

A hierarchical model to detect differential gene expression distributions, and their investigation as a reflection of dysregulation in cancer

by Aedan Roberts

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Professor Paul Kennedy and Associate Professor Daniel Catchpoole

University of Technology Sydney Faculty of Engineering and Information Technology

March 2021

Certificate of Original Authorship

I, Aedan Roberts, declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of Philosophy in the School of Computer Science, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

> Production Note: Signature removed prior to publication.

SIGNATURE: ____

[Aedan Roberts]

DATE: 12th August, 2021 PLACE: Sydney, Australia

Acknowledgements

I would like to thank my supervisors, Prof Paul Kennedy and A/Prof Daniel Catchpoole, for their support and advice throughout the course of my PhD. Their encouragement, guidance, and the many discussions on the direction of my work have been invaluable.

My endless gratitude goes to my wife Beatrice, for supporting, encouraging and tolerating me, not necessarily in that order. A nearly equal amount of gratitude goes to Waffles and Clio, who really didn't offer any useful advice to be honest, but whose presence was immensely helpful nonetheless.

I would also like to thank the support staff at the School of Computer Science for their help throughout the process, in particular Margot Kopel and Janet Stack. Thanks also go to Thomas Lysaght and George Mundackal, who helped to optimise my R code as part of their Computing Science Studio 1 project.

I am grateful for the financial support provided by the NSW Health PhD Scholarship and the Australian Government Research Training Program.

Finally, I thank the anonymous donors whose tissue donations to GTEx, TCGA and the GEO repository make this and so much other research possible.

Contents

List of Figures xi		
List of Tables xv		
List of	Publications	xix
List of	Abbreviations and Symbols	xxi
\mathbf{Abstra}	et	xxv
1 Intr	oduction	1
1.1	Background	. 1
1.2	Research questions	. 3
1.3	Contributions to knowledge	. 4
1.4	Thesis structure	. 7
2 Lite	cature review	9
2.1	Gene expression data and its analysis	. 9
	2.1.1 Microarray data	. 10
	2.1.2 RNA-seq data	. 12
	2.1.3 The negative binomial distribution	. 14
	2.1.4 Shrinkage estimators and hierarchical models in RNA-seq	
	data analysis	. 16
	2.1.5 Alternatives to the negative binomial model	. 19
2.2	Biological significance and analysis of changes in gene expression	
	distributions	. 20
	2.2.1 Biological significance of expression variability	. 20
	2.2.2 Measures of variability	. 22

CONTENTS

	2.2.3	Identification of differentially variable genes	23
	2.2.4	Classification based on differential variability	25
	2.2.5	Differential distribution	30
2.3	Resear	rch gaps	32
Diff	erentia	al variability and distribution are informative for can-	
cer	subtyp	be classification	35
3.1	Introd	uction	35
3.2	Metho	ds	36
	3.2.1	Datasets and classification problems	36
	3.2.2	Feature selection and engineering	37
	3.2.3	Classification	39
3.3	Result	S	41
	3.3.1	Colon adenoma versus cancer $\ldots \ldots \ldots \ldots \ldots \ldots$	41
	3.3.2	Lung cancer prognosis	43
	3.3.3	ALL subtype classification	46
3.4	Discus	sion	50
	3.4.1	Differential variability feature selection for predicting cancer	
		progression and prognosis	50
	3.4.2	Cancer subtype classification using differential variability	
		feature selection	52
	3.4.3	Differential expression, variability and distribution	53
	3.4.4	Feature transformation and considerations for classification	
		methods	53
3.5	Conclu	usion	55
A h	ierarcł	nical model to detect differential gene expression dis-	
trib	utions	in RNA-seq data	57
4.1	Introd	uction	57
4.2	Initial	model development and implementation	58
	4.2.1	Selection of priors	60
	4.2.2	Posterior inference for means and dispersions	62
	4.2.3	Markov chain Monte Carlo algorithm	65
4.3	Mixtu	re model for differential distribution	69
4.4	MCM	C algorithm optimisation	74
	 2.3 Diff cer 3.1 3.2 3.3 3.4 3.5 A h trib 4.1 4.2 4.3 4.4 	2.2.3 2.2.4 2.2.5 2.3 Reseau Differentia cer subtyp 3.1 Introd 3.2 Methol 3.2 Methol 3.2.1 3.2.2 3.2.3 3.3 Result 3.3.1 3.3.2 3.3 3.4 Discus 3.4.1 3.4.2 3.4.3 3.4.4 3.5 Conche A hierarche tributions 4.1 Introd 4.2 Initial 4.2.1 4.2.2 4.2.3 4.3 Mixtu 4.4 MCM ⁴	2.2.3 Identification of differentially variable genes 2.2.4 Classification based on differential variability 2.2.5 Differential distribution 2.3 Research gaps 2.3 Research gaps Differential variability and distribution are informative for cancer subtype classification 3.1 Introduction 3.2 Methods 3.2.1 Datasets and classification problems 3.2.2 Feature selection and engineering 3.2.3 Classification 3.3 Results 3.3.1 Colon adenoma versus cancer 3.3.2 Lung cancer prognosis 3.3.3 ALL subtype classification 3.4.1 Differential variability feature selection for predicting cancer progression and prognosis 3.4.2 Cancer subtype classification using differential variability feature selection 3.4.3 Differential expression, variability and distribution 3.4.4 Feature transformation and considerations for classification methods 3.5 Conclusion 3.5 Conclusion 3.6 Lunctotion 3.7 Posterior inference for means and dispersions

