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Abstract
Introduction Continuing inhaled corticosteroid (ICS) use does not benefit all patients with COPD, yet it is
difficult to determine which patients may safely sustain ICS withdrawal. Although eosinophil levels can
facilitate this decision, better biomarkers could improve personalised treatment decisions.
Methods We performed transcriptional profiling of sputum to explore the molecular biology and compared
the predictive value of an unbiased gene signature versus sputum eosinophils for exacerbations after ICS
withdrawal in COPD patients. RNA-sequencing data of induced sputum samples from 43 COPD patients
were associated with the time to exacerbation after ICS withdrawal. Expression profiles of differentially
expressed genes were summarised to create gene signatures. In addition, we built a Bayesian network
model to determine coregulatory networks related to the onset of COPD exacerbations after ICS
withdrawal.
Results In multivariate analyses, we identified a gene signature (LGALS12, ALOX15, CLC, IL1RL1,
CD24, EMR4P) associated with the time to first exacerbation after ICS withdrawal. The addition of this
gene signature to a multiple Cox regression model explained more variance of time to exacerbations
compared to a model using sputum eosinophils. The gene signature correlated with sputum eosinophil as
well as macrophage cell counts. The Bayesian network model identified three coregulatory gene networks
as well as sex to be related to an early versus late/nonexacerbation phenotype.
Conclusion We identified a sputum gene expression signature that exhibited a higher predictive value for
predicting COPD exacerbations after ICS withdrawal than sputum eosinophilia. Future studies should
investigate the utility of this signature, which might enhance personalised ICS treatment in COPD patients.

Introduction
Inhaled corticosteroids (ICSs) are commonly used in the treatment of patients with COPD. However, only
a subset of COPD patients benefits clinically from ICS, whereas they are ineffective and associated with
adverse effects in others. Nevertheless, many patients use them and so far, it has been difficult to
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determine which patients may safely sustain ICS withdrawal [1, 2]. The Global Initiative for Chronic
Obstructive Lung Disease (GOLD) guidelines recommends initiation of ICS treatment in combination with
long-acting bronchodilators (LABAs) in COPD patients with a history of recurrent or severe exacerbations,
a history of concomitant asthma, or blood eosinophil levels >300 cells·µL−1 [2]. Whether blood eosinophil
counts are sufficient to guide ICS positioning in COPD patients is, however, debated [1–4]. Associations
between blood eosinophils and clinical outcomes, including exacerbations, are not congruent across all
observational cohort studies [1]. HASTIE et al. [3] have shown in the SPIROMICS cohort (N=827) that
sputum eosinophils are poorly correlated with blood eosinophils but are a better predictor of COPD
exacerbations.

Applying RNA-sequencing (RNA-seq) allows us to assess genome-wide expression profiles related to
airway inflammation, which could be a useful tool to enhance personalised treatment decisions regarding
ICS treatment in COPD. Whole-transcriptomic profiling in sputum represents a promising approach that
might provide further insight into the molecular biology related to ICS treatment responses in COPD [5, 6].
Using this approach, BAINES et al. [6] identified a sputum gene signature that discriminated inflammatory
phenotypes and predicted ICS treatment responses in asthma.

We previously showed in the SYMBEXCO trial that the likelihood of exacerbations after stopping ICS in
COPD patients could be predicted by assessing sputum inflammation, particularly sputum eosinophil
levels [7]. The SYMBEXCO trial was a randomised study comparing the efficacy of budesonide/
formoterol versus prednisolone versus placebo during 2 weeks in COPD patients once they had an acute
exacerbation [8]. In the current manuscript, we applied sputum transcriptome profiling (RNA-seq) in the
same cohort to explore molecular networks related to exacerbations after ICS withdrawal. Further, we
investigated whether an unbiased gene signature could be identified to further improve the prediction of
exacerbations after ICS withdrawal, compared to sputum eosinophils. In addition, we performed Bayesian
network modelling to explore coregulatory networks related to the onset of COPD exacerbations after ICS
withdrawal.

Methods
Study design and sample collection
The study design of the SYMBEXCO trial (ClinicalTrials.gov Identifier: NCT00259779) has been
described in detail elsewhere [7]. Briefly, COPD subjects were enrolled in a prospective cohort and
followed for multiple consecutive visits until they developed an exacerbation and were randomised to
treatment with prednisolone, budesonide/formoterol, or placebo [8]. When subjects were on ICS treatment
at the time of enrolment, this was discontinued after their initial study visit. This manuscript presents the
analysis of the period from the baseline visit to the time of the first exacerbation of those subjects in whom
ICS treatment was withdrawn and who were able to produce an adequate sputum sample at baseline.
Subjects who did not experience an exacerbation were followed until the end of their study participation.
All participants were current or former smokers without a history of asthma or other significant respiratory
diseases. The use of oral corticosteroids was not allowed for at least 4 weeks before inclusion. At each
study visit, subjects underwent lung function testing followed by sputum induction with nebulised 4.5%
sodium chloride solution for 3×5 min, with an adapted protocol for safety reasons when forced expiratory
volume in 1 s (FEV1) was below 1.5 L [9]. An exacerbation was defined by increased breathlessness and at
least two of the following symptoms for 24 h or more: increased cough frequency or severity, increased
sputum volume or purulence, and increased wheeze, requiring extra prednisolone and/or antibiotics after
ICS discontinuation as judged by a medical doctor [10]. The local medical ethics committee approved
the study.

