomplish

sample collection. Specifically, on one hand, we use ”tag: Anubis” on Koodous to find all the

samples which have been labelled ”Anubis” at least once by other analysts, then take advantage

of their REST API to search for and download related samples. On the other hand, we search

for and collect Anubis MD5, SHA1 or SHA2 (SHA256) hashes on cybersecurity-related blogs

and websites, download the additional samples from Koodous and Apklab.io. We have collected

samples captured by the platform from Jan.2018 to Jul.2019.

4.2.1 Anubis Roadmap

Malware becomes robust and multi-functional with the advanced versions. Although quite a

number of repackaged and nearly clone contemporaries belong to the same family, they actually

contribute little to the evolution of malware, since most repackaged malware seldom alters the

implementation layout like APIs but mostly just change parameters (e.g server addresses, secret

keys for cryption and decryption, etc.). Thus we investigate the evolution of Anubis through

different perspectives.

Figure 18: The breakdown of the Anubis samples regarding configurations and versions

To obtain the ground-truth labels for triaging different versions, we choose another more

credible platform, Apkdetect, which specialises in Android malware analysis. Compared with

those anti-virus engines that utilize a signature-based detection and labeling mechanism, Ap-

48

kdetect is able to generate the family name based on configurations extracted. As shown in

Figure18, 41.3% of the samples collected belong to Version I which are identified with Bankbot

Anubis or Anubis v1 configuration in Apkdetect, 21.2% belong to Version II with Anubis obfus-

cated Configuration, 19.6% belong to Version III with Anubis method overloaded configuration

and the rest (17.9%) belong to Version IV with Anubis class overloaded Configuration. Version

II is built upon the base version with method obfuscations, while Version III are inserted nu-

merous trash codes to the added junk methods but little change is made to the classes, which

is contradictory to Version IV, which is filled with junk classes and junk methods.

To obtain a more accurate birth date of one sample, we first download verbose analysis

report from Virustotal [132] regarding each sample. Each report contains three kinds of useful

information that is related to birth date, i.e. validfrom denoted in certificate, compressed

date time and first seen in Virustotal database. Since any one of the three could be biased to

some extent, we exclude some invalid data like 1980-00-00, and then apply a majority vote for

each report. For those reports where only two data remain, a mid-date of the two are used as

the final birth date. The timeline of Anubis samples’ emergence in regard to different versions

are illustrated in Figure 19. Since the total number of each version differs with other versions,

we just calculate the percentage of each time period regarding specific version, which depicts

the trends of different versions more clearly. The graph suggests that the original version was

developed relatively early, and remains existent for the whole 18 months, which might be due to

Figure 19: Emergence of different versions of Anubis from January 2018 to July 2019

49

the simplicity of the program for cloning and reproducing. Version II peaks on February 2019, 4

months after the peak month of Version I, whereas Version III and IV culminate consecutively

on March 2019 and April 2019, respectively. To understand more details of its evolution, we

perform several analysis and generate the findings as follows.

4.2.2 Development of Encryption

For instance, Anubis instruments the corresponding intermediate link address in one of the

signature files (classes) for acquiring the real Control & Command server address. The first

version of Anubis stores the URL string in plain text (Listing 2a), whereas Version II abuses

RC4 and Base64 scheme to encrypt the string (Listing 2b), Version III exploits XOR(Exclusive

OR with different integers in different classes) and Base64 scheme for encryption (Listing 2c),

Version IV aggressively obfuscates the URL into byte array (Listing 2d), which significantly

impedes static analysis especially static string-matching technique, since this version of Anubis

not only adds thousands of junk classes but also inserts some unused byte arrays, useless loops

and pointless calculations to conceal the actual referenced variables. Listing 2d is the code snip-

pet after omitting those junk codes. Notably, both encryption processes for Version II and the

later versions are implemented without using any encryption API (e.g. android.util.Base64 or

Crypto.Cipher.ARC4). Furthermore, some higher versions (Version II, III and IV) of Anubis en-

crypt a jpg-formatted image which is originally located in res.drawable directory into byte arrays

in their source code. The resource id of the image is called by setImageResource(resource id)

method for some of the Version I samples to trick user into deactivating Google Protect service

on the device. Similar with other Version I samples, they also utilize android.widget.Toast class

to pop up the phishing content.

Insights from Development of Encryption: As a Android trojan family, Anubis evolves

to become more and more resilient to generic static reverse engineering analysis. Only by

means of customizing the static analysis methods and/or introducing dynamic analysis can

analysts extract the original meaningful strings.

4.2.3 AndroidManifest

AndroidManifest.xml functions as a prerequisite resolve table that declares information like

requested modules(permission), the names of the classes that implement different components,

the functionalities(intents) for each component, etc. As a result, we extract these significant

parameters from all decompiled AndroidManifest.xml files and compare the parameters of the

50

St r ing u r l s t r = ” https : // t w i t t e r . com/ Utr i an i a5d86 ln i ” ;

this . http = (HttpURLConnection) new URL(u r l s t r) .

openConnection () ;

(a) Version I

S t r ing raw st r = ”MmRkYmE . . . jE0NjI=” ;

S t r ing u r l s t r = d e c s t r s t r (raw str , ” fduozenzsxh ”) ;

this . http = (HttpURLConnection) new URL(u r l s t r) .

openConnection () ;

(b) Version II

S t r ing raw st r = ”emZmYmE . . . XdjZXc=” ;

S t r ing u r l s t r = d e c s t r i n t (raw str , 18) ;

this . http = (HttpURLConnection) new URL(u r l s t r) .

openConnection () ;

(c) Version III

byte [] bArr1 = new byte [] { (byte) 50 , (byte) 58 , . . . (byte) 45 , (byte

) 43} ;

byte [] bArr2 = new byte [] { (byte) 98 , (byte) 78 , (byte) 48} ;

S t r ing u r l s t r = dec byte byte (bArr1 , bArr2) ;

this . http = (HttpURLConnection) new URL(u r l s t r) .

openConnection () ;

(d) Version IV

Listing 2: Pseudo code snippets that indicates the evolution of string obfuscation for interme-

diate link address

51

Table 10: Frequently used permissions by Anubis

android.permission.* Functionalities Purpose of Usage

ACCESS FINE LOCATION Allows to determine as precise a location as

possible from the available location providers

Functionality request

CALL PHONE Allows to initiate a phone call without going

through the Dialer user interface for the user

to confirm the call

Functionality request

READ CONTACTS Allows to read the user’s contacts data Functionality request

RECORD AUDIO Allows to record audio Functionality request

SEND SMS Allows to send SMS messages Functionality request

WRITE EXTERNAL STORAGE Allows to write to external storage Functionality request

READ EXTERNAL STORAGE Allows to read from external storage Functionality request

READ PHONE STATE Allows read only access to phone state and a

list of any PhoneAccounts registered on the

device

Functionality request

READ SMS Allows to read SMS messages Functionality request

RECEIVE SMS Allows to receive SMS messages Functionality request

BROADCAST SMS Allows to broadcast an SMS receipt notifica-

tion

Component enforcement

BROADCAST WAP PUSH Allows to broadcast a WAP PUSH receipt no-

tification

Component enforcement

SEND RESPOND VIA MESSAGE Allows to send a request to other applications

to handle the respond-via-message action dur-

ing incoming calls

Component enforcement

BIND ACCESSIBILITY SERVICE Allows the application to run in the back-

ground and receive callbacks by the system

Component enforcement

52

Table 11: Shared intent filters by all versions of Anubis

Component
Generic action to be performed

(android.*)

