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1. Abstract 

microRNA are small non-coding RNA molecules which inhibit gene expression by binding 

mRNA, preventing its translation. As important regulators of gene expression, there is 

increasing interest in microRNAs as potential diagnostic biomarkers and therapeutic targets. 

Studies investigating the role of one of the miRNA ‒ miR-652-3p ‒ detail diverse roles for 

this miRNA in normal cell homeostasis and disease states, including cancers, cardiovascular 

disease, mental health, and central nervous system diseases. Here we review recent 

literature surrounding miR-652-3p, discussing its known target genes and their relevance to 

disease progression. These studies demonstrate that miR-652-3p targets LLGL1 and ZEB1 to 

modulate cell polarity mechanisms, with impacts on cancer metastasis and asymmetric cell 

division. Inhibition of the NOTCH ligand JAG1 by miR-652-3p can have diverse effects on 

angiogenesis and immune cell regulation.  Investigation of miR-652-3p and other 

dysregulated miRNAs identified a number of pathways potentially regulated by miR-652-3p. 

This review demonstrates that miR-652-3p has great promise as a diagnostic or therapeutic 

target due to its activity across multiple cellular systems. 
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2. Introduction 

microRNAs (miRNA) are short 20-24 nucleotide non-coding RNA molecules which modulate 

gene expression. In the 27 years since the biomodulatory function of miRNA was first 

described in C. elegans [1], miRNA have been identified as a key element in eukaryotic cell 

regulation [2, 3]. Diverse networks of activity are being characterised for many miRNAs, 

including miR-652-3p, already known to modulate cell differentiation, proliferation, polarity, 

and apoptosis pathways [4-7]. 

In this review, we focus on miR-652-3p in cardiovascular disease, cancer, and other diseases. 

We describe the utilisation of miR-652-3p in biomarker panels, and we detail the validated 

gene targets of miR-652-3p and their conservation in humans and mice. 

Ever developing knowledge in the field has made miRNA very interesting candidates for use 

as therapeutics and diagnostic tools. miRNA-based biomarker panels are already available 

for diagnosis of osteoporosis, cardiovascular disease, and several cancers [8]. Whilst no 

miRNA therapeutic has yet received FDA approval, several are in phase 1 and 2 clinical trials 

for both infectious and non-infectious diseases [8, 9]. As the literature surrounding miR-652-

3p and its target genes continues to expand, its diverse cellular activities provide great 

potential as a diagnostic or therapeutic target. 
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3. Characteristics of miR-652 

Human gene MIR652 is located on the X chromosome, within an intron of TMEM164, 

encoding transmembrane protein 164 [10, 11]. As yet no publications have provided 

evidence that TMEM164 is translated in humans. MIR652 expression is controlled under the 

TMEM164 promoter [12], and the pre-miR hsa-miR-652 may be generated by the 

spliceosome [13]. A second miRNA encoding gene MIR3978 is also located on a TMEM164 

intron [14]. The encoded miRNA, miR-3978, has been associated with peritoneal gastric 

cancer metastasis [15], but has not been linked with miR-652-3p. 

Expression of miR-652-3p is highest in human myeloid-lineage leukocytes, including 

circulating monocytes, neutrophils, and eosinophils [16-18]. Deep sequencing data from the 

FANTOM5 project suggests comparatively low expression of the pre-miR hsa-miR-652 in 

human lymphocytes [12], though the mouse homologue mmu-miR-652-3p has been shown 

to affect the differentiation of CD4+ T cells [19]. Mature miR-652-3p is also expressed in 

human epithelial cells and dysregulation of miR-652 in epithelial cells has been associated 

with several cancers [20, 21, 7]. Extracellular miR-652-3p has been identified in circulating 

exosomes [22, 23], and numerous studies have quantitated miR-652-3p from human serum 

and plasma [24-30].  

Dysregulated expression of the passenger strand miR-652-5p has been associated with 

diabetes and gastrointestinal cancers, and with a model of ischaemia [31-35]. However, 

deep sequencing data indicates expression of miR-652-5p is much lower than miR-652-3p 

[12], suggesting miR-652-3p is preferentially bound to Argonaute proteins during biogenesis 

[36].  

Numerous studies are reporting an association or role of miR-652-3p in cardiovascular 

disease, cancers, mental health and the central nervous system (CNS), and immune 

regulation. The association of miR-652-3p with these diseases and known targets of miR-

652-3p are reviewed here. 