Sample processing and sequencing
RNA was isolated using a RNeasy Mini kit (QIAGEN, Venlo, the Netherlands) and cDNA was
synthesised and stored at −80°C as described before [8, 11]. A NEBNext Ultra II Library Prep Kit (New
England Biolabs, Ipswich, MA, USA) was used to prepare RNA-seq libraries, including fragmentation,
end repair, adaptor ligation, and barcoding. DASH was employed to deplete unwanted rRNA sequences.
Pre-amplification library preparation was completed in a single batch using an Echo liquid handling robot
(Labcyte). RNA libraries were sequenced on a NovaSeq sequencer (Illumina, San Diego, CA, USA) by
150-bp paired-end sequencing. As a quality control step, every sputum sample was sequenced twice.
Quality control was conducted on the raw sequence data using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and RNASeqC [12]. The Spliced Transcripts Alignment to a Reference
(STAR) version 2.4.2a was used to align and identify all reads that belong to the human genome [13].
Samples were excluded if they had fewer than 10000 transcripts with a minimum of eight copies.

https://doi.org/10.1183/23120541.00097-2021 2

ERJ OPEN RESEARCH ORIGINAL ARTICLE

ClinicalTrials.gov
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Data analysis
Discovery of the gene signature
Data were analysed with R statistical software version 3.6.1 (figure S1). Sputum RNA-seq data were
analysed for the association between gene expression level and time to exacerbation after ICS withdrawal,
using the likelihood ratio testing method in the edgeR package (R-package version 3.26.6) [14]. The
variable ‘time to exacerbation’ (days) was log2-transformed to normalise the distribution and contained the
time to first exacerbation or the time of monitoring for participants who did not experience an exacerbation
before the end of their study participation (figure S2). We adjusted for smoking status, age, and sex and
maintained a genome-wide false discovery rate (FDR) below 0.1 to control for multiple testing [15]. Genes
significantly associated with time to exacerbation were assigned to signatures of relatively upregulated and
downregulated genes. These signatures were separately summarised by using gene set variation analysis
(GSVA) [16], and a gene set enrichment score was calculated per subject. The obtained gene signature
enrichment scores (ESs) were compared to each other, time to exacerbation, absolute counts (log10
transformed) of sputum inflammatory cells (eosinophils, lymphocytes, macrophages and neutrophils), and
supernatant proteins (eosinophilic cationic protein and leukotriene-B4), using Spearman correlation testing.

Survival analyses
Next, univariate Cox regression analyses were performed to determine the hazards of experiencing an
exacerbation after ICS withdrawal, for the ES of a derived gene signature (stratified into tertiles), sputum
eosinophil percentages (stratified into tertiles), sex, smoking status, and history of exacerbations. Further,
the clinical covariates pack-years of smoking (dichotomised by ⩾ or < median), sputum eosinophil
percentages (⩾ or <3%), and the season of ICS withdrawal (dichotomised by November, December,
January as opposed to outside those months) were investigated, which were previously identified as
significant hazards in the SYMBEXCO trial [7]. Subsequently, significant hazards (p<0.05) were included
in a multiple Cox regression model to adjust for potential confounders.

Bayesian network modelling
To determine coregulatory networks related to the onset of COPD exacerbations after ICS withdrawal, we
integrated the normalised (FPKM method) sputum RNA-seq data in a Bayesian network model. The
variable “time to exacerbation” was dichotomised (> or < mean) into an early (N=20) and late/
nonexacerbation phenotype (n=23). We pre-selected the top 600 genes that were found significant
(nominal p<0.05) in our likelihood ratio analysis. Their expression profiles were used as input together
with the exacerbation phenotype as well as the demographic covariates age, sex, and smoking status. We
built a Bayesian network using CGBayesnet version 7.14.14 in MATLAB version R2017b with the
calculation of the exacerbation phenotype as binary primary phenotype and using the exhaustive search
option [17].

