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GTEx Genotype–Tissue Expression
HM Hierarchical model
HMM Hierarchical mixture model
HPD Highest posterior density
KEGG Kyoto Encyclopedia of Genes and Genomes
KIRC Kidney renal clear cell carcinoma
LDA Linear discriminant analysis
LFC Log fold change
LIHC Liver hepatocellular carcinoma
LSVM Linear SVM
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
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Abbreviation Description

MAD Median absolute deviation
MCMC Markov chain Monte Carlo
mRNA messenger RNA
MSE Mean squared error
NB Negative binomial
NCBI National Center for Biotechnology Information
NOS Not otherwise specified
NSCLC Non-small cell lung carcinoma
PRAD Prostate adenocarcinoma
PSVM SVM with polynomial kernel
RBF Radial basis function
RF Random forest
RIN RNA integrity number
RLE Relative log expression
RNA-seq RNA sequencing
ROC Receiver operating characteristic
RSVM SVM with RBF kernel
SAGE Serial analysis of gene expression
SAM Significance Analysis of Microarrays
SVM Support vector machine
TCGA The Cancer Genome Atlas
THCA Thyroid carcinoma
TMM Trimmed mean of M-values
TPR True positive rate
TRF Random forest with distance-to-median transformed features
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Symbol Description

g Number of genes represented in a gene expression dataset
mµ Location hyperparameter for log-normal prior on mean
mφ Location hyperparameter for log-normal prior on dispersion
n Number of samples in a dataset
nA Number of samples in group A
nB Number of samples in group B

R̂ Gelman–Rubin diagnostic
s Sample standard deviation
s2 Sample variance
vµ Scale hyperparameter for log-normal prior on mean
vφ Scale hyperparameter for log-normal prior on dispersion
y Set of observed RNA-seq counts for all genes and samples in a dataset
ȳ Sample mean of y
yij Observed count for gene j in sample i
zj Mixture component indicator for gene j
Γ (·) Gamma function
γ Set of all hyperparameters
γµ Set of hyperparameters for prior on mean
γφ Set of hyperparameters for prior on dispersion
θ Set of means and dispersions for all genes: (µj , φj) , j = 1, . . . , g
θj Set of mean and dispersion for gene j: (µj , φj)
λ Proportion of differentially distributed genes in HMM or Poisson rate parameter
µ Mean
φ Negative binomial dispersion
σ Standard deviation
σ2 Variance





Abstract

Data from genome-wide gene expression studies provides a wealth of information

on diseases such as cancer, which can lead to insights into disease mechanisms

and advances in diagnosis and treatment. Analysis of expression data is most

commonly aimed at identifying genes whose mean expression levels are increased

or decreased in disease compared to normal tissue, or between disease subtypes –

differential expression analysis. However, there is strong evidence that changes in

the variability of gene expression, without a difference in mean, can also be relevant.

Genes related to cancer have been shown to have changes in the variability of their

expression between normal and tumour tissue, and these differentially variable

genes have also been found to be informative for diagnostic and prognostic cancer

classification. The research presented in this thesis addresses several aspects of

research on differential gene expression variability, and the broader concept of

differential distribution, defined as any difference in the distribution of expression

values between groups.

This work makes three contributions to knowledge, relating to cancer clas-

sification, identification of differentially variable or distributed genes, and the

biology of differential variability and distribution in cancer. Contribution 1 extends

previous work by demonstrating that genes identified by differential variability

or distribution can be used to classify closely related cancer subtypes, rather

than purely diagnostic or prognostic classification. Contribution 2 is a Bayesian

hierarchical model for RNA-seq data that provides tests for differential expression,

variability and distribution. The performance of each test is compared with existing

methods on simulated data and on real RNA-seq datasets modified to artificially

introduce changes in expression between groups. The differential expression test

is competitive with state-of-the-art methods, and the differential variability test

improves on existing methods, particularly for small sample sizes. The differential

distribution test is the first such test available for RNA-seq data. Contribution 3
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builds on previous work by providing the first clear demonstration that differential

variability and differential distribution analyses can identify cancer-related genes,

and that differential expression and differential variability analyses identify distinct

sets of cancer-related genes, each with different biological functions.

Overall, this research confirms and extends previous findings showing that

changes in expression variability and distribution in cancer are both of biological

significance and informative for classification. As well as further demonstrating

the need to look beyond differential expression to a comprehensive assessment

of changes in gene expression distributions, this work provides a method that

enables the identification of these differentially distributed genes.
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