Activity
intent.action.SENDTO

intent.action.SEND

Service
intent.action.RESPOND VIA MESSAGE

accessibilityservice.AccessibilityService

Receiver

provider.Telephony SMS DELIVER

intent.action.PACKAGE ADDED

intent.action.PACKAGE REMOVED

intent.action.QUICKBOOT POWERON

intent.action.BOOT COMPLETED

intent.action.DREAMING STOPPED

intent.action.SCREEN ON

intent.action.USER PRESENT

intent.action.EXTERNAL APPLICATIONS

AVAILABLE

provider.Telephony.SMS RECEIVED

net.wifi.WIFI STATE CHANGED

net.conn.CONNECTIVITY CHANGE (!)

same type to explore the differences among different versions of Anubis.

<android.permission> module acts as a mechanism to safeguard sensitive data on the

device. Ten sensitive permissions in Table 10 are required to be granted by users during run-

time, otherwise the related functionalities will not be provided. It is noticed that Version III

and IV almost request largely identical permissions.In addition, the top 6 permissions are what

Anubis values are checked again with checkCallingOrSelfPermission method as the Anubis run-

ning on. Furthermore, the last four permissions are to enforce the components (i.e. activities,

services, broadcasts and/or content providers) which are related to the telecommunication with

the remote C&C server controlled by the attackers. Therefore, these permissions function as

the necessary infrastructure for launching further attacks.

<intent-filter> define how the corresponding components can be started by specifying the

action, data and/or category information of intents to accept. Only those intents that match

the declared intent filters can be delivered to the corresponding components. These specified

parameters can relatively reflect the capabilities of the app therefore worth investigating. Table

11 shows that the evolution of such trojan does not witness any change in regard to the intent

53

filters instructed in AndroidManifest. Rather, Anubis register a broadcast receiver that accepts

the android.provider.Telephony.SMS DELIVER action to receive incoming SMS messages, an-

other receiver for the android.provider.Telephony.WAP PUSH DELIVER action to receive MMS

messages, an activity for the android.intent.action.SEND (or android.intent.action.SENDTO)

action so as to send SMS/MMS messages and a service handling the RESPOND VIA MESSAGE

action to shoot quick response messages to incoming callers. These declarations pave the way

for Anubis to become another default option of messaging application. The main abusive entry

point of Anubis is the receiver which declares 12 instances of action including system boot(both

cold boot BOOT COMPLETED and warm boot QUICKBOOT POWERON), network con-

dition change, installing and uninstalling of APKs, device (interaction) activation and more

importantly SMS receiving.

Although both the action event provider.Telephony.SMS RECEIVED and the action event

provider.Telephony.SMS DELIVER both indicate that a new SMS has been received by the

device, the former is intended for all registered receivers to accept as a notification while the latter

is only delivered to the system’s default SMS application. There is an action event that has been

declared twice in a single receiver for all the samples, net.conn.CONNECTIVITY CHANGE,

which largely suggests that most Anubis samples could be developed in an automated progress

(inline with Finding 6 of [133]).

4.2.4 Hard-coded API classes and methods

API is short for Application Program Interface. Google provides a series of built-in classes and

methods for Android developers. These methods and classes act as a convenient interface for

developers to call, which significantly accelerates the developing process. These API calls are

the core part that forms the functionalities of an application. From Version II to Version IV, a

module that utilizes the accelerometer sensor module to collect and send the information about

whether the device is still or not is added. Such module actually upgrades Anubis into a more

furtive hunter. Also, another socket module is added for more secure network traffic from Ver-

sion II to higher versions. The Method getInputStream, getOutputStream and getLocalAddress

are from Class java.net.Socket, while getAddress originates from Class java.net.InetAddress and

accept is the method from Class java.net.ServerSocket. Method getLocalPort is called by both

Socket and ServerSocket class. Besides, the registerReceiver and unregisterReceier method is

called for a new SMS spam module. Compared with Version III which to some extent hinders

the static hashing detection technique of some anti-virus vendors by hiding a resource image,

Version IV perfects its stealthiness and anti-sandbox technique. The method isignoringbattery-

optimization is used for checking whether any battery optimization technique is being applied

54

Table 12: API classes abused by different versions of Anubis

Version I 82 API classes

Added

Version II

android.hardware.Sensor,

android.hardware.SensorEvent,

android.hardware.SensorEventListener,

android.hardware.SensorManager,

java.net.Socket,

java.net.ServerSocket,

java.net.InetAddress,

android.widget.Imageview

Added

Version III android.graphics.BitmapFactory

Added

Version IV —

by the device, which will alert users about the existence of the long-time loops in the program;

The method getExternalStorageState is an indicator of whether the infected device could be an

virtual device or honeypot; onWindowFocusChanged method is triggered to send a broadcast of

the intent action.CLOSE SYSTEM DIALOGS which helps to set up a silent ”environment” for

the subsequent XSS webpage injection. Based on the number of the methods used, the change

of API methods between any two versions is less than 1.9%.

The difference of API classes between different versions is shown in Table 12. Since there

is no deleted API class, we list the added ones. The change of API classes between any two

versions is less than 10%. Apart from investigating the categories of API methods and classes

used, the frequence of different API methods and classes regarding different versions are also

collected and compared. For each version, we first extract the frequence of all the API classes

and methods used for each sample, and then average the data within the same version of Anubis.

As shown in Figure 20, Version IV aggressively abuses the AccessibilityService, Activity,

Service and ViewGroup API classes, compared with other versions, which again indicates that

the Anubis authors become more inclined to build a user-friendly interface and make more

efforts to create and instantiate more components. Table 13 shows great distinctions between

Version III (IV) and Version I (II). The gap between them regarding Method toString and

decode are roughly equivalent. The drastic increase of the three methods is attributed to the

aggressive encryption technique abused by Version III and IV. Almost all the exposed (un-

55

0 20 40 60 80 100

Version I

Version II

Version III

Version IV

Average frequency for documented API class

AccessibilityService android.app.Service
android.app.Activity android.view.ViewGroup

Figure 20: Top 4 frequent API classes used by four versions of Anubis

encrypted) strings are encrypted with base64, XOR or RC4 scheme. Those long strings are

broken into short ones, and get concatenated using the method append and toString, then

utilize Base64.decode for preliminary decryption.

Table 13: Top 3 documented API methods that are the most different in terms of their average

frequency

Version No. append toString decode

Version I 241 79 0

Version II 1636 648 0

Version III 4072 3044 2420

Version IV 4115 3191 2463

Due to the fact that some samples are actually not obfuscated, the names of the decompiled

classes just indicate corresponding purposes. Thus we can take advantage of such sample as

a representative for comparing modules implemented in different versions. As Figure 21 illus-

trates, Version II adds a port forwarding IntentService module and a ServicePedometer module

which are invoked whenever Anubis receives the corresponding commands from the server. Ad-

ditionally, Version III as well as Version IV add an SMS spam module for further spreading,

which can also be triggered by the C&C server.