Evaluation of the predictive value of the obtained gene signature for ICS-induced improvement in
lung function in an independent RNA-seq dataset
The predictive value of the obtained gene signature was assessed in an independent RNA-seq dataset
including airway epithelial brushings from 16 subjects with stable asthma, before and after treatment
with inhaled budesonide, 180 µg twice daily for 8 weeks. Additional details on this study are reported
elsewhere [18]. The expression of the signature genes was summarised by using GSVA and the obtained
gene signature ESs from samples before treatment with ICS were compared to improvement in FEV1 after
treatment, using Spearman correlation testing. Also, the ESs of the gene signatures were compared to each
other as well as to blood eosinophil levels. Further, the ICS sensitivity of the expression of the signature
genes was assessed, both in SYMBEXCO (before and after 8 weeks of ICS withdrawal) as well as in the
independent RNA-seq dataset (before and after 8 weeks of ICS treatment).

Results
RNA-seq expression data from induced sputum samples at baseline were available for 45 participants. Two
subjects restarted ICS treatment during study participation on request of their general physician, but
without meeting the criteria of an exacerbation and were excluded from further analysis. Table 1
summarises the baseline characteristics of the 43 included participants, who were monitored for a median
time of 144 days (interquartile range: 71–244). 38 participants experienced an exacerbation after a median
time of 120 days (interquartile range: 69–203).

Association of baseline gene expression with time to exacerbation after ICS withdrawal
In total, 16094 genes were present with sufficiently large counts (filtering according to the default method
in edgeR) to be analysed in association with time to exacerbation after ICS withdrawal. We identified six
genes (LGALS12, ALOX15, CLC, IL1RL1, CD24, EMR4P) of which a higher expression prior to ICS
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withdrawal was associated with a relatively short time to exacerbation, and this set of genes was then
further analysed as PRISE #1 (coPd exaceRbation Ics-withdrawal Sputum gEne signature) (genome-wide
FDR<0.1) (figure 1 and table S1). In addition, we identified three genes (SEPP1, CCDC152, ALG3) of
which a higher baseline expression was associated with a relatively long time to exacerbation, and this set
of genes was then further analysed as PRISE #2 (FDR<0.1) (figure 1 and table S1). Subsequently, ESs
were calculated for each gene signature.

PRISE #1 and #2 were highly correlated with each other as with time to exacerbation, sputum
eosinophil and macrophage cell counts
The ES of PRISE #1 was highly correlated with time to exacerbation (rho=−0.54; p=0.00019) as well as
sputum eosinophil (rho=0.39; p=0.01), and macrophage cell counts (rho=−0.39; p=0.0098) (figure 1 and
table S2). Further, the ES of PRISE #2 was highly correlated with PRISE #1 (rho=−1.0; p<2.2×10−16) as
well as with sputum eosinophil (rho=−0.37; p=0.014), and macrophage cell counts (rho=0.4; p=0.0071)
(table S2). Both gene signatures did not correlate with lymphocyte and neutrophil cell counts or
eosinophilic cationic protein and leukotriene-B4 levels (table S2).

Monovariate Cox regression analyses
Since both gene signatures were so highly correlated, the hazards of experiencing an exacerbation after ICS
withdrawal were only determined for PRISE #1. Cox regression results, regarding PRISE #2, can be found

TABLE 1 Baseline participant clinical and demographic characteristics

Number of patients 43
Current/former smokers 23/20
Number of exacerbations 38
Males/females 36/7
Number of exacerbations in the past 12 months)
0 19
1 17
⩾2 7

Age (years) 64.5 (59.4–70.8)
Smoking history (pack-years) 38.0 (25.5–53.0)
Body mass index (kg·m−2) 25.9 (23.6–28.0)
Daily dose of ICS (µg)# 800 (500–1000)
Pre-study treatment regimen
ICS¶ 8
ICS+LABA¶ 30
ICS+LAMA¶ 2
ICS+LAMA+LABA¶ 3

Post-bronchodilator lung function
FEV1 (% pred) 64.1 (52.0–76.1)
FEV1/FVC 0.52 (0.44–0.56)
TLC (% pred) 112.1 (105.9–122.0)
RV (% pred) 135.5 (124.9–158.5)
RV/TLC (% pred) 114.9 (103.4–127.4)

Baseline inflammatory characteristics
Sputum cells
Eosinophils (%) 1.8 (0.7–4.0)
Neutrophils (%) 72.8 (67.0–80.3)
Macrophages (%) 18.0 (13.4–25.3)
Lymphocytes (%) 0.7 (0.1–1.2)
Bronchial epithelial cells (%) 2.0 (0.65–3.55)

Sputum supernatant proteins
ECP (µg·L−1) 194.0 (58.6–718.0)
LTB4 (ng·mL−1) 0.49 (0.28–1.21)