4. miR-652-3p in cardiovascular disease 

Cardiovascular disease (CVD) is the leading cause of death globally, responsible for 17.8 

million deaths in 2017 [37]. miR-652-3p has been implicated in multiple studies of CVD with 

roles in pathways including atherosclerosis, and myocardial infarction.  

Numerous studies have analysed the association of circulating miR-652-3p with CVD, 

focusing on heart failure. An early study found miR-652-3p upregulated in the plasma of 200 

acute coronary syndrome patients [38]. When analysed in combination with existing 

prognostic markers NT-proBP and LVEF, low miR-652-3p concentration at initial admission 

was strongly predictive of readmission for heart failure. Ovchinnikova et al. found miR-652-

3p expression was significantly downregulated in plasma of heart failure patients [39]. 

Expression was negatively correlated with heart failure severity and low miR-652-3p 

concentration was predictive of poor 180-day survival. A follow-up study found miR-652-3p 
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downregulated in heart failure patients, though not significantly [40]. Further, this study 

noted a correlation between lower miR-652-3p expression and increased incidence of 

atherosclerotic lesions [40]. With this evidence suggesting a role for miR-652-3p in human 

heart failure, studies were conducted in a rat hypertension model and a mouse ischaemic 

heart failure model [41]. In the rodent models, hypertension and heart failure did not 

induce significant changes in expression of the miRNAs previously reported to be 

differentially expressed in humans. 

Recent studies have also suggested miR-652-3p as a biomarker of acute kidney injury in 

heart failure patients. Upregulated miR-652-3p, in conjunction with increased neutrophil 

gelatinase-associated lipocalin (NGAL), in both serum and urine of patients with heart failure 

was predictive of acute kidney injury onset [42]. Though, this finding was not seen in a 

separate study that did not find any correlation between miR-652-3p and NGAL [25]. These 

differences may be due to the population sampled, methods used to measure miRNA levels 

or other, as yet unidentified factors. 

It has been suggested that miR-652-3p may play a role in regulating coagulation [23]. Low 

miR-652-3p expression in plasma was found to correlate with low platelet count in venous 

thromboembolism patients [43]. Low platelet count has been associated with an increased 

risk of recurrent embolisms [43, 44]. Additionally, low plasma miR-652-3p was associated 

with increased risk of adverse cardiac and cerebral events in end-stage kidney disease 

patients, suggesting an increased risk of thrombotic events [45]. 

Research is ongoing to investigate the involvement of miR-652 in CVD. The most prominent 

CVD is atherosclerosis, a narrowing of blood vessels caused by a build-up of lipid plaque in 

the endothelium [46]. Early plaque generation is driven by phagocytosis of low-density 

lipoproteins by macrophages in the subendothelial space [47].  These macrophages promote 

atherosclerotic lesion formation through secretion of IL-1α [48]. Huang et al. observed 

miR-652-3p was upregulated in atherosclerotic plaque of both humans and mice [49]. miR-

652-3p was found to target Cyclin D2 (CCND2) in human umbilical vein endothelial cells, 

inhibiting endothelial cell proliferation and enhancing atherosclerotic lesion formation. 

Cyclin family proteins are cell cycle regulators, and Cyclin D2 was shown to promote cardiac 

muscle repair in a mouse myocardial infarction model [50]. In vivo administration of an anti-

miR-652-3p antagomir in mice decreased aortic lesion area, suggesting miR-652-3p 

inhibition as a therapeutic in atherosclerotic disease [49]. A further study from the same 

group found miR-652-3p upregulation was associated with dyslipidaemia [51]. 

Dyslipidaemia predisposes patients to atherosclerosis by lowering nitric oxide (NO) 

generation from endothelial cells [52]. The transcription factor, insulin gene enhancer 

protein (ISL1) increases NO production and stimulates vasodilation [53, 54]. miR-652-3p is 

overexpressed under hyperlipidaemic conditions and targets ISL1, decreasing NO production 

[51]. Administration of simvastatin, commonly given to treat dyslipidaemia, led to decreased 

miR-652-3p expression and rescued NO levels in hyperlipidaemic mice [51]. 
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In vivo inhibition of miR-652-3p also limited cardiomyocyte hypertrophy and apoptosis in a 

mouse myocardial infarction model [55]. Hypertrophic cardiomyocytes upregulated miR-

652-3p, inhibiting expression of NOTCH ligand JAG1 (Fig 1). Administration of a miR-652- 3p 

inhibitor in mice with cardiac hypertrophy resulted in increased cardiac angiogenesis, with 

no obvious organ toxicity [55]. Notch signalling plays diverse roles in cardiac development 

and repair, but it is also influential in the immune response [56-58]. In vitro Jag1-mediated 

Notch signalling was found to inhibit apoptosis of rat cardiomyocytes, and promote their 

proliferation [59]. Furthermore, Mycobacterium bovis BCG infection of mouse macrophages 

increased Notch signalling and inhibited macrophage apoptosis [60]. Additional research 

investigating the role of miR-652-3p in regulating the NOTCH pathway will be required to 

elucidate these mechanisms.    