		4.4.1	Joint parameter updates
		4.4.2	Independence sampler
		4.4.3	Non-symmetric proposal densities
		4.4.4	Adaptive proposal densities
		4.4.5	Final MCMC implementation
	4.5	Poster	ior inference from the hierarchical model
	4.6	Altern	ative model specification
	4.7	Conclu	usion
5	Ass	essmer	nt of the hierarchical model 87
	5.1	Introd	uction
	5.2	Metho	$ds \dots ds \dots$
		5.2.1	Data simulation and processing
		5.2.2	Introducing expression changes in real data 91
		5.2.3	Methods to compare
		5.2.4	Metrics for comparison
	5.3	Result	s: simulated data
		5.3.1	Dispersion estimation
		5.3.2	Differential expression
		5.3.3	Differential dispersion
		5.3.4	Differential distribution
	5.4	Result	s: Real data with artificially introduced differences in expression 113
		5.4.1	Differential expression
		5.4.2	Differential dispersion
		5.4.3	Differential distribution
	5.5	Discus	sion $\ldots \ldots 124$
		5.5.1	Differential expression
		5.5.2	Differential dispersion
		5.5.3	Differential distribution
	5.6	Conclu	nsion
6	An	investi	gation into dysregulation of gene expression in cancer129
	6.1	Introd	uction $\ldots \ldots 129$
	6.2	Metho	ds
		6.2.1	Datasets and processing 131

		6.2.2	Differential expression, dispersion and distribution analyses	134
		6.2.3	Gene set enrichment analysis	135
	6.3	Result	s	136
		6.3.1	Differential dispersion identifies different sets of genes from	
			differential expression	136
		6.3.2	Differential dispersion and differential distribution identify	
			cancer-related genes	138
		6.3.3	Differential expression and differential dispersion identify	
			functionally distinct sets of genes	143
	6.4	Discus	sion	145
	6.5	Conclu	usion	148
_	C			1.40
7	Con	clusion		149
	7.1	Cancer	c classification using differential variability and distribution	150
	7.2	Detect	ion of differentially variable and differentially distributed	1 50
		genes i	in RNA-seq data	152
	7.3	Differe	ntial variability and distribution in cancer	154
	7.4	Conclu	1sion	156
A	ppen	dix A	R code for the hierarchical model	157
A	ppen	dix B	R code for methods comparisons	207
A	ppen	dix C	Gene set enrichment analysis results	213
	C.1	Breast	adenocarcinoma	214
	C.2	Clear	cell renal cell carcinoma	216
	C.3	Thyroi	id carcinoma	218
	C.4	Hepate	ocellular carcinoma	220
	C.5	Lung s	squamous cell carcinoma	222
	C.6	Prosta	te adenocarcinoma	224
	C.7	Colon	adenocarcinoma	226
Bi	bliog	graphy		229