Data are presented as n or median (interquartile range). ICS: inhaled corticosteroid; LABA: long-acting β-agonist;
LAMA: long-acting muscarinic antagonist; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; TLC:
total lung capacity; RV: residual volume; ECP: eosinophilic cationic protein; LTB4: leukotriene-B4. #: daily dose
of ICS calculated for indexed budesonide equivalent; ¶: additional short-acting β-agonist and/or short-acting
muscarinic antagonist as needed.
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in the online supplementary material. The ESs of PRISE #1 were divided into three equal tertiles and
tested in a univariate Cox regression model, where the first tertile served as a reference which was
compared to the second and third tertile. The patients in the third tertile (ES ⩾0.69) had a higher risk for
developing a COPD exacerbation after ICS withdrawal compared with patients in the first tertile (hazard
ratio (HR) 3.7, p=0.003, the proportion of the variance explained (R2)=0.202; table 2 and figure 2). Also,
the covariates sex (male: HR 0.31, p=0.012, R2=0.12), history of exacerbations (HR 1.5, p=0.046,
R2=0.08), season of ICS withdrawal (HR 0.3, p=0.004, R2=0.152), and pack-years of smoking ⩾38 (HR
0.49, p=0.038, R2=0.095) were significant predictors, whereas smoking status was not (current smoking:
HR 0.68, p=0.024, R2=0.03). Further, sputum eosinophil percentages were tested with two independent
cut-offs. Sputum eosinophils ⩾3% at the time of ICS withdrawal was associated with a significantly
increased hazard (HR 2.3, p=0.021, R2=0.11) of experiencing a COPD exacerbation after ICS withdrawal,
representing the cut-off that was previously identified in the SYMBEXCO trial [7]. In addition, sputum
eosinophils percentages were divided into three equal tertiles, and patients in the third tertile had a higher
risk for developing a COPD exacerbation after ICS withdrawal compared to patients in the first tertile (HR
2.8, p=0.02, R2=0.124).

Multiple Cox regression analyses
Next, we performed a multiple Cox regression analysis, including PRISE #1, sputum eosinophil
percentages (dichotomised by < or ⩾3%) as well as the covariates sex, history of exacerbations, the season
of ICS withdrawal, and pack-years of smoking. In this model, PRISE #1, but not sputum eosinophil level,
remained statistically significant, as did sex, history of exacerbation, and the season of ICS withdrawal
(table S3). When sputum eosinophil percentages were stratified by tertiles, instead of dichotomised by 3%
similar results were obtained. Further, we determined the difference in explained variance (generalised R2)
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FIGURE 1 Differential gene expression of sputum RNA-sequencing data. a) Volcano-plot of differentially expressed genes concerning time to
exacerbation after inhaled corticosteroid (ICS) withdrawal (false discovery rate <0.1). Blue and red dots represent differentially expressed genes
with negative and positive log2 fold change, respectively. b) Heat map of differentially expressed genes. Subjects were clustered according to time
to exacerbation (days; log2 transformed). c–e) Spearman correlation testing comparing the enrichment score of PRISE #1 with the c) time to
exacerbation, d) sputum eosinophil counts (log10), and e) macrophage cell counts (log10).
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between PRISE #1, and sputum eosinophil percentages in two separate multiple linear models, including
either sputum eosinophil percentages or PRISE #1 (table 3). The multiple linear model, including PRISE
#1, explained a higher percentage of the variance for experiencing an exacerbation after ICS withdrawal
than sputum eosinophils percentages, i.e. 49.5% versus 37.7%.

Bayesian network modelling
The gene network associated with the binary exacerbation phenotype consisted of 86 nodes and 112 edges
(figure 3). The exacerbation phenotype was linked to three subnetworks directly connected through
IL1RL1, SPRR2E, and TATDN3, respectively. Sex was the only demographic covariate related to binary
exacerbation phenotype that was identified in the network analysis, next to gene expression profiles. Here,
six out of seven female subjects belonged to the early exacerbation phenotype (figure S5).

Evaluating PRISE #1 and #2 in an independent RNA-seq dataset
The predictive value of PRISE #1 and #2 was assessed in an independent RNA-seq dataset. There was no
information on the expression of CD24 as part of PRISE #1 in this dataset. The ESs of PRISE #1 and #2
from samples before ICS treatment were not associated with a change in FEV1 (PRISE #1: rho=−0.28;
p=0.47; PRISE #2: rho=0.28; p=0.47) after ICS treatment for 8 weeks (figure S6). However, the strong
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FIGURE 2 Cumulative hazard plots of risk of exacerbations. PRISE #1 enrichment scores are stratified by
tertiles. The first tertile served as the reference for second and third tertiles. HR: hazard ratio. *: p<0.05.