Insights from Hard-coded API classes and methods: As Anubis evolves, it becomes

more and more obfuscated as well as accurate (follow the one-shot-one-kill principle, i.e.,

always be extremely cautious unless the infected environment meets some requirements).

Although that more junk code (unused code) gets injected into the source code, and that

56

more complex obfuscation techniques are used on the source code could lead to higher over-

head costs, the source code effectively gets well-protected from being reverse engineered.

Only through combining the customized static analysis and test-device-based dynamic anal-

ysis can analysts unveil the true nature of Anubis.

Version	I

Port_Fwd.

Version	III	&	IV

SMS	Spam

Pedometer

Version	II

&

Figure 21: The name of the newly implemented module for new versions

4.2.5 Opcode Sequences

Smali [134] is an assembler for the binary Dalvik bytecode [135], which is the format that Android

operating system cognises. Given a raw APK sample, we can use some reverse engineering

tools like Apktool to obtain a close-to-source-code human-readable Smali code. After obtaining

the corresponding Smali code, some opcodes are essential for modeling and representing the

program. We only take those essential operation codes into consideration and discard the

parameters. The formulated operation codes are shown in Table 14.

Table 14: Seven types of Dalvik Opcodes

Category Opcode Constants Examples

M MOVE MOVE RESULT, MOVE WIDE

R RETURN RETURN VOID, RETURN OBJECT

G GOTO GOTO, GOTO 16

I IF IF EQ, IF GT

T GET AGET OBJECT, IGET CHAR

P PUT APUT BOOLEAN, IPUT SHORTE

V INVOKE INVOKE DIRECT, INVOKE SUPER

57

0 20000 40000 60000 80000 100000

Version I

Version II

Version III

Version IV

Average frequency (including overlapping) of the Opcode sequence

VMV VVV TVM VVM MVM IGI GIG IGR

Figure 22: Top 3 frequent (including overlapping) documented Opcode sequences of four ver-

sions of Anubis

In order to separate the entire program into methods, we check the signal that indicates the

start (i.e. .method) and end (i.e. .end method) of a given method and add a delimiter when

the end of a method is met. We first decompile all the samples and unpack those packed classes if

existent, and then aggregate all the collected classes prior to calculating different frequencies for

each sample under a certain version, then average them and repeat such step for other versions.

To investigate whether the average frequencies of the 3-gram Opcode sequences differ among

different versions, Figure 22 illustrates the top 3 frequent documented Opcode sequences in each

version of Anubis, Version I and II have identical top 3 Opcode sequences, i.e. VMV, VVV and

VTM, while VMV, MVM and VVM have more occurences for Version III. Since Version IV is

full of useless conditional statements, jumping statements and method calls, IGI, GIG and GIR

are the 3 top-ranking Opcode sequences. Therefore, the average frequency of Opcode sequences

have changed significantly from Version II to Version IV, whereas little discrepancy regarding

the frequencies of Opcode sequences can be seen between Version I and Version II.

Insights from Opcode Sequences: Due to the massive injection of junk code, a great

number of meaningless control flows are added. For the purpose of sample representation,

a byte-code-level operation code modelling hence becomes heavily biased. So in order to

get rid of the noises and generate accurate representation, the flow of execution (call flow)

has to be considered before modelling.

58

5 An Observation for Android Malware Detection

With various approaches that rely on machine learning model or neural network model building,

the performance of identifying Android malware is becoming more promising. However, the

efficiencies of those approaches seem to have been sacrificed. With some sophisticated models,

even if the features extracted are light-weighted, there are still many resources consumed during

training. On the contrary, the real-life scenario of a security analyst is that he/she needs to

needs to label or decide a raw sample as fast as possible, since there are tens or even hundreds of

raw samples that need taking care of. Considering such gap, the writer tries to merely use some

lightweight features to accomplish such task without using machine learning or neural network

techniques.

Table 15: The statistics of the APK samples in the dataset

Source No. of samples Cluster

VirusTotal 15000 Malicious

Googld Play 7500 Benign

Yingyongbao 7500 Benign

The dataset are composed of two clusters (malicious cluster and benign cluster). The samples

in the malicious cluster are randomly collected from the Android malware repository from the

year of 2020 shared by VirusTotal [132], while half of the samples in the benign cluster are the

most trending applications crawled from the top free applications in the official application store

Google Play [136], the other half are the top applications crawled from the download rankings in

the Tencent Application Store [137]. The Tencent Application Store is the third-party Android

application store with the most active users in China [138]. Table 15 displays the breakdown of

the dataset used. The experimented approach is based on a simple principle, i.e. most benign

APKs are not generated by SaaS (Software as a Service), which means that they are not churned

out, while malicious Apks are just the opposite, malware developers need to massively produce

malware on one hand, to maximise the chance of harvesting revenues from victims and on the

other hand, to maximise the living rate of the samples against removals from App stores. Thus,

the name of the malicious APK that displays to the user need to be attracting, however the

package name of the APK can not always be relative to the App name. Similarly, the certificate

information is very possible to be automatically generated thus also irrelative to the package

name. Therefore, the writer writes a Python script to extract app name (AN for short) from

59

Manifest or res/strings, package name (PN for short) from Manifest, and owner and issuer info

((CI for short)) from the RSA file from META-INF folder by using Androguard and keytool.

Figure 23 displays the workflow of identifying a given APK as suspicious or not. First, the

AN, PN and CI are extracted and parsed into tokens. Considering the fact that some ANs are

not English, the names would be first normalized, which tries to convert unstandard English

letters (e.g. â) into English letter. Afterwards, some generic tokens that frequently appear but

actually do not hold much information in PN like app, com, de, are discarded. Besides, If some

token is a word for certain digit (e.g. two for 2), a new synthetic item is created and added.

For example, if the AN of an APK is Life of Two, then a synthetic item Life of 2 is created

and added as another AN. Besides, considering some APKs that have long APP names and cert

issuer/owner names, acronyms of AN, CI and abnormal tokens, together with filtered PN tokens,

AN tokens and CI tokens are lowercased and added into set R, P, A and C, respectively. Here,

abnormal tokens refer to the tokens that contains more than one nonconsecutive uppercased

letters. These nonconsecutive uppercased letter would be picked out, concatenated and be

regarded as an acronym token in the acronym token set R. For example, if a token of CI of an

APK is BookMyRoom, this token would be regarded as an abnormal token and be parsed into

a new acronym token BMR and added into set R. Besides, this token is also parsed again into

Book, My and Room and added into set C. And the AN Life of Two would be acronymized

into token LoT and Lo2. And these two tokens would be added into the R set. At the last

step in Phase 1, all the tokens in set P would be compared with each token in set A, C and

R. If a match appears and the two matched tokens are from P and R, then such APK can be

considered as unsuscpicious. Here a match is defined as one token is contained in and equals

to another token. For example, Token mad and Token madboy is considered a match, since

String mad is contained in madboy. If a match does not come from the comparison of P and

R, then the length of the matched token is taken into consideration. If the length of matched

token is more than 2 letters, then such APK can also be regarded as unsuspicious. If none of

the conditions mentioned are met, then the analysis would come to the second phase.