List of Figures

Figure

Page

2.1	Illustration of classification problems using differential expression and differential variability	97
2.2	Solving classification problems using differential expression and differ- ential variability.	29
3.1	Combinations of feature selection and engineering methods and classi- fication methods used.	40
3.2	Boxplots of AUCs from hyperdiploidy comparison on 100 random samples of training data.	49
4.1	Schematic illustration of the hierarchical model.	59
4.2	Assessment of prior forms for means	61
4.3	Density histograms of 100,000 log-transformed draws from log-normal priors for the mean and dispersion resulting from 100,000 random draws from each hyperprior	63
4.4	Traces of 50,000 posterior samples of the mean for 50 randomly selected genes, with three independent runs overlaid in different colours	67
4.5	Traces of 50,000 posterior samples of the dispersion for 50 randomly selected genes, with three independent runs overlaid in different colours.	68
4.6	Traces of 50,000 posterior samples of the log-normal prior scale param- eters for the mean and dispersion, with five independent runs using	00
51	different initial values overlaid in different colours	69
0.1	with 4, 10, 20 and 40 samples	97

5.2	Boxplots of MSEs for dispersion estimation from 50 simulated datasets
	with 2, 5, 10 and 20 samples per group, with 5% of genes differentially
	expressed
5.3	Boxplots of AUCs for differential expression analysis on simulated data
	with 2, 5, 10, 20 and 50 samples per group
5.4	Boxplots of partial AUCs for $FPR < 0.05$ for differential expression
	analysis on simulated data with 2, 5, 10, 20 and 50 samples per group. 100
5.5	Boxplots of FDRs at nominal 0.05 level for differential expression
	analysis on simulated data with 2, 5, 10, 20 and 50 samples per group. 101 $$
5.6	Boxplots of TPRs at nominal FDR 0.05 for differential expression
	analysis on simulated data with 2, 5, 10, 20 and 50 samples per group. 102
5.7	False discovery curves for differential expression analysis on simulated
	data with 2, 5, 10, 20 and 50 samples per group 103
5.8	Boxplots of AUCs for differential dispersion analysis on simulated data
	with 2, 5, 10, 20 and 50 samples per group
5.9	Boxplots of partial AUCs for FPR < 0.05 for differential dispersion
	analysis on simulated data with 2, 5, 10, 20 and 50 samples per group. 104
5.10	Boxplots of FDRs at nominal 0.05 level for differential dispersion
	analysis on simulated data with 2, 5, 10, 20 and 50 samples per group. 105
5.11	Boxplots of TPRs at nominal FDR 0.05 for differential dispersion
	analysis on simulated data with 2, 5, 10, 20 and 50 samples per group. 106
5.12	False discovery curves for differential dispersion analysis on simulated
	data with 2, 5, 10, 20 and 50 samples per group 107
5.13	False discovery curves for differential dispersion tests at minimum LFC
	of 1.44 on simulated data with 2, 5, 10, 20 and 50 samples per group. 108
5.14	Boxplots of AUCs for differential distribution analysis on simulated
	data with 2, 5, 10, 20 and 50 samples per group 110
5.15	Boxplots of partial AUCs for FPR < 0.05 for differential distribution
	analysis on simulated data with 2, 5, 10, 20 and 50 samples per group. 110
5.16	Boxplots of FDRs at nominal 0.05 level for differential distribution
	analysis on simulated data with 2, 5, 10, 20 and 50 samples per group. 111
5.17	Boxplots of TPRs at nominal FDR 0.05 for differential distribution
	analysis on simulated data with 2, 5, 10, 20 and 50 samples per group. 112