TABLE 2 Monovariate Cox regression hazard ratios

Hazard ratio (95% CI) p-value Generalised R2

History of exacerbations 1.5 (1–2.1) 0.046* 0.08
Season of ICS withdrawal (not in November, December
or January#)

0.3 (0.13–0.68) 0.004* 0.152

Sex (male) 0.31 (0.13–0.78) 0.012* 0.12
Smoking status (current smoker) 0.68 (0.36–1.30) 0.24 0.03
Pack-years smoking ⩾38¶ 0.49 (0.25–0.96) 0.038* 0.095
Sputum eosinophils ⩾3%+ 2.3 (1.1–4.6) 0.021* 0.11
% Sputum eosinophils (stratified by tertiles)
Second tertile (N=15) 1.4 (0.62–3.2) 0.42 0.124
Third tertile (N=15) 2.8 (1.17–6.5) 0.02*

PRISE #1 (ES stratified by tertiles)
Second tertile§ (N=13) 2.3 (0.99–5.2) 0.052 0.202
Third tertile§ (N=15) 3.7 (1.57–8.5) 0.003*

ICS: inhaled corticosteroid; ES: enrichment score. #: dichotomised as “outside” versus “in” the period;
¶: dichotomised using the median value at baseline; +: dichotomised ⩾3% (N=15), <3% (N=28). §: compared to
the first tertile. *: p<0.05.
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correlations between the ESs of PRISE #1 and PRISE #2 (rho=−1.0; p<2.2×10−16) as well as with
eosinophils levels in blood samples (PRISE #1: rho=0.58; p=0.00054) could be replicated in this
independent dataset, which were also identified in the SYMBEXCO dataset (figure S7).

Next, we assessed the ICS sensitivity of the expression profiles of PRISE #1 and #2, both in SYMBEXCO
(before and after 8 weeks of ICS withdrawal) as well as in the independent RNA-seq dataset (before and

TABLE 3 Multiple linear Cox regression including either sputum eosinophils or PRISE #1

Hazard ratio (95% CI) p-value Generalised R2

Sputum eosinophils
History of exacerbations 1.40 (0.97–2.03) 0.071 0.377
Sex (male) 0.33 (0.13–0.85) 0.022*
Season of ICS withdrawal (not in November, December,
or January#)

0.36 (0.15–0.88) 0.025*

Pack-years smoking ⩾38¶ 0.70 (0.3301.46) 0.337
Sputum eosinophils ⩾3%+ 2.24 (1.09–4.58) 0.027*

PRISE #1
History of exacerbations 1.53 (1.03–2.28) 0.035 0.495
Sex (male) 0.47 (0.17–1.28) 0.14
Season of ICS withdrawal (not in November, December,
or January#)

0.27 (0.10–0.69) 0.006*

Pack-years smoking ⩾38¶ 0.50 (0.22–1.15) 0.105
PRISE #1 (ES stratified by tertiles)
Second tertile (N=13) 2.59 (1.11–6.05) 0.027*
Third tertile (N=15) 5.35 (2.12–13.47) <0.001*

ICS: inhaled corticosteroid; ES: enrichment score. #: dichotomised as “outside” versus “in” the period;
¶: dichotomised using the median value at baseline; +: dichotomised as ⩾3% (N=15) or <3% (N=28). *: p<0.05.
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after 8 weeks of ICS treatment). In SYMBEXCO, transcriptional profiles of four out six PRISE #1 genes
increased after 8 weeks of ICS withdrawal (CLC, LGALS12, CD24, ALOX15) (table 4). EMR4P and
IL1RL1 showed the same trend, but missed statistical significance. The transcriptional profiles of PRISE #2
genes did not change. In the independent RNA-seq dataset, transcriptional profiles of four out six PRISE
#1 genes decreased after 8 weeks of ICS treatment (CLC, LGALS12, ALOX15, IL1RL1). EMR4P showed
the same trend, but missed statistical significance. The change of transcriptional profiles of PRISE #2
genes was inconsistent, since the expression of ALG3 was decreased, whereas CCDC152 and SEPP1 did
not change. In addition, the ESs of PRISE #1 decreased significantly after 8 weeks of ICS treatment
(p=0.0042), whereas PRISE #2 showed the opposite trend, but missed statistical significance (p=0.013)
(figure S8).

Discussion
We identified nine genes predictive of an early exacerbation after ICS withdrawal. The addition of an
unbiased gene signature to a multiple Cox regression model explained more variance in time to
exacerbations compared to a model using sputum eosinophils. These findings suggest that sputum gene
expression may have utility in biomarker development for identifying subjects who are at higher risk of
exacerbation after ICS withdrawal.

PRISE #1 exhibited a high baseline expression, which was associated with a relatively early time to
exacerbation. This indicates that a higher expression of the included genes is associated with an early
exacerbation risk after ICS withdrawal. Several genes included in this signature have been previously
identified to be involved in airway type 2 (T2) eosinophilic inflammation (IL1RL1, LGALS12, EMR4P,
and CLC [19–21]). Other pathways of interest represented in the signature include macrophage-related
inflammation (IL1RL1, ALOX15 [22]), CD4+ (CLC [23]), and CD8+ T-cell differentiation (IL1RL1,
CD24 [24]).