In an in vitro myocardial infarction model using primary mouse cardiomyocytes, 

downregulation of miR-652-3p allowed increased expression of MTP18, a controller of 

mitochondrial fission and apoptosis [61, 5]. This study determined miR-652-3p activity was 

regulated by the circular-RNA MFACR, which contains numerous miR-652-3p binding sites 

and acted as a miR-652-3p sponge. This circular-RNA has not been further investigated and 

as will be discussed later in this review, it is not clear whether miR-652-3p target sites are 

present in human MTP18 mRNA transcripts. Together these studies indicate that miR-652-

3p may have multiple roles to play in regulating CVD and further research in this area is 

warranted. 

5. miR-652-3p in cancer 

Given the wide range of critical cellular pathways controlled by miRNA, it is unsurprising 

that many miRNAs, including miR-652-3p, are dysregulated in cancer (Fig 2). For example, 

the miR-34 family is known to downregulate more than 30 oncogenes, and downregulation 

of miR-34 is associated with multiple cancer subtypes [62, 63]. This very broad influence 

makes miR-34 a prime target for drug development, though unfortunately no miR-34-based 

therapeutics have passed clinical trials to date [8]. Cancer is the most studied disease 

context of hsa-miR-652-3p expression, with miR-652-3p reported to possess both protective 

and oncogenic roles in different cancer types. These seemingly contradictory activities may 

be due to the types of tumours, the gene(s) targeted by miR-652-3p, or other as yet 

undetermined factors. The validation of numerous miR-652-3p target genes in different 

cancer settings illustrates the regulatory function miR-652-3p plays in key cell processes [6, 

7, 20, 21, 64, 65]. 

Lung cancer 

A four-miRNA diagnostic biomarker panel containing miR-652-3p was identified by 

Andersen et al., differentiating malignant pleural mesothelioma tumour tissue from non-

neoplastic tissue [66]. The biomarker classifier analysed the downregulation of miR-126-3p, 

miR-143-3p, miR-145-5p, and miR-652-3p in tumour tissue, categorising tissue samples with 

an accuracy of 94% [66]. Another study found miR-652-3p was similarly downregulated in 
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squamous cell lung carcinoma tumour tissue [67]. Conversely, two other studies found miR-

652-3p expression was upregulated in non-small cell lung cancer patient serum and tumour 

tissue, respectively [7,30]. These expression differences may be influenced by differences in 

the study size, subject ethnicity or the host response to different lung cancer subtypes. One 

major issue with measuring miRNA expression is data normalisation. These studies each 

used different housekeeper RNA to normalise qRT-PCR data, which can lead to conflicting 

results. A study analysing plasma miRNA of Chinese and Australian tuberculosis patients 

found the expression of several commonly used housekeeper miRNAs varied significantly 

between geographical cohorts [68]. Further studies are needed to determine an appropriate 

housekeeper in these lung cancers. 

A 3-marker panel analysing increased serum expression of mir-660-5p, miR-652-3p, and a 

known lung-cancer biomarker protein Cyfra21-1 was developed for diagnosis of non-small 

cell lung cancer [30]. A receiver operating characteristic (ROC) curve for this panel had an 

area under the curve of 0.94 for distinguishing non-small cell lung cancer patients from 

controls. 