The second phase first checks whether set A contains any token that is not made with ascii

characters. If so, such token is uploaded and translated to English with Google translate, since

Google translate is able to automatically detect the language. Then both the phonetic spelling

of the token and the translation result would be extracted, tokenized and lowercased into set

T. Then each token in P would be caompared with each token in T to find whether there is

any match and the length of the matched token is more than 2 letters, it would be considered

a valid match thus the APK being considered as unsuspicious. If neither of the conditions fails

to be met, then such APK would also be considered as suspicious. Finally, the CIC dataset is

60

AN,PN,CI
Extraction

Filter generic
PN tokens

Acronymize
abnormal

tokens, AN
and CI

Replace
some word
with digit in
AN and CI

Lowercased
token sets

A, P, C and R

Compare P
with A, C and

R

Any
match ?

Tokenize AN
and CI

Y

Unsuspicious

N

Between
P and RY

Matched
token >
2 letters

Y

N

N

Phase 1

A contains
non-ascii
token ?

Phase 2

Y

Google
translate these

tokens

Extract the
phonetic
spelling

APK

Extract the
English

translation

Tokenize and
lowercase

tokens into set T

Compare
P with T

Any
match?

Y

Matched
token >
2 letters

Y

Suspicious

N

N

N

Normalization
Parse PN into

tokens

Figure 23: The workflow of identifying suspicious and unsuspicious APKs

61

Table 16: The confusion matrix of the results

Actual

Positive

Actual

Negative

Predicted

Positive
14930 738

Predicted

Negative
70 14262

used to verify whether such method is satisfactory or not. Table 16 is a confusion matrix that is

used to evaluate the results of the approach. Here, positive is defined as malicious, and negative

benign. The results are satisfactory based on the following evaluation metrics.:

• TPR (True Positive Rate):

TPR = TP / (TP + FN) = 14930 / (14930 + 70) = 99.5%

• FPR (False Positive Rate):

FPR = FP / (FP + TN) = 738 / (738 + 14262) = 4.9%

• FNR (False Negative Rate):

FNR = FN / (FN + TP) = 70 / (70 + 14930) = 0.5%

• TNR (True Negative Rate):

TNR = TN / (TN + FP) = 14262 / (14262 + 738) = 95.1%

• ACC (Accuracy):

ACC = (TP + TN) / (TP + TN + FP + FN) = (14930 + 14262) / (14930 + 14262 +

738 + 70) = 97.3%

• Precision:

Precision = TP / (TP + FP) = 14930 / (14930 + 738) = 95.3%

• F1 score:

F1 = 2TP / (2TP + FP + FN) = 2*14930 / (2*14930 + 738 + 70) = 97.4%

• AUC-ROC score: AUC-ROC score = 0.93

• AUC-ROC curve: Figure 24

However, what could act as a threat to such approach can be inferred from some wrongly

classified APKs. For example, the details of a false positive APK are:

• AN: Gadget Guardian

• PN: com.lookout

• CI: James Burgess, Los Angeles, Flexilis, Mobile Security

62

Figure 24: The AUC-ROC curve of the results

The PN actually has nothing to do with AN or CI just from the similarity of spelling,

although the word lookout does have some semantic similarity with the word security, and

guardian. Similarly, another false positive APK is misclassificed for the same reason. Its details

are:

• AN: Alarmy

• PN: droom.sleepIfUCan

• CI: 2

The AN also seems irrelevant with PN. However, sleepIfUCan actually indicates that the

APK would be an alarm, which is then related with AN. Moreover, Phase 2 of using the transla-

tion results from Google translate is not always a right direction. Take such false positive APK

as an example:

• AN: 节目通

• PN: com.example.suishoukan

• CI: CN, Jack, Jack, Jack

By typing in the AN in Google translate, the phonetic spelling of it is Jiémù tōng, trans-

lation result is Show pass. There is no connection between such information with PN. The

reason for this is that suishoukan in PN is actually another phonetic spelling for Mandarin

phrase 随手看 . The real meaning of 节目通 is TV program master, while 随手看 means

to watch TV programs at hand.

Therefore, restricted by the inaccurate translation of Google translate and interfered by

some self-designed package names, this approach still needs more optimization that may include

63

adding some measurement of semantic similarity between PN and AN tokens, which would not

be a simple task, especially considering different cultural and language backgrounds.

6 Conclusion and Future Work

This thesis collects and investigates the recent Android trojans, and profiles them both statically

and dynamically in order to illustrate what techniques current Android malware are exploiting

to launch attacks towards users. It should be noticed that most trojans can only function well

with a live C&C server. If there is no C&C server alive, even though trojans are able to seize top

privilege to perform malicious actions, malware authors are not able to harvest any profit from

victims. After all, what motivates most trojan authors to publish and distribute trojans is the

potential revenues. Planting aggressive adwares on the infected devices is one method of gaining

a small amount of profits, but doing so would also have to take the risks of immediately arouse

the victim’s suspicions as well as annoy victims, As a consequence, advanced countermeasures

would be taken to remove the trojan. By contrast, if trojan authors focus on preparing a well-

designed scheme to make victims believe the integrity, then it would be highly possible that

such strategy gain a proming profit. This, from another perspective explains why the trojans

need to evade both static analysis and dynamic analysis as long as possible.

Besides, this thesis also looks deeper into Anubis, a popular Android trojan family that

severely infects Android platforms to understand how it has evolved, This work, finished by the

writer, has been accepted by and presented at the 7th International Conference on Dependable

Systems and Their Applications. The Anubis family has evolved into different versions, where

technical details vary while the core code blocks of the family are nearly identical. Their phishing,

overlay and code obfuscation mechanisms have been described. Such information will be useful

for past, present and future victims. At the same time, how new complex versions emerge based

on the old versions has also been illustrated.

As for possible directions of future work, it should be valuable to investigate how to employ

hybrid (both static and dynamic) analysis more efficiently to deal with different payload loading

patterns (i.e. dynamic loading and native loading), since some APK reinforcement products like

Qihoo 360, are able to pack the real payload with multiple layers of encryption, which would

make purely static analysis nearly ineffective. On the other hand, dynamic analysis especially

in the sandbox environment, some parameters reflecting the infrastructure need to be dynamic

or at least not fixed, thus making it possible for trojans that check device-info to perform their

real functionalities smoothly.

64

References

[1] apkdetect, https://app.apkdetect.com/, @pr3wtd, accessed: February 2020.

[2] “Mobile operating system market share worldwide, 2020,” https://gs.statcounter.com/

os-market-share/mobile/worldwide, 2020.

[3] “Number of available applications in the google play store from de-

cember 2009 to june 2020,” https://www.statista.com/statistics/266210/

number-of-available-applications-in-the-google-play-store/, 2020.

[4] “Android security & privacy 2018 year in review,” https://source.android.com/security/

reports/Google Android Security 2018 Report Final.pdf, 2019.