IL1RL1 (interleukin (IL)-1 receptor-like 1) encodes the ST2 receptor for IL-33 cytokine signalling, a key
mechanism in airway T2 inflammation [21, 25]. Importantly, the IL1RL1–IL-33 axis does not only reflect
T2 inflammation but is also involved in other immune cells and signalling pathways, including regulatory
T-cell and macrophage-associated pathways [26]. ALOX15 is expressed in monocyte-derived macrophages
and thereby involved in orchestrating the nonimmunogenic removal of apoptotic cells as well as in
facilitating inflammation resolution [22, 27]. CD24 is involved in diverse functions of the adaptive
immune response, including B-cells, neutrophils, and the regulation of CD8+ T-cell activation through
HMGB1-mediated engagement of T-cell RAGE [24, 28]. The CLC protein is a major constituent of
eosinophils and is also expressed by basophils and CD4+ CD25+ regulatory T-cells [23, 29]. In asthma
patients, its expression was decreased in corticosteroid responders, indicating its potential to predict clinical
responses to corticosteroids [30].

Our Bayesian network model identified IL1RL1 to be one of the key hub genes, followed by the remaining
genes of PRISE #1. In addition, PRISE #1 correlated positively and negatively with sputum eosinophil and
macrophage cell counts, respectively. Therefore, it could be speculated that a cascade, consisting of both
eosinophils and macrophages as innate effector cells, is associated with the propensity to exacerbate in
COPD patients after ICS withdrawal. Further, it is tempting to speculate that anti-IL1RL1/IL-33 may

TABLE 4 ICS sensitivity of PRISE #1 and #2 genes in SYMBEXCO and independent RNA-sequencing dataset

Gene SYMBEXCO: ICS treatment → no ICS
(8 weeks)

Independent RNA-seq dataset: no ICS →
ICS treatment (8 weeks)

Log2 fold change Nominal p-value Log2 fold change Nominal p-value

CLC (PRISE #1) 0.76 <0.01* −2.88 0.01*
LGALS12 (PRISE #1) 0.52 0.01* −1.52 0.01*
CD24 (PRISE #1) 0.30 0.04* NA NA
ALOX15 (PRISE #1) 0.42 0.04* −1.17 <0.01*
EMR4P (PRISE #1) 0.22 0.13 −0.63 0.16
IL1RL1 (PRISE #1) 0.15 0.36 −1.32 0.03*
ALG3 (PRISE #2) −0.02 0.85 −0.49 0.02*
CCDC152 (PRISE #2) −0.02 0.91 0.27 0.16
SEPP1 (PRISE #2) 0.01 0.96 −0.22 0.08

ICS: inhaled corticosteroid. *: p<0.05.
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represent a treatment option for frequent exacerbators with COPD, yet this remains to be investigated in
future studies.

Two additional gene subnetworks were identified in the Bayesian network model, which were directly
connected to an early versus late/nonexacerbation phenotype. Genes identified in PRISE #2 were
connected via a TATDN3 subnetwork, which is a protein-coding gene related to deoxyribonuclease activity.
The third gene subnetwork was directly connected through SPRR2E, which encodes the small proline-rich
protein 2E, and is involved in epithelial cell-related processes. SPRR2E expression was previously found to
be increased in primary bronchial epithelial cells from subjects with COPD compared to healthy controls,
suggesting that this gene might be involved in airway epithelial inflammatory or remodelling processes in
COPD [31]. As additional genes of the multigene SPRR family, as well as keratin genes, were connected
to this subnetwork, our results indicate that the airway epithelial cell function might be associated with the
exacerbation phenotype after ICS withdrawal.

Importantly, sex, but not smoking status was another significant demographic predictor for experiencing an
exacerbation after ICS withdrawal, which was also identified as a direct subnetwork related to the
exacerbation phenotype in the Bayesian model. Sex-based differences in COPD exacerbation frequency
have been shown previously, with a higher rate of exacerbations among women compared to men [32].
Our network model indicates that female COPD patients are more prone to early exacerbations after ICS
withdrawal as six out of seven female subjects belonged to the early exacerbation phenotype. Importantly,
this observation is based on a relatively low number of participants as only seven out of 43 participants
were women, and therefore requires further investigation.

The predictive value of PRISE #1 and #2 could not be validated in an independent RNA-seq dataset
concerning ICS-induced improvement in lung function; however, this analysis was likely underpowered. In
addition, the clinical outcome, as well as airway specimen, differed compared to the SYMBEXCO dataset.
Still, the strong associations between the ESs of PRISE #1 and #2 as well as eosinophils counts in blood
were validated in this dataset. Also, we showed that the expression of PRISE #1 genes was steroid-sensitive,
both in SYBMBEXCO and the independent RNA-seq dataset, indicating that the expression of these genes
increases with ICS withdrawal and decreases with ICS treatment, in subjects with COPD and asthma.