The potential that miR-652-3p possesses as a biomarker in a number of cancers suggests 

this miR is important in cancer biology. How miR-652-3p influences cancer development is 

now starting to be elucidated.  

miR-652-3p was found to be upregulated in tumour tissue of non-small cell lung cancer 

patients, and promoted tumour metastasis by targeting Lethal(2) giant larvae protein 

homologue 1 (LLGL1) [7]. LLGL1 is considered a tumour suppressor, largely because its 

activity in cell polarity maintenance prevents metastasis of cancerous epithelial cells (Fig 1) 

[69]. Upregulation of miR-652-3p in lung tumour cells, and the subsequent inhibition of 

LLGL1 expression led to an epithelial-to-mesenchymal transition in tumour cells, promoting 

cell migration and invasion [7].  Interestingly, downregulation of miR-652-3p in pancreatic 

cancer lines was also found to promote cancer cell proliferation and invasion. In this case 

miR-652-3p acted by targeting the tumour promoting expression of transcription factor zinc 

finger E-box-binding homeobox 1 (ZEB1) [20]. Increased ZEB1 expression promotes 

epithelial-to-mesenchymal transition and cell migration by inhibiting translation of LLGL2, 

which performs a similar function to LLGL1 in many cell types [70-72]. These studies, 

indicate that LLGL1 and ZEB1 targeting by miR-652 can both promote or inhibit cell polarity 

maintenance. These differences may depend on cell type, tissue location, or disease state 

and clearly this subject requires further research. 

Cell polarity maintained by LLGL activity also influences the polar distribution of NOTCH 

regulator protein NUMB during cell division (Fig 1), controlling Notch signalling in daughter 

cells [73]. Considering it also targets a NOTCH ligand, JAG1, miR-652-3p may be an 

influential regulator of the Notch signalling pathway. 
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Breast cancer 

Along with lung cancers, several studies have identified dysregulated expression of miR-652-

3p in breast cancer patients, though no specific target genes have yet been identified. Cuk 

et al. found that miR-652-3p was upregulated in the plasma of 150 breast cancer patients 

[74]. miR-652-3p was part of a 7-miRNA panel identified which distinguished benign and 

malignant breast cancer [74]. The panel was particularly effective in young women (<50 

years old), with an area under the ROC curve of 0.86. This study also found miR-652-3p 

levels correlated with tumour suppressor p53 expression, which is interestingly a predicted 

target of miR-652-3p on the TargetScan v7.2 database [75]. An additional study established 

a 4-miRNA serum signature including miR-652-3p which could also identify triple-negative 

breast cancer patients likely to relapse [29]. Increased expression of the 4 miRNAs was 

predictive of relapse within 36 months post-surgery. 

Interestingly two studies found circulating miR-652-3p expression reduced in Luminal A type 

breast cancer patients [76, 77].  A biomarker panel analysing decreased miR-652-3p, miR-

29a-3p, and miR-181a-5p concentrations in whole blood was able to identify Luminal A 

breast cancer, with an area under the ROC curve of 0.80 [77]. Indeed, low serum levels of 

miR-652-3p alone was able to identify both Luminal A and non-Luminal A breast cancers 

[76].  

Discrepancies in circulating miR-652-3p expression reported in breast cancer may be due to 

the variation between serum and plasma, particularly considering miR-652-3p was identified 

in circulating exosomes, which are depleted in serum [22]. Alternatively, differences could 

be attributed to use of different reference controls in miRNA data normalisation. These 

studies used either small nuclear RNA U6 [74, 29] or miR-16-5p [77] as a housekeeping 

control, or no housekeeper at all in a ddPCR method [76]. Data normalisation methods can 

cause significant difference in experiment outcomes, and the use of U6 as a circulating 

housekeeping RNA has been questioned [78, 79]. A further consideration is the varying sizes 

the cohorts used. Studies reporting miR-652-3p overexpression in breast cancer used larger 

cohorts (n=110 and n=210) than those reporting miR-652-3p underexpression (n=59 and 

n=90). Other factors such as stage of disease at diagnosis, ethnicity, and age may all 

influence miR-652-3p expression. It may also be that miR-652-3p functions differently in 

different cancers due to other biological factors. 

Gastrointestinal cancers 

Gastrointestinal cancers make up 26% of all cancers globally with 5-year survival rates of 24-

65%, depending on cancer subtype, and miRNA are already of major interest as diagnostic 

biomarkers in this field [80-82]. Recent studies have reported dysregulated miR-652-3p in 

multiple gastrointestinal cancers including oesophageal, gastric, and colorectal cancers. 

A small study of two oesophageal cancer patients found high miR-652-3p levels in fixed 

tumour tissue correlated with poor prognosis [83]. Conversely, a later study by Zhen et al. 

found miR-652-3p was downregulated in oesophageal tumour tissue [65]. Whilst both 
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studies analysed squamous cell carcinoma tissues and used similar RNA quantification and 

data normalisation methods, tissue collection and processing varied significantly [83,65]. 