5.18	False discovery curves for differential distribution analysis on simulated	
	data with 2, 5, 10, 20 and 50 samples per group. \ldots \ldots \ldots \ldots	113
5.19	Boxplots of AUCs for differential expression analysis on GTEx data	
	with 2, 5, 10, 20 and 50 samples per group. \ldots \ldots \ldots \ldots \ldots	114
5.20	Boxplots of partial AUCs for FPR < 0.05 for differential expression	
	analysis on GTEx data with 2, 5, 10, 20 and 50 samples per group. $\ .$	115
5.21	Boxplots of FDRs at nominal 0.05 level for differential expression	
	analysis on GTEx data with 2, 5, 10, 20 and 50 samples per group. $\ .$	115
5.22	Boxplots of TPRs at nominal FDR 0.05 for differential expression	
	analysis on GTEx data with 2, 5, 10, 20 and 50 samples per group. $\ .$	116
5.23	False discovery curves for differential expression analysis on GTEx	
	data with 2, 5, 10, 20 and 50 samples per group. \ldots \ldots \ldots \ldots	117
5.24	Boxplots of AUCs for differential dispersion analysis on GTEx data	
	with 2, 5, 10, 20 and 50 samples per group. \ldots \ldots \ldots \ldots \ldots	118
5.25	Boxplots of partial AUCs for FPR < 0.05 for differential dispersion	
	analysis on GTEx data with 2, 5, 10, 20 and 50 samples per group. $\ .$	119
5.26	Boxplots of FDRs at nominal 0.05 level for differential dispersion	
	analysis on GTEx data with 2, 5, 10, 20 and 50 samples per group. $\ .$	119
5.27	Boxplots of TPRs at nominal FDR 0.05 for differential dispersion	
	analysis on GTEx data with 2, 5, 10, 20 and 50 samples per group. $\ .$	120
5.28	False discovery curves for differential dispersion analysis on GTEx data	
	with 2, 5, 10, 20 and 50 samples per group. \ldots \ldots \ldots \ldots	120
5.29	False discovery curves for differential dispersion tests at minimum LFC	
	of 1.44 on GTEx data with 2, 5, 10, 20 and 50 samples per group	121
5.30	Boxplots of AUCs for differential distribution analysis on GTEx data	
	with 2, 5, 10, 20 and 50 samples per group. \ldots \ldots \ldots \ldots	122
5.31	Boxplots of AUCs for FPR < 0.05 for differential distribution analysis	
	on GTEx data with 2, 5, 10, 20 and 50 samples per group	122
5.32	Boxplots of FDRs at nominal 0.05 level for differential distribution	
	analysis on GTEx data with 2, 5, 10, 20 and 50 samples per group. $\ .$	123
5.33	Boxplots of TPRs at nominal FDR 0.05 for differential distribution	
	analysis on GTEx data with 2, 5, 10, 20 and 50 samples per group. $\ .$	124
5.34	False discovery curves for differential distribution analysis on GTEx	
	data with 2, 5, 10, 20 and 50 samples per group. \ldots \ldots \ldots	124

6.1	Spearman correlation and p -values for hypothesis tests for negative	
	correlation between gene lists for differential expression and differential	
	dispersion for breast adenocarcinoma, with varying thresholds for	
	calling differential expression or dispersion	137
6.2	Spearman correlations and p -values for hypothesis tests for negative	
	correlation between gene lists for differential expression and differen-	
	tial dispersion for TCGA data, with varying thresholds for calling	
	differential expression or dispersion	138
6.3	Number of lung adenocarcinoma- and prostate adenocarcinoma-related	
	genes identified with varying thresholds for calling differential expres-	
	sion or dispersion	142
6.4	Number of cancer-related genes identified with varying thresholds for	
	calling differential expression or dispersion for eight cancer types	143

List of Tables

Table

Page

Datasets and classification problems	37
Combinations of feature selection and engineering methods and classi-	
fication methods used.	40
AUCs for classifying colon adenoma versus cancer using feature selec-	
tion following Dinalankara and Corrada Bravo (2015)	42
AUCs for classifying colon adenoma versus cancer using features se-	
lected by differential variance between classes	43
AUCs for classifying colon adenoma versus cancer using feature selec-	
tion by differential expression or combining differential expression and	
differential variance.	43
AUCs for classifying low versus high risk lung cancer patients us-	
ing universal anti-profile feature selection following Dinalankara and	
Corrada Bravo (2015)	44
AUCs for classifying low versus high risk lung cancer patients using	
features selected by differential variance between classes	44
AUCs for classifying low versus high risk lung cancer patients using	
feature selection by differential expression or combining differential	
expression and differential variance	45
AUCs for classifying low versus high risk lung cancer patients using	
features selected by differential variance between classes, for stage	
I and II carcinomas with complete tumour resection and no prior	
chemotherapy	46
	Datasets and classification problems