There are some limitations related to our study. The identified gene signature should be validated in an
independent exacerbation cohort, which would be crucial to investigate its utility as a biomarker. To our
knowledge, such a replication cohort is currently not available. Further, our results are based on a COPD
study population with predominantly moderate airflow obstruction and it is not clear to what extent our
observations also apply to milder or more severe COPD.

In summary, we identified a sputum gene signature that exhibited a higher predictive value for predicting
COPD exacerbations after ICS withdrawal than sputum eosinophilia. Future studies should investigate the
utility of this signature, which might enhance personalised ICS treatment in COPD patients.

Author contributions: J.J.W. Liesker, E. Bathoorn and H.A.M. Kerstjens conducted the SYMBEXCO study. A. Sarma,
S. Caldera, C. Langelier and S.A. Christenson were responsible for the preparation and RNA sequencing of the
sputum samples. B. Ditz, A. Sarma, J.M. Vonk, V. Bernal, P. Horvatovich and V. Guryev performed the statistical
analysis of the data. B. Ditz wrote the initial draft of the manuscript with additional content provided and critical
revisions from all authors.

Conflict of interest: B. Ditz has nothing to disclose. A. Sarma reports grants from National Heart, Lung, and Blood
Institute, during the conduct of the study. H.A.M. Kerstjens reports a grant from AstraZeneca as well as grants and
fees for consultancy or advisory board participation from GlaxoSmithKline, Boehringer Ingelheim, and Novartis,
and a grant from Chiesi, all outside of the submitted work and all paid to his institution. J.J.W. Liesker has
nothing to disclose. E. Bathoorn has nothing to disclose. J.M. Vonk has nothing to disclose. V. Bernal has nothing
to disclose. P. Horvatovich has nothing to disclose. V. Guryev has nothing to disclose. S. Caldera has nothing to
disclose. C. Langelier has nothing to disclose. A. Faiz has nothing to disclose. S.A. Christenson reports consulting
fees from AstraZeneca, GlaxoSmithKline, Amgen and Glenmark; personal fees for invited lectures from Sunovion
and Genentech; and personal fees for writing for UpToDate, all outside the submitted work. M. van den Berge has
nothing to disclose.

Support statement: The submitted work was co-financed by the Ministry of Economic Affairs and Climate Policy by
means of the PPP. A. Faiz was supported by a junior Longfond grant (4.2.16.132JO). Funding information for this
article has been deposited with the Crossref Funder Registry.

https://doi.org/10.1183/23120541.00097-2021 9

ERJ OPEN RESEARCH ORIGINAL ARTICLE

https://www.crossref.org/services/funder-registry/


References
1 Agusti A, Fabbri LM, Singh D, et al. Inhaled corticosteroids in COPD: friend or foe? Eur Respir J 2018; 52:

1801219.
2 GOLD. 2020 Global Strategy for the Diagnosis, Management and Prevention of COPD. Global Initiative for

Chronic Obstructive Lung Disease (GOLD), 2020. Available from: https://goldcopd.org/gold-reports/
3 Hastie AT, Martinez FJ, Curtis JL, et al. Sputum or blood eosinophil association with clinical measures of

COPD severity in the SPIROMICS cohort. Lancet Respir Med 2017; 5: 956–967.
4 Casanova C, Celli BR, De-Torres JP, et al. Prevalence of persistent blood eosinophilia: relation to outcomes in

patients with COPD. Eur Respir J 2017; 50: 1701162.
5 Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 2012; 18:

716–725.
6 Baines KJ, Simpson JL, Wood LG, et al. Sputum gene expression signature of 6 biomarkers discriminates

asthma inflammatory phenotypes. J Allergy Clin Immunol 2014; 133: 997–1007.
7 Liesker JJW, Bathoorn E, Postma DS, et al. Sputum inflammation predicts exacerbations after cessation of

inhaled corticosteroids in COPD. Respir Med 2011; 105: 1853–1860.
8 Bathoorn E, Liesker JJW, Postma DS, et al. Anti-inflammatory effects of combined budesonide/formoterol in

COPD exacerbations. COPD J Chronic Obstr Pulm Dis 2008; 5: 282–290.
9 Bathoorn E, Liesker J, Postma D, et al. Safety of sputum induction during exacerbations of COPD. Chest 2007;

131: 432–438.
10 Davies L, Angus RM, Calverley PMA. Oral corticosteroids in patients admitted to hospital with exacerbations

of chronic obstructive pulmonary disease: a prospective randomised controlled trial. Lancet 1999; 354:
456–460.

11 Szafranski W, Cukier A, Ramirez A, et al. Efficacy and safety of budesonide / formoterol in the management of
chronic obstructive pulmonary disease. Eur Respir J 2003; 21: 74–81.