Larger studies accounting for comorbidities and environmental factors are warranted to 

investigate the role of miR-652-3p in oesophageal cancer. Zehn et al. found that transfection 

of a miR-652-3p mimic in oesophageal cancer cell lines decreased cell proliferation and 

invasion by targeting fibroblast growth factor receptor 1 (FGFR1) [65]. Overexpression of 

FGFR1 is associated with poor prognosis in several cancer types [84-86], and miR-652-3p 

appears to play a protective role in this context. 

In addition to oesophageal cancer, miR-652 has also been associated with gastric cancer. 

miR-652-3p was upregulated in the serum of gastric cancer patients, determined through 

whole-genome sequencing [87]. Shin et al. also found miR-652-3p upregulated in plasma of 

50 gastric cancer patients using qRT-PCR. This study identified miR-627-5p, miR-629-5p, and 

miR-652-3p as an effective diagnostic/prognostic biomarker panel for identification of 

gastric cancer [88].  

Several other studies have found circulating miR-652-3p is increased in serum and plasma of 

colorectal cancer patients [89, 90]. Pre-cancerous colorectal adenoma could be identified 

using increased plasma miR-652-3p concentration [90], and an in silico analysis of 

microarray data found increased miR-652-3p concentration in colorectal tumour tissue was 

associated with poor prognosis [91]. Additionally, a conference abstract reported 

upregulated miR-652-3p in serum was also associated with poor prognosis in 43 colorectal 

cancer patients [89]. Interestingly, a further study found low serum miR-652-3p levels were 

associated with poor prognosis in 322 patients with stage I-III colorectal cancer [28]. 

These apparently conflicting results in colorectal cancer again highlight important issues 

with miRNA as biomarkers. miRNA expression can be influenced by many factors including 

diet, ethnicity, cancer subtype, and environmental factors [92, 93]. In this instance, miR-

652-3p was upregulated in American cancer patients compared to healthy controls [90], but 

no difference was observed in a Chinese population [28]. Differences may also be 

dependent on the experimental method, as each study used differing sample matrices and 

methodologies (ddPCR versus qRT-PCR, versus microarray), each with their own miRNA 

normalisation strategy. Further studies including uniform approaches to normalise 

biomarker analysis are clearly required. 

Other cancers 

Dysregulation of miR-652-3p expression has been associated with numerous other cancers, 

and in many cases a miR-652-3p target gene has been experimentally validated. 

miR-652-3p was found to be upregulated in urothelial cells in the urine of bladder cancer 

patients [94]. This study developed a large and specific 25-miR biomarker panel which 

included miR-652-3p for non-invasive bladder cancer diagnosis [94]. The role of miR-652-3p 

in this context is not yet clear. miR-652-3p has been shown to target KCNN3, encoding small 
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conductance calcium-activated potassium channel 3 (SK3).  Treatment of the bladder cancer 

cell lines T24 and J83 with miR-652-3p mimics inhibited SK3 expression and promoted 

cancer cell invasion [6]. One study found that low SK3 expression in ovarian tumours was 

associated with poor patient survival [95]. However, a number of other studies have shown 

SK3 is overexpressed in primary tumours, and that high SK3 expression by cancer cells 

caused tumour cell invasion and metastasis [96-98].  SK3 expression in these T24 and J83 

cell lines is low, compared to primary bladder cancer tissue [97] and this may account for 

the differences seen between the cell lines and primary cells. Whilst the activity of miR-652-

3p in the T24 and J28 cell lines suggests that miR-652-3p does target KCNN3 in bladder 

cancer, the in vivo effects of miR-652-3p on bladder cancer require further investigation.  

Along with targeting SK3, miR-652-3p has been shown to directly target retinoic acid 

receptor-related orphan receptor alpha (RORA) in endometrial cancer cells [21]. 

Transfection of the Ishikawa human endometrial cancer cell line with a miR-652-3p mimic 

decreased RORA expression, leading to increased cell migration and proliferation. RORA was 

also targeted by miR-652-3p in gastric cancer, where miR-652-3p overexpression was 

associated with decreased survival [99]. RORA is commonly downregulated in cancers and is 

reportedly a regulator of p53 anti-tumour activity [100-102]. 

Downregulated miR-652-3p has also been seen in primary glioblastoma tissues with low 

miR-652-3p expression associated with poor overall survival [6]. Here miR-652-3p was acting 

as a tumour suppressor in glioblastoma cell lines, targeting the transcription factor 

forkhead-box k1 (FOXK1), inhibiting cell migration and promoting apoptosis. FOXK1 

regulates a variety of cell processes, including aerobic glycolysis and cell differentiation, and 

is upregulated in many cancers [103]. Transfection of a glioblastoma cell line with a miR-

652-3p mimic caused decreased tumour growth when xenografted into nude mice [6]. 