3.10	AUCs for classifying low versus high risk lung cancer patients using feature selection by differential expression or combining differential expression and differential variance for stage I and II carcinomas with	
	complete tumour resection and no prior chemotherapy	46
3.11	AUCs for ALL classification problems using features selected by differ-	
3.12	ential variance between classes	47
	ential expression or combining differential expression and differential variance.	48
3.13	Mean AUCs from hyperdiploidy comparison on 100 random samples of training data	50
6.1	TCGA tumour–normal sample pairs used.	132
6.2	Tumour types from the CGC list used to identify related genes for	
	each cancer type	133
6.3	Number of related genes identified for each cancer type from each database and overall	134
6.4	p-values from Wilcoxon rank-sum tests for ranking cancer-related genes above other genes, for differential expression (DE) using limma– voom, differential dispersion (D ϕ) using the hierarchical model, and differential distribution using the hierarchical mixture model (HMM) or hybrid method (Hyb) for paired tumour–normal TCGA RNA-seq datasets	139
6.5	p-values from Wilcoxon rank-sum tests for ranking cancer pathway genes above other genes, for differential expression (DE) using limma– voom, differential dispersion (D ϕ) using the hierarchical model, and differential distribution using the hierarchical mixture model (HMM) or hybrid method (Hyb) for paired tumour–normal TCGA RNA-seq	
	datasets	140
6.6	Top 10 enriched GO terms in each ontology for lung adenocarcinoma based on differential expression.	144
6.7	Top 10 enriched GO terms in each ontology for lung adenocarcinoma	
	based on differential dispersion.	145

C.1	Top 10 enriched GO terms in each ontology for breast adenocarcinoma	
	based on differential expression	214
C.2	Top 10 enriched GO terms in each ontology for breast adenocarcinoma	
	based on differential dispersion	215
C.3	Top 10 enriched GO terms in each ontology for clear cell renal cell	
	carcinoma based on differential expression	216
C.4	Top 10 enriched GO terms in each ontology for clear cell renal cell	
	carcinoma based on differential dispersion	217
C.5	Top 10 enriched GO terms in each ontology for thyroid carcinoma	
	based on differential expression	218
C.6	Top 10 enriched GO terms in each ontology for thyroid carcinoma	
	based on differential dispersion	219
C.7	Top 10 enriched GO terms in each ontology for hepatocellular carci-	
	noma based on differential expression.	220
C.8	Top 10 enriched GO terms in each ontology for hepatocellular carci-	
	noma based on differential dispersion	221
C.9	Top 10 enriched GO terms in each ontology for lung squamous cell	
	carcinoma based on differential expression	222
C.10	Top 10 enriched GO terms in each ontology for lung squamous cell	
	carcinoma based on differential dispersion.	223
C.11	Top 10 enriched GO terms in each ontology for prostate adenocarci-	
	noma based on differential expression.	224
C.12	Top 10 enriched GO terms in each ontology for prostate adenocarci-	
	noma based on differential dispersion	225
C.13	Top 10 enriched GO terms in each ontology for colon adenocarcinoma	
	based on differential expression	226
C.14	Top 10 enriched GO terms in each ontology for colon adenocarcinoma	
	based on differential dispersion.	227

List of Publications

Listed below are the publications and other outputs associated with the research presented in this thesis.

Roberts, A. G. K., Catchpoole, D. R. & Kennedy, P. J., 2021, 'Identification of differentially distributed gene expression and distinct sets of cancer-related genes identified by changes in expression mean and variability'. (Submitted) Available as a preprint: https://www.biorxiv.org/content/10.1101/2021.02.15.431343v2.

Roberts, A. G. K., 2021, 'DiffDist', https://github.com/aedanr/DiffDist. R package.

Roberts, A. G. K., Catchpoole, D.R. & Kennedy, P.J., 2018, 'Variance-based Feature Selection for Classification of Cancer Subtypes Using Gene Expression Data', 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro.

List of Abbreviations and Symbols

Abbreviation	Description
ALL	Acute lymphoblastic leukaemia
AP	Anti-profiles
AUC	Area under the ROC curve
BFDR	Bayesian false discovery rate
BRCA	Breast invasive adenocarcinoma
CGC	Cancer Gene Census
COAD	Colon adenocarcinoma
CV	Coefficient of variation
DE	Differential expression
DMD	Differences in means and deviations
$\mathrm{D}\phi$	Differential dispersion
FDR	False discovery rate
FPR	False positive rate
GAMLSS	Generalised additive models for location, scale and shape
GEO	Gene Expression Omnibus
GO	Gene Ontology
GTEx	Genotype–Tissue Expression
HM	Hierarchical model
HMM	Hierarchical mixture model
HPD	Highest posterior density
KEGG	Kyoto Encyclopedia of Genes and Genomes
KIRC	Kidney renal clear cell carcinoma
LDA	Linear discriminant analysis
LFC	Log fold change
LIHC	Liver hepatocellular carcinoma
LSVM	Linear SVM
LUAD	Lung adenocarcinoma
LUSC	Lung squamous cell carcinoma