[5] E. Alepis and C. Patsakis, “Hey doc, is this normal?: exploring android permissions in

the post marshmallow era,” in International Conference on Security, Privacy, and Applied

Cryptography Engineering. Springer, 2017, pp. 53–73.

[6] D. J. Tan, T.-W. Chua, and V. L. Thing, “Securing android: a survey, taxonomy, and

challenges,” ACM Computing Surveys (CSUR), vol. 47, no. 4, pp. 1–45, 2015.

[7] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and M. Rajara-

jan, “Android security: a survey of issues, malware penetration, and defenses,” IEEE

communications surveys & tutorials, vol. 17, no. 2, pp. 998–1022, 2014.

[8] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The peril of fragmentation:

Security hazards in android device driver customizations,” in 2014 IEEE Symposium on

Security and Privacy. IEEE, 2014, pp. 409–423.

[9] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolution,” in

2012 IEEE symposium on security and privacy. IEEE, 2012, pp. 95–109.

[10] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and N. Vallina-Rodriguez, “An

analysis of pre-installed android software,” arXiv preprint arXiv:1905.02713, 2019.

[11] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation: Characterizing and

detecting compatibility issues for android apps,” in Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, 2016, pp. 226–237.

[12] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith, “Sok: Lessons learned

from android security research for appified software platforms,” in 2016 IEEE Symposium

on Security and Privacy (SP). IEEE, 2016, pp. 433–451.

65

[13] S.-T. Sun, A. Cuadros, and K. Beznosov, “Android rooting: Methods, detection, and

evasion,” in Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy

in Smartphones and Mobile Devices, 2015, pp. 3–14.

[14] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact of vendor customizations

on android security,” in Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security, 2013, pp. 623–634.

[15] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia, “Understanding an-

droid fragmentation with topic analysis of vendor-specific bugs,” in 2012 19th Working

Conference on Reverse Engineering. IEEE, 2012, pp. 83–92.

[16] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of capability leaks

in stock android smartphones.” in NDSS, vol. 14, 2012, p. 19.

[17] J. Oberheide and C. Miller, “Dissecting the android bouncer,” SummerCon2012, New

York, vol. 95, p. 110, 2012.

[18] P. Mateti, “Viruses, worms and trojans,” 2002.

[19] T. M. Chen and J.-M. Robert, “The evolution of viruses and worms,” Statistical methods

in computer security, vol. 1, 2004.

[20] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy of computer

worms,” in Proceedings of the 2003 ACM workshop on Rapid malcode, 2003, pp. 11–18.

[21] A.-D. Schmidt, H.-G. Schmidt, L. Batyuk, J. H. Clausen, S. A. Camtepe, S. Albayrak,

and C. Yildizli, “Smartphone malware evolution revisited: Android next target?” in 2009

4th International conference on malicious and unwanted software (MALWARE). IEEE,

2009, pp. 1–7.

[22] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile malware in

the wild,” in Proceedings of the 1st ACM workshop on Security and privacy in smartphones

and mobile devices, 2011, pp. 3–14.

[23] M. Zheng, P. P. Lee, and J. C. Lui, “Adam: an automatic and extensible platform to stress

test android anti-virus systems,” in International conference on detection of intrusions and

malware, and vulnerability assessment. Springer, 2012, pp. 82–101.

[24] S. Peng, S. Yu, and A. Yang, “Smartphone malware and its propagation modeling: A

survey,” IEEE Communications Surveys & Tutorials, vol. 16, no. 2, pp. 925–941, 2013.

66

[25] H. Le Thanh, “Analysis of malware families on android mobiles: detection characteristics

recognizable by ordinary phone users and how to fix it,” Journal of Information Security,

vol. 2013, 2013.

[26] K. J. Abela, D. K. Angeles, J. D. Alas, R. J. Tolentino, and M. A. Gomez, “An automated

malware detection system for android using behavior-based analysis amda,” International

Journal of Cyber-Security and Digital Forensics (IJCSDF), vol. 2, no. 2, pp. 1–11, 2013.

[27] X. Xia, C. Qian, and B. Liu, “Android security overview: A systematic survey,” in 2016

2nd IEEE International Conference on Computer and Communications (ICCC). IEEE,

2016, pp. 2805–2809.

[28] M. Karresand, “A proposed taxonomy of software weapons,” 2002.

[29] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “Droidminer: Automated min-

ing and characterization of fine-grained malicious behaviors in android applications,” in

European symposium on research in computer security. Springer, 2014, pp. 163–182.

[30] V. C. Roman Unuchek, “Mobile malware evolution 2015,” https://securelist.com/

mobile-malware-evolution-2015/73839/, 2016.

[31] R. Unuchek, “Mobile malware evolution 2016,” https://securelist.com/

mobile-malware-evolution-2016/77681/, 2017.

[32] R. Unuchek, “Mobile malware evolution 2017,” https://securelist.com/

mobile-malware-review-2017/84139/, 2018.

[33] V. Chebyshev, “Mobile malware evolution 2018,” https://securelist.com/

mobile-malware-evolution-2018/89689/, 2019.

[34] V. Chebyshev, “Mobile malware evolution 2019,” https://securelist.com/

mobile-malware-evolution-2019/96280/, 2020.

[35] S. Komatineni and D. MacLean, “Understanding android resources,” in Pro Android 4.

Springer, 2012, pp. 51–78.

[36] Malwarebytes, “2017 state of malware report,” https://kitedistribution.co.uk/

wp-content/uploads/2017/03/StateofMalware Report ønal PT.pdf.

[37] H. Pieterse and M. S. Olivier, “Android botnets on the rise: Trends and characteristics,”

in 2012 information security for South Africa. IEEE, 2012, pp. 1–5.

67

[38] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my market: detecting

malicious apps in official and alternative android markets.” in NDSS, vol. 25, no. 4, 2012,

pp. 50–52.

[39] D. Maslennikov, “Carberp-in-the-mobile, 2012.”

[40] A. Cherepanov and R. Lipovsky, “Hesperbot—a new, advanced banking trojan in the

wild,” 2013.

[41] A. Atzeni, F. Diaz, F. Lopez, A. Marcelli, A. Sanchez, and G. Squillero, “The rise of

android banking trojans,” IEEE Potentials, vol. 39, no. 3, pp. 13–18, 2020.

[42] R. Yu, “Ginmaster: a case study in android malware,” in Virus bulletin conference, 2013,

pp. 92–104.

[43] A. Martin, J. Hernandez-Castro, and D. Camacho, “An in-depth study of the jisut family

of android ransomware,” IEEE Access, vol. 6, pp. 57 205–57 218, 2018.

[44] A. Coletta, V. Van Der Veen, and F. Maggi, “Droydseuss: A mobile banking trojan tracker

(short paper),” in International Conference on Financial Cryptography and Data Security.

Springer, 2016, pp. 250–259.

[45] Y. Hu, H. Wang, Y. Zhou, Y. Guo, L. Li, B. Luo, and F. Xu, “Dating with scambots:

Understanding the ecosystem of fraudulent dating applications,” IEEE Transactions on

Dependable and Secure Computing, 2019.