While downregulation of miR-652-3p has been associated with poor survival in a number of 

cancers, overexpression of miR-652-3p has also been associated with increased tumour 

growth. Overexpression of mir-652-3p has been demonstrated in uveal melanoma tissues 

and in uveal melanoma cell lines [64]. Transfection of these cell lines with a miR-652-3p 

inhibitor led to decreased cell migration and increased expression of the validated miR-652-

3p-target homeobox A9 (HOXA9). HOXA9 is a transcription factor regulating diverse 

processes, including embryonic development and haematopoiesis, and HOXA9 

dysregulation is associated with several cancers [104-106]. Increased miR-652-3p expression 

in uveal melanoma promoted metastatic cell behaviour through modulating HOXA9 activity 

[64]. mir-652-3p has also been shown to target HOXA9 in human trophoblast cells [4], with 

inhibition of mir-652-3p leading to decreased trophoblast proliferation and migration.   

Upregulated miR-652-3p has been seen in osteosarcoma tissue and osteosarcoma cell lines 

compared to osteoblast cell lines [107]. Jin et al. suggested miR-652-3p overexpression in 

osteosarcoma tissue may drive tumour malignancy by targeting the transcription factor 

Krueppel like factor 9 (KLF9) [108]. Dysregulation of KLF9 has been associated with 
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development of several cancers [109, 110].  Increased miR-652-3p expression in 

osteosarcoma cell lines inhibited KLF9 expression and promoted cancer cell invasion [108]. 

These recent studies highlight the diverse role of miR-652-3p, with both up- and 

downregulation of this miRNA associated with increased tumour growth and reduced 

survival. This apparent contradiction in function of miR-652-3p as both a tumour suppressor 

and tumour promoter is likely due to the multiple targets of miR-652-3p and how it acts on 

specific tumour or immune cells. Further research is required to fully understand how miR-

652-3p is functioning in these different cancers and to determine the therapeutic potential 

of inhibiting or overexpressing miR-652-3p on tumour function. 

6. miR-652-3p in mental illnesses and the central nervous system 

Along with multiple roles in numerous cancers, miRNAs, including miR-652-3p, are also 

being recognised for their roles in mental illnesses and CNS diseases. Knowledge of how 

neuron function is regulated by miRNA is developing rapidly, with miRNA regulation, 

including that of miR-652-3p, being described in control systems in the central nervous 

system, through to neuronal diseases and mental illness [111-113].  

A study of miRNA expression in post-mortem schizophrenia patient brain tissue found 6 

miRNAs upregulated, including miR-652-3p [114]. A similar analysis found miR-652-3p 

noticeably upregulated in the frontal cortex of alcoholic patients [115]. In order to develop a 

non-invasive molecular method of schizophrenia diagnosis, Lai et al. measured miRNA levels 

in patients’ peripheral blood mononuclear cells (PBMCs) [116]. miR-652-3p was upregulated 

in schizophrenia patients compared to controls, and formed part of a 7-miR biomarker panel 

able to robustly identify schizophrenia patients. However, a follow-up study found miR-652-

3p was notably, but not significantly, upregulated in PBMCs of hospitalised schizophrenia 

patients [117]. Differing results between the 2 studies may be due a number of factors 

including recruitment methods, ethnicity, age, cohort size, concurrent medications or other 

comorbidities, and further studies in this area are required. 

miR-652-3p has also been associated with a number of other mental illnesses and CNS 

conditions. miR-652-3p levels were elevated in the blood of bipolar disorder patients, while 

plasma miR-652-3p was decreased in patients diagnosed with the recently described 

internet gaming disorder [118, 119]. Both studies implicated miR-652-3p in dysregulation of 

the gamma-aminobutyric acid signalling pathway, associated with schizophrenia, bipolar 

disorder, and alcoholism [120]. The potential use of circulating cells and molecules as 

accessible markers of mental illness has been under investigation for some time [121], and 

the mechanisms by which psychiatric conditions interact with circulating leukocytes 

continue to be elucidated [122]. 