Abbreviation	Description
MAD	Median absolute deviation
MCMC	Markov chain Monte Carlo
mRNA	messenger RNA
MSE	Mean squared error
NB	Negative binomial
NCBI	National Center for Biotechnology Information
NOS	Not otherwise specified
NSCLC	Non-small cell lung carcinoma
PRAD	Prostate adenocarcinoma
PSVM	SVM with polynomial kernel
RBF	Radial basis function
RF	Random forest
RIN	RNA integrity number
RLE	Relative log expression
RNA-seq	RNA sequencing
ROC	Receiver operating characteristic
RSVM	SVM with RBF kernel
SAGE	Serial analysis of gene expression
SAM	Significance Analysis of Microarrays
SVM	Support vector machine
TCGA	The Cancer Genome Atlas
THCA	Thyroid carcinoma
TMM	Trimmed mean of M-values
TPR	True positive rate
TRF	Random forest with distance-to-median transformed features

Symbol	Description
g	Number of genes represented in a gene expression dataset
m_{μ}	Location hyperparameter for log-normal prior on mean
m_{ϕ}	Location hyperparameter for log-normal prior on dispersion
$n^{'}$	Number of samples in a dataset
n_A	Number of samples in group A
n_B	Number of samples in group B
\hat{R}	Gelman–Rubin diagnostic
s	Sample standard deviation
s^2	Sample variance
v_{μ}	Scale hyperparameter for log-normal prior on mean
v_{ϕ}	Scale hyperparameter for log-normal prior on dispersion
y	Set of observed RNA-seq counts for all genes and samples in a dataset
$ar{y}$	Sample mean of y
y_{ij}	Observed count for gene j in sample i
z_j	Mixture component indicator for gene j
$\Gamma\left(\cdot ight)$	Gamma function
γ	Set of all hyperparameters
γ_{μ}	Set of hyperparameters for prior on mean
γ_{ϕ}	Set of hyperparameters for prior on dispersion
θ	Set of means and dispersions for all genes: $(\mu_j, \phi_j), j = 1, \dots, g$
$ heta_j$	Set of mean and dispersion for gene $j: (\mu_j, \phi_j)$
λ	Proportion of differentially distributed genes in HMM or Poisson rate parameter
μ	Mean
ϕ	Negative binomial dispersion
σ	Standard deviation
σ^2	Variance

Abstract

Data from genome-wide gene expression studies provides a wealth of information on diseases such as cancer, which can lead to insights into disease mechanisms and advances in diagnosis and treatment. Analysis of expression data is most commonly aimed at identifying genes whose mean expression levels are increased or decreased in disease compared to normal tissue, or between disease subtypes – differential expression analysis. However, there is strong evidence that changes in the variability of gene expression, without a difference in mean, can also be relevant. Genes related to cancer have been shown to have changes in the variability of their expression between normal and tumour tissue, and these differentially variable genes have also been found to be informative for diagnostic and prognostic cancer classification. The research presented in this thesis addresses several aspects of research on differential gene expression variability, and the broader concept of differential distribution, defined as any difference in the distribution of expression values between groups.

This work makes three contributions to knowledge, relating to cancer classification, identification of differentially variable or distributed genes, and the biology of differential variability and distribution in cancer. Contribution 1 extends previous work by demonstrating that genes identified by differential variability or distribution can be used to classify closely related cancer subtypes, rather than purely diagnostic or prognostic classification. Contribution 2 is a Bayesian hierarchical model for RNA-seq data that provides tests for differential expression, variability and distribution. The performance of each test is compared with existing methods on simulated data and on real RNA-seq datasets modified to artificially introduce changes in expression between groups. The differential expression test is competitive with state-of-the-art methods, and the differential variability test improves on existing methods, particularly for small sample sizes. The differential distribution test is the first such test available for RNA-seq data. Contribution 3 builds on previous work by providing the first clear demonstration that differential variability and differential distribution analyses can identify cancer-related genes, and that differential expression and differential variability analyses identify distinct sets of cancer-related genes, each with different biological functions.

Overall, this research confirms and extends previous findings showing that changes in expression variability and distribution in cancer are both of biological significance and informative for classification. As well as further demonstrating the need to look beyond differential expression to a comprehensive assessment of changes in gene expression distributions, this work provides a method that enables the identification of these differentially distributed genes.