[46] N. I. Aminuddin and Z. Abdullah, “Android trojan detection based on dynamic analysis,”

Advances in Computing and Intelligent System, vol. 1, no. 1, 2019.

[47] C. Bai, Q. Han, G. Mezzour, F. Pierazzi, and V. Subrahmanian, “Dbank: Predictive

behavioral analysis of recent android banking trojans,” IEEE Transactions on Dependable

and Secure Computing, 2019.

[48] Y. Zhang, G. Xiao, Z. Zheng, T. Zhu, I. Tsang, and Y. Sui, “An empirical study of code

deobfuscations on detecting obfuscated android piggybacked apps,” in Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, 2020, pp. 914–926.

[49] D. Wu, J. Liu, Y. Sui, S. Chen, and J. Xue, “Precise static happens-before analysis for

detecting UAF order violations in android,” in 2019 12th IEEE Conference on Software

Testing, Validation and Verification (ICST). IEEE, 2019, pp. 276–287.

68

[50] Y. Sui, Y. Zhang, W. Zheng, M. Zhang, and J. Xue, “Event trace reduction for effective

bug replay of android apps via differential GUI state analysis,” in Proceedings of the 2019

27th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, 2019, pp. 1095–1099.

[51] Y. Tang, H. Wang, X. Zhan, X. Luo, Y. Zhou, H. Zhou, Q. Yan, Y. Sui, and J. W. Keung,

“A systematical study on application performance management libraries for apps,” IEEE

Transactions on Software Engineering, 2021.

[52] L. Wang, R. He, H. Wang, P. Xia, Y. Li, L. Wu, Y. Zhou, X. Luo, Y. Sui, Y. Guo

et al., “Beyond the virus: a first look at coronavirus-themed android malware,” Empirical

Software Engineering, vol. 26, no. 4, pp. 1–38, 2021.

[53] Y. Zhang, Y. Sui, and J. Xue, “Launch-mode-aware context-sensitive activity transition

analysis,” in Proceedings of the 40th International Conference on Software Engineering,

2018, pp. 598–608.

[54] L. Li, T. F. Bissyandé, and J. Klein, “Rebooting research on detecting repackaged android

apps: Literature review and benchmark,” IEEE Transactions on Software Engineering,

vol. 47, no. 4, pp. 676–693, 2019.

[55] J. Gao, L. Li, P. Kong, T. F. Bissyandé, and J. Klein, “Understanding the evolution of

android app vulnerabilities,” IEEE Transactions on Reliability, 2019.

[56] Y. Zhao, L. Li, H. Wang, H. Cai, T. F. Bissyandé, J. Klein, and J. Grundy, “On the

impact of sample duplication in machine-learning-based android malware detection,” ACM

Transactions on Software Engineering and Methodology (TOSEM), vol. 30, no. 3, pp. 1–38,

2021.

[57] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal, “Androsimilar: robust

statistical feature signature for android malware detection,” in Proceedings of the 6th

International Conference on Security of Information and Networks, 2013, pp. 152–159.

[58] M. Zheng, M. Sun, and J. C. Lui, “Droid analytics: a signature based analytic system to

collect, extract, analyze and associate android malware,” in 2013 12th IEEE International

Conference on Trust, Security and Privacy in Computing and Communications. IEEE,

2013, pp. 163–171.

[59] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demys-

tified,” in Proceedings of the 18th ACM conference on Computer and communications

security, 2011, pp. 627–638.

69

[60] R. Sato, D. Chiba, and S. Goto, “Detecting android malware by analyzing manifest files,”

Proceedings of the Asia-Pacific Advanced Network, vol. 36, no. 23-31, p. 17, 2013.

[61] Y. Tang, Y. Sui, H. Wang, X. Luo, H. Zhou, and Z. Xu, “All your app links are belong to

us: understanding the threats of instant apps based attacks,” in Proceedings of the 28th

ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2020, pp. 914–926.

[62] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance evaluation on permission-based

detection for android malware,” in Advances in Intelligent Systems and Applications-

Volume 2. Springer, 2013, pp. 111–120.

[63] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas, and G. Álvarez,

“Puma: Permission usage to detect malware in android,” in International Joint Con-

ference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions. Springer, 2013, pp. 289–298.

[64] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens, “Drebin:

Effective and explainable detection of android malware in your pocket.” in Ndss, vol. 14,

2014, pp. 23–26.

[65] A. Desnos et al., “Androguard-reverse engineering, malware and goodware analysis of

android applications,” URL code. google. com/p/androguard, vol. 153, 2013.

[66] H. Kang, J.-w. Jang, A. Mohaisen, and H. K. Kim, “Detecting and classifying android

malware using static analysis along with creator information,” International Journal of

Distributed Sensor Networks, vol. 11, no. 6, p. 479174, 2015.

[67] D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel, L. Li, J. Klein, and Y. Le Traon,

“Combining static analysis with probabilistic models to enable market-scale android inter-

component analysis,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, 2016, pp. 469–484.

[68] W. Tang, G. Jin, J. He, and X. Jiang, “Extending android security enforcement with a

security distance model,” in 2011 International Conference on Internet Technology and

Applications. IEEE, 2011, pp. 1–4.

[69] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android security,” IEEE security

& privacy, vol. 7, no. 1, pp. 50–57, 2009.

70

[70] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat: Android malware

detection through manifest and api calls tracing,” in 2012 Seventh Asia Joint Conference

on Information Security. IEEE, 2012, pp. 62–69.

[71] J. Hou, M. Xue, and H. Qian, “Unleash the power for tensor: A hybrid malware detection

system using ensemble classifiers,” in 2017 IEEE International Symposium on Parallel

and Distributed Processing with Applications and 2017 IEEE International Conference on

Ubiquitous Computing and Communications (ISPA/IUCC). IEEE, 2017, pp. 1130–1137.

[72] E. R. Wognsen, H. S. Karlsen, M. C. Olesen, and R. R. Hansen, “Formalisation and

analysis of dalvik bytecode,” Science of Computer Programming, vol. 92, pp. 25–55, 2014.

[73] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone applications

in third-party android marketplaces,” in Proceedings of the second ACM conference on

Data and Application Security and Privacy, 2012, pp. 317–326.

[74] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-based malware

detection system for android,” in Proceedings of the 1st ACM workshop on Security and

privacy in smartphones and mobile devices, 2011, pp. 15–26.

[75] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ““andromaly”: a behavioral

malware detection framework for android devices,” Journal of Intelligent Information

Systems, vol. 38, no. 1, pp. 161–190, 2012.

[76] M. Zhao, F. Ge, T. Zhang, and Z. Yuan, “Antimaldroid: An efficient svm-based malware

detection framework for android,” in International Conference on Information Computing

and Applications. Springer, 2011, pp. 158–166.

[77] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. N. Sheth, “Taintdroid: an information-flow tracking system for realtime privacy

monitoring on smartphones,” ACM Transactions on Computer Systems (TOCS), vol. 32,

no. 2, pp. 1–29, 2014.

[78] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the {OS} and dalvik

semantic views for dynamic android malware analysis,” in Presented as part of the 21st

{USENIX} Security Symposium ({USENIX} Security 12), 2012, pp. 569–584.