Studies have also shown an association between upregulated miR-652-3p and the onset of 

multiple sclerosis in both paediatric and adult patients [123]. Pleckstrin-2 (PLEK2), an in 

silico predicted target of miR-652-3p, was downregulated in the paediatric multiple sclerosis 
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patients [123]. PLEK2 expression is associated with T cell movement and metastasis of 

numerous cancers [124, 125], potentially deepening the already discussed role of miR-652-

3p as a regulator of cell migration. 

Whilst no genes have yet been validated as miR-652-3p targets in nervous diseases, targets 

validated in other studies have implications in CNS disorders. SK3, targeted by miR-652-3p in 

bladder cancer [6], has been linked with schizophrenia and bipolar disorder [126, 127]. 

Additionally, changes in SK3 expression have been associated with myotonic dystrophy 

[128] and miR-652-3p was also reported to be upregulated in the serum of myotonic 

dystrophy patients [27]. 

7. miR-652-3p in other indications 

The multifactorial actions of miR-652-3p also extend to reported roles in a number of other 

diseases. miR-652-3p was upregulated in PBMCs of paediatric patients with type 1 diabetes 

[35] and downregulated in plasma of pregnant women with pregestational and gestational 

obesity [26]. Low plasma miR-652-3p levels correlated with high blood glucose and 

increased weight gain during pregnancy. Similarly, downregulation of miR-652-3p in white 

adipose tissue was associated with insulin resistance in obese women [129]. Transfection of 

primary white adipose cells with a miR-652-3p mimic decreased expression of 

ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and increased glucose 

incorporation into lipids. ENPP1 is a regulator of bone and soft tissue mineralisation, and 

has been associated with obesity, type 2 diabetes, and pathological calcification of soft 

tissues [130, 131]. Several additional studies have linked in silico-predicted miR-652-3p 

targets with fatty acid metabolism pathways [115, 123], suggesting further investigation 

into the involvement of miR-652-3p in cell metabolism is warranted. 

Downregulation of serum miR-652-3p in liver cirrhosis patients was shown to be highly 

predictive of cirrhosis disease, but not the aetiology or stage of cirrhosis [18]. In a mouse 

model of fibrosis, miR-652-3p levels were decreased in the liver tissue suggesting a role for 

miR-652-3p in immune regulation [19]. Mouse CD4+ T cells transfected with a miR-652-3p 

mimic expressed significantly lower levels of the Th17 cytokines, IL-17A and IL-22 [19]. In 

host immunity, down regulation of miR-652-3p may aid this early response to infection. 

These transfected CD4+ T cells also displayed significantly lower levels of β-arrestin 1 

(ARRB1), and a luciferase reporter assay confirmed ARRB1 was a target of miR-652-3p [19]. 

ARRB1 is ubiquitously expressed, and has known functions in T cell regulation [132], TLR 

signalling [133], and colorectal cancer progression [134], underpinning the role of miR-652-

3p in immunoregulation and cancer metastasis [7, 20, 55]. 

To date, the only communicable disease associated with miR-652-3p is Mycobacterium 

tuberculosis infection. Barry et al. found plasma miR-652-3p levels were lower in active 

tuberculosis patients compared to healthy controls, and that concentrations remained 

downregulated throughout the standard 6-month antibiotic treatment [24]. If the patient 

group was further stratified based on the success or failure of antibiotic treatment, pre-
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treatment miR-652-3p levels were significantly lower in treatment failures compared to 

treatment successes. Additionally, the human monocyte cell line U937 downregulated miR-

652-3p following lentiviral-transduction to express M. tuberculosis protein Hsp16.3 [17]. 

Whether the downregulation of miR-652-3p is part of the host immune response or 

bacterial pathogenesis remains to be elucidated. The expression of proinflammatory 

cytokines by Mycobacterium bovis BCG-infected macrophages is mediated by JAG1/NOTCH 

signalling [135], further suggesting a role for miR-652-3p in immune regulation [55]. 

8. miRNAs regularly associated with dysregulated miR-652-3p 

To complement analysis of individual miRNA, investigation of miRNA commonly identified as 

dysregulated together can give insight into which pathways these miRNAs may regulate and 

can give insight into the physiological pathways altered in specific diseases.   

Online Resource 1 details all miRNAs reported as either up- or downregulated where 

dysregulated miR-652-3p was also reported. Additionally, all studies identifying miR-652-3p 

as part of a disease biomarker signature are listed in Online Resource 2. Many miRNAs have 

been identified as dysregulated with miR-652-3p across multiple cancer types (Fig 2), and 

more still are dysregulated with miR-652-3p across cancer, CVD, and mental health and CNS 

disorders (Fig 3). 

