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ABSTRACT

Thanks to recent developments in web technology, various textual infor-
mation can now be found online, including social media, news, product
reviews and instant messages. How to automatically classify and orga-
nize such texts is currently a topic of great interest. In Natural Lan-
guage Processing (NLP), text classification is a traditional task and text
representation is its foundation. To represent text, we need to obtain
a word’s representation. The existing language representation models,
including Word2vec, ELMo, GPT and BERT, were widely used for word rep-
resentation. These word representation models were highly successful at
processing natural languages. However, they mainly captured implicit rep-
resentations. Other models that analyzed a text’s context can potentially
capture richer information which can help deep neural networks gained
a better understanding of the text. It is crucial to incorporate semantic
information into the text representation because the rich semantics as-
sociated with word representations can supplement text representation.
New approaches are necessary to represent semantics in combination
with existing text representations.

The models presented in this study improved text representation and
term weighting by utilizing external knowledge to address the above-
mentioned research needs. In contrast to previous work, the models pro-
posed here used multi-level knowledge to facilitate the semantic enhance-
ment of text representation by involving external semantic information.

In Chapter 3, we proposed an Entity-based Concept Knowledge-Aware
(ECKA) representation model to incorporate semantic information into
short text representations. ECKA is a multi-level short text semantic en-
hancement model for short text representations which extracts semantic
features from the word, entity, concept and knowledge levels by CNN.
Since word, entity, concept and knowledge entity in the same short text

xvii



ABSTRACT

have different informativeness for short text classification, attention net-
works were formed to capture aspects-oriented attentive representations
from a text’s multi-level textual features. The final multi-level semantic
representations were formed by concatenating all these individual-level
representations, which were then used for text classification.

In Chapter 4, we proposed a hybrid term weighting method that works
by utilizing frequency and semantic similarities for the term weighting
calculation. When analyzing a term, we first used the Term Frequency-
Inverse Document Frequency (TF-IDF) to calculate term weighting. Next,
we used a named-entity-based concept-sense disambiguation process to
obtain concepts. Following that, we calculated the term’s semantic simi-
larity to the document. The TF-IDF weights were then revised according
to the term’s semantic similarities to reflect both frequency and semantic
similarities of the various terms in the text.

All of these models were applied to the text classification tasks. The
proposed models’ performance in semantic enhancement were compared
with different methods to demonstrate their effectiveness.
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