[79] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “Context-aware, adaptive,

and scalable android malware detection through online learning,” IEEE Transactions on

Emerging Topics in Computational Intelligence, vol. 1, no. 3, pp. 157–175, 2017.

71

[80] B. Amos, H. Turner, and J. White, “Applying machine learning classifiers to dynamic

android malware detection at scale,” in 2013 9th international wireless communications

and mobile computing conference (IWCMC). IEEE, 2013, pp. 1666–1671.

[81] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features for robust mal-

ware detection in android,” in International conference on security and privacy in com-

munication systems. Springer, 2013, pp. 86–103.

[82] S. Sheen, R. Anitha, and V. Natarajan, “Android based malware detection using a mul-

tifeature collaborative decision fusion approach,” Neurocomputing, vol. 151, pp. 905–912,

2015.

[83] R. Vinayakumar, K. Soman, P. Poornachandran, and S. Sachin Kumar, “Detecting an-

droid malware using long short-term memory (lstm),” Journal of Intelligent & Fuzzy

Systems, vol. 34, no. 3, pp. 1277–1288, 2018.

[84] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: A streaminglized machine

learning-based system for detecting android malware,” in Proceedings of the 11th ACM on

Asia Conference on Computer and Communications Security, 2016, pp. 377–388.

[85] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify malicious executables in

the wild,” Journal of Machine Learning Research, vol. 7, no. Dec, pp. 2721–2744, 2006.

[86] J. Kinable and O. Kostakis, “Malware classification based on call graph clustering,” Jour-

nal in computer virology, vol. 7, no. 4, pp. 233–245, 2011.

[87] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco, “Dendroid: A text mining

approach to analyzing and classifying code structures in android malware families,” Expert

Systems with Applications, vol. 41, no. 4, pp. 1104–1117, 2014.

[88] M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F. Bissyandé, Y. Le Traon, J. Klein, and

L. Cavallaro, “Euphony: Harmonious unification of cacophonous anti-virus vendor la-

bels for android malware,” in 2017 IEEE/ACM 14th International Conference on Mining

Software Repositories (MSR). IEEE, 2017, pp. 425–435.

[89] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool for massive

malware labeling,” in International Symposium on Research in Attacks, Intrusions, and

Defenses. Springer, 2016, pp. 230–253.

72

[90] Y. Li, J. Jang, X. Hu, and X. Ou, “Android malware clustering through malicious payload

mining,” in International Symposium on Research in Attacks, Intrusions, and Defenses.

Springer, 2017, pp. 192–214.

[91] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. Van Der Veen,

and C. Platzer, “Andrubis–1,000,000 apps later: A view on current android malware be-

haviors,” in 2014 third international workshop on building analysis datasets and gathering

experience returns for security (BADGERS). IEEE, 2014, pp. 3–17.

[92] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis of current

android malware,” in International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment. Springer, 2017, pp. 252–276.

[93] Koodous, https://koodous.com/, accessed: February 2020.

[94] L. Štefanko. Tweet on Flexnet Sample. Twitter (@LukasStefanko). [Online]. Available:

https://twitter.com/LukasStefanko/status/886849558143279104

[95] T. Team. Red Alert 2.0 Android Trojan Spreads Via Third

Party App Stores. TrendMicro. [Online]. Available: https:

//www.trendmicro.com/vinfo/au/security/news/cybercrime-and-digital-threats/

red-alert-2-0-android-trojan-spreads-via-third-party-app-stores/

[96] D. Team. Doctor web: banking trojan android.bankbot.149.origin has become a rampant

tool of cybercriminals.

[97] N. Chrysaidos. New version of mobile malware Catelites possibly linked

to Cron cyber gang. Avast. [Online]. Available: https://blog.avast.com/

new-version-of-mobile-malware-catelites-possibly-linked-to-cron-cyber-gang

[98] Group-IB, P. Krylov, and R. Mirkasymov. Group-IB uncovers Android Trojan named

Gustuff capable of targeting more than 100 global banking apps, cryptocurrency and

marketplace applications. Group-IB. [Online]. Available: https://www.group-ib.com/

media/gustuff/

[99] A. B. Can. Android Malware Analysis : Dissecting Hydra Dropper. [Online]. Available:

https://pentest.blog/android-malware-analysis-dissecting-hydra-dropper/

[100] ThreatFabric. BianLian - from rags to riches, the malware dropper that had

a dream. ThreatFabric. [Online]. Available: https://www.threatfabric.com/blogs/

bianlian from rags to riches the malware dropper that had a dream.html

73

[101] L. Grustniy. The Rotexy Trojan: banker and blocker. Kaspersky. [Online]. Available:

https://www.kaspersky.com/blog/rotexy-banker-blocker/24733/

[102] A. Cerberus. Twitter Account of Android Cerberus. Twitter (@AndroidCerberus).

[Online]. Available: https://twitter.com/AndroidCerberus

[103] ThreatFabric. Ginp - A malware patchwork borrowing from Anubis. ThreatFabric.

[Online]. Available: https://www.threatfabric.com/blogs/ginp a malware patchwork

borrowing from anubis.html

[104] GReAT. Fully equipped Spying Android RAT from Brazil: BRATA. Kaspersky Labs.

[Online]. Available: https://securelist.com/spying-android-rat-from-brazil-brata/92775/

[105] ThreatFabric. BlackRock - the Trojan that wanted to get them all. ThreatFabric. [On-

line]. Available: https://www.threatfabric.com/blogs/blackrock the trojan that wanted

to get them all.html

[106] R. Winsniewski, “Android–apktool: A tool for reverse engineering android apk files,”

Retrieved February, vol. 10, p. 2020, 2012.

[107] G. Team. ¡permission¿. Google. [Online]. Available: https://developer.android.com/

guide/topics/manifest/permission-element

[108] L. Nguyen-Vu, J. Ahn, and S. Jung, “Android fragmentation in malware detection,” Com-

puters & Security, vol. 87, p. 101573, 2019.

[109] Y. Zhauniarovich and O. Gadyatskaya, “Small Changes, Big Changes: An Updated View

on the Android Permission System,” in Proceedings of 19th International Symposium

on Research in Attacks, Intrusions and Defenses, ser. RAID 2016, 2016, pp. 346–367.

[Online]. Available: http://dx.doi.org/10.1007/978-3-319-45719-2 16

[110] G. Team. Manifest.permission. Google. [Online]. Available: https://developer.android.

com/reference/android/Manifest.permission

[111] G. Combs, “Wireshark [https://www. wireshark. org/]. the wireshark team,” 2017.

[112] E. Lawrence, “Fiddler free web debugging proxy,” Telerik.[Online]. Available: http://www.

telerik. com/fiddler.[Accessed: 11-Feb-2015], 2020.

[113] Y. Duan, M. Zhang, A. V. Bhaskar, H. Yin, X. Pan, T. Li, X. Wang, and X. Wang,

“Things you may not know about android (un) packers: A systematic study based on

whole-system emulation.” in NDSS, 2018.