12 Deluca DS, Levin JZ, Sivachenko A, et al. RNA-SeQC: RNA-seq metrics for quality control and process
optimization. Bioinformatics 2012; 28: 1530–1532.

13 Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29:
15–21.

14 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of
digital gene expression data. Bioinformatics 2010; 26: 139–140.

15 Benjamini Y, Drai D, Elmer G, et al. Controlling the false discovery rate in behavior genetics research.
Behav Brain Res 2001; 125: 279–284.

16 Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data.
BMC Bioinformatics 2013; 14: 7.

17 Mcgeachie MJ, Chang H, Weiss ST. CGBayesNets: conditional Gaussian Bayesian network learning and
inference with mixed discrete and continuous data. PLoS Comput Biol 2014; 10: e1003676.

18 Bhakta NR, Christenson SA, Nerella S, et al. IFN-stimulated gene expression, type 2 inflammation, and
endoplasmic reticulum stress in asthma. Am J Respir Crit Care Med 2018; 197: 313–324.

19 Virkud YV, Kelly RS, Croteau-Chonka DC, et al. Novel eosinophilic gene expression networks associated with
IgE in two distinct asthma populations. Clin Exp Allergy 2018; 48: 1654–1664.

20 Sridhar S, Liu H, Pham TH, et al. Modulation of blood inflammatory markers by benralizumab in patients
with eosinophilic airway diseases. Respir Res 2019; 20: 1–12.

21 Rossios C, Pavlidis S, Hoda U, et al. Sputum transcriptomics reveal upregulation of IL-1 receptor family
members in patients with severe asthma. J Allergy Clin Immunol 2018; 141: 560–570.

22 Snodgrass RG, Brüne B. Regulation and functions of 15-lipoxygenases in human macrophages. Front
Pharmacol 2019; 10: 719.

23 Kubach J, Lutter P, Bopp T, et al. Human CD4+CD25+ regulatory T cells: proteome analysis identifies
galectin-10 as a novel marker essential for their anergy and suppressive function. Blood 2007; 110:
1550–1558.

24 Kim TS, Gorski SA, Hahn S, et al. Distinct dendritic cell subsets dictate the fate decision between effector and
memory CD8+ T cell differentiation by a CD24-dependent mechanism. Immunity 2014; 40: 400–413.

25 Gordon ED, Palandra J, Wesolowska-Andersen A, et al. IL1RL1 asthma risk variants regulate airway type 2
inflammation. JCI Insight 2016; 1: e87871.

26 Griesenauer B, Paczesny S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol
2017; 8: 475.

27 Kuhn H, Gehring T, Schröter A, et al. Cytokine-dependent expression regulation of ALOX15. J Cytokine Biol
Kuhn 2016; 1: 106.

28 Fang X, Zheng P, Tang J, et al. CD24: from A to Z. Cell Mol Immunol 2010; 7: 100–103.
29 Ackerman BSJ, Weil GJ, Gleich GJ. Formation of Charcot–Leyden crystals by human basophils. J Exp Med

1982; 155: 1597–1609.

https://doi.org/10.1183/23120541.00097-2021 10

ERJ OPEN RESEARCH ORIGINAL ARTICLE

https://goldcopd.org/gold-reports/
https://goldcopd.org/gold-reports/
https://goldcopd.org/gold-reports/


30 Berthon BS, Gibson PG, Wood LG, et al. A sputum gene expression signature predicts oral corticosteroid
response in asthma. Eur Respir J 2017; 49: 1700180.

31 Baines KJ, Hsu AC, Tooze M, et al. Novel immune genes associated with excessive inflammatory and antiviral
responses to rhinovirus in COPD. Respir Res 2013; 14: 15.

32 Hurst JR, Vestbo J, Anzueto A, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease.
N Engl J Med 2010; 363: 1128–1138.

https://doi.org/10.1183/23120541.00097-2021 11

ERJ OPEN RESEARCH ORIGINAL ARTICLE


	The sputum transcriptome better predicts COPD exacerbations after the withdrawal of inhaled corticosteroids than sputum eosinophils
	Abstract
	Introduction
	Methods
	Study design and sample collection
	Sample processing and sequencing
	Data analysis
	Discovery of the gene signature
	Survival analyses
	Bayesian network modelling

	Evaluation of the predictive value of the obtained gene signature for ICS-induced improvement in lung function in an independent RNA-seq dataset

	Results
	Association of baseline gene expression with time to exacerbation after ICS withdrawal
	PRISE #1 and #2 were highly correlated with each other as with time to exacerbation, sputum eosinophil and macrophage cell counts
	Monovariate Cox regression analyses
	Multiple Cox regression analyses
	Bayesian network modelling
	Evaluating PRISE #1 and #2 in an independent RNA-seq dataset

	Discussion
	References