The miRNA most commonly associated with dysregulated miR-652-3p is mir-223-3p. Both 

were reported as dysregulated in breast cancer, bladder cancer, heart failure, and 

tuberculosis patients [24, 29, 40, 77, 94]. miR-223-3p regulates myeloid leukocyte 

differentiation and function [136], with reported functions as either a tumour promotor or 

suppressor in different cancers [137]. Similar to miR-652-3p, miR-223-3p can inhibit 

metastasis of cancer cells by targeting ZEB1 [138]. 

Multiple studies have also reported an association between significant changes in circulating 

mir-143-3p levels with miR-652-3p, with both miRNAs highly expressed in myeloid 

leukocytes [16]. Both miR-143-3p and miR-652-3p were reported to be upregulated in non-

small cell lung cancer, mesothelioma, and CVD patients, and both downregulated in bladder 

cancer patients [23, 66, 67, 94]. miR-143-3p regulates the cell cycle by targeting MAPK7, and 

downregulation of miR-143-3p is associated with progression of several cancers [139, 140]. 

In a murine model, miR-143-3p expression was controlled by the Jag1/Notch1 pathway in 

vascular smooth muscle cells [141]. As miR-652-3p inhibits JAG1, this suggests miR-652-3p 

may regulate expression of miR-143-3p, through inhibition of JAG1 [55].  

Similarly, miR-18a-5p has reported protective or pathogenic roles in different cancers [142], 

and dysregulated expression of miR-18a-5p has been reported with dysregulated miR-652-

3p in lung, gastric, and bladder cancers [67, 88, 94]. Both miR-18a-5p and miR-652-3p are 

overexpressed in non-small cell lung cancer [7, 143]. Moreover, miR-18a-3p and miR-652-3p 

target RORA in glioma and endometrial cancer, respectively [21, 144], suggesting both 

miRNAs may regulate similar pathways. 
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Additional studies have suggested that miR-29a-3p dysregulation may be linked with both 

miR-181a-5p and miR-652-3p in breast, lung, and gastrointestinal cancers (Fig 2). Studies 

have shown both miR-181a-5p and miR-29a-3p target VEGF-A to supress angiogenesis in 

tumours [145, 146]. This is intriguing considering miR-652-3p has been associated with VEGF 

signalling in colorectal cancer [91], and suggests miR-652-3p could play a protective role in 

these tumours. 

Another miRNA associated with miR-652-3p in multiple conditions is miR-107. Both have 

been reported to be upregulated in parallel in breast cancer, schizophrenia, and myotonic 

dystrophy [27, 29, 114]. miR-107 prevents cell cycle arrest and cancer progression by 

inhibiting CDK6 expression [147]. CDK6 itself is regulated by CCND2, a validated miR-652-3p-

target, illustrating the involvement of miR-652-3p cell cycle maintenance [49]. In a similar 

fashion, a study in glioma cells showed hsa-miR-107 targets NOTCH2 [148], itself a receptor 

for the miR-652-3p target JAG1 [55]. Expression of miR-107 in macrophages is TLR and NF-

κB dependant, and miR-107 was downregulated is response to LPS in mouse macrophages 

[149, 150]. Moreover, miR-107 and miR-652-3p were both downregulated in human 

macrophages expressing the recombinant mycobacterial antigen Hsp16.3 [17]. These co-

dysregulation analyses highlight the diversity of pathways influenced by miR-652-3p and 

present interesting avenues for further investigation of miR-652-3p activity. 

9. Interspecies conservation of miR-652-3p and its validated target genes  

Common practical and ethical limitations associated with obtaining human samples make 

animal models an attractive alternative for scientific experimentation. Mice are among the 

most commonly used laboratory animals due to ease of colony maintenance and relatively 

short breeding cycle. Whilst mouse and human genomes are largely homologous [151], 

genetic differences between the species can greatly affect phenotypic and experimental 

outcomes [152]. 

In order to assess the use of mice as a model of miR-652-3p activity, we performed 

sequence alignments using the EMBOSS Needle global alignment tool 

(https://www.ebi.ac.uk/Tools/psa/) for all miR-652-3p targets validated in humans or mice: 

ARRB1 [19], CCND2 [49], ENPP1 [129], FGFR1 [65], FOXK1 [6], HOXA9 [4,64], ISL1 [51], JAG1 

[55], KCNN3 [6], KLF9 [108], LLGL1 [7], MTP