74

[114] L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, “Adaptive unpacking of android apps,” in

2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE,

2017, pp. 358–369.

[115] J. Shilko. RedAlert2 Mobile Banking Trojan Actively Updating Its

Techniques. PhishLabs. [Online]. Available: https://info.phishlabs.com/blog/

redalert2-mobile-banking-trojan-actively-updating-its-techniques

[116] L. P. TATYANA SHISHKOVA. The Rotexy mobile Trojan – banker

and ransomware. Kaspersky. [Online]. Available: https://securelist.com/

the-rotexy-mobile-trojan-banker-and-ransomware/88893/

[117] “The best g data of all time,” 1985, accessed: 2020-10-28. [Online]. Available:

https://www.gdatasoftware.com

[118] “Mobile malware report - no let-up with android malware,” https://www.gdatasoftware.

com/news/2019/07/35228-mobile-malware-report-no-let-up-with-android-malware,

2019.

[119] M. Amin, “A survey of financial losses due to malware,” in Proceedings of the Second

International Conference on Information and Communication Technology for Competitive

Strategies, 2016, pp. 1–4.

[120] “Avast threat landscape report: 2019 predictions,” https://press.avast.com/

hubfs/media-materials/kits/2019-Predictions-Report/Avast\%202019\%20Threat\

%20Landscape\%20Report.pdf?hsLang=en, 2019.

[121] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep learning method

for android malware detection using various features,” TIFS, vol. 14, no. 3, pp. 773–788,

2019.

[122] H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: Effective android malware detection

and categorization via app-level profiling,” TIFS, 2018.

[123] M. Hammad, J. Garcia, and S. Malek, “A large-scale empirical study on the effects of

code obfuscations on android apps and anti-malware products,” in Proceedings of the 40th

International Conference on Software Engineering. ACM, 2018, pp. 421–431.

[124] M. T. R. Team, “Anubis android malware returns with over 17,000 samples,”

hyphenshttps://blog.trendmicro.com/trendlabs-security-intelligence/anubis-android-

malware-returns-with-over- 17000-samples/, 2019.

75

[125] S. Hutchinson, B. Zhou, and U. Karabiyik, “Are we really protected? an investigation

into the play protect service,” in 2019 IEEE International Conference on Big Data (Big

Data). IEEE, 2019, pp. 4997–5004.

[126] R. Yu, “Rogueware reborn, a business analysis of a growing fraud in android,” https://

www.sophos.com/en-us/medialibrary/PDFs/factsheets/sophos-rogueware-reborn-wpna.

pdf, 2018.

[127] F. Mercaldo, V. Nardone, A. Santone, and C. A. Visaggio, “Download malware? no,

thanks: how formal methods can block update attacks,” in Proceedings of the 4th FME

Workshop on Formal Methods in Software Engineering, 2016, pp. 22–28.

[128] S. Josefsson et al., “The base16, base32, and base64 data encodings,” RFC 4648, October,

Tech. Rep., 2006.

[129] W. Stallings, “The rc4 stream encryption algorithm,” Cryptography and network security,

2005.

[130] “Virustotal intelligence,” https://www.virustotal.com/gui/intelligence-overview.

[131] “A mobile threat intelligence platform by avast,” 2018, accessed: 2021-06-21. [Online].

Available: https://www.apklab.io

[132] V. Total, “Virustotal-free online virus, malware and url scanner,” Online: https://www.

virustotal. com/en, 2012.

[133] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and L. Cavallaro, “Under-

standing android app piggybacking: A systematic study of malicious code grafting,” IEEE

Transactions on Information Forensics and Security, vol. 12, no. 6, pp. 1269–1284, 2017.

[134] B. Gruver, “Smali/baksmali, an assembler/disassembler for the dex format,” 2014.

[135] “Dalvik bytecode: Android open source project,” 2009, accessed: 2021-06-13. [Online].

Available: https://source.android.com/devices/tech/dalvik/dalvik-bytecode

[136] “Google play,” 2008, accessed: 2021-05-09. [Online]. Available: https://play.google.com

[137] “Tencent app store,” 2011, accessed: 2021-05-27. [Online]. Available: https:

//android.myapp.com

[138] “Number of monthly active user number (mau) of the lead-

ing third-party app stores in china in may 2021,” 2007, accessed:

76

2021-05-27. [Online]. Available: https://www.statista.com/statistics/1218058/

china-leading-third-party-app-stores-based-on-monthly-active-users

[139] Y. Zhang, Y. Sui, S. Pan, Z. Zheng, B. Ning, I. Tsang, and W. Zhou, “Familial clus-

tering for weakly-labeled android malware using hybrid representation learning,” IEEE

Transactions on Information Forensics and Security, vol. 15, pp. 3401–3414, 2019.

[140] B. Ning, Z. Guanqin, and Z. Zexin, “An evolutionary perspective: A study of anubis

android banking trojan,” in Seventh International Conference on Dependable Systems

and Their Applications, 2020.

77

Appendix A Publication List

i. Y. Zhang, Y. Sui, S. Pan, Z. Zheng, B. Ning, I. Tsang, and W. Zhou, “Familial clus-

tering for weakly-labeled android malware using hybrid representation learning,” IEEE

Transactions on Information Forensics and Security, vol. 15, pp. 3401–3414, 2019

ii. B. Ning, Z. Guanqin, and Z. Zexin, “An evolutionary perspective: A study of anubis

android banking trojan,” in Seventh International Conference on Dependable Systems

and Their Applications, 2020

Appendix B Figures

Figure B.1: ”3458” in Rotexy

Figure B.2: ”393838” in Rotexy

78

Figure B.3: How Anubis displays toast

Figure B.4: How Anubis tailors the text based on the language

Figure B.5: Hard-coded ”Enable access for” in different languages

79

Figure B.6: Base64 decoded image from the source code of most higher versions of Anubis

Figure B.7: A sharper image from double Base64-decoded source code snippets of an Anubis

dropper

80

	Title Page
	Certificate of Original Authorship
	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Android operating systems
	1.2 Android malware and Android banking trojan
	1.3 APK Structure
	1.4 Research Objectives
	1.5 Thesis Organization

	2 Literature Review
	2.1 Android Trojan Evolution
	2.2 Android Malware Families Analysis
	2.3 Android malware detection
	2.3.1 Static Approaches

	2.4 Android Malware Clustering and Classification

	3 Deep Analysis of Recent Android Trojans
	3.1 Data Collection and Extraction
	3.2 Attributes of Recent Android Trojans

	4 Analysis of the Bankbot Anubis family
	4.1 Anubis's Approach
	4.1.1 Phase 1: Mobile Devices Cyber Attack
	4.1.2 Phase 2: Privilege Escalation
	4.1.3 Phase 3: C&C Server
	4.1.4 Phase 4: Decrypting the encrypted

	4.2 Data and Analysis
	4.2.1 Anubis Roadmap
	4.2.2 Development of Encryption
	4.2.3 AndroidManifest
	4.2.4 Hard-coded API classes and methods
	4.2.5 Opcode Sequences

	5 An Observation for Android Malware Detection
	6 Conclusion and Future Work
	References
	Appendices
	A Publication List
	B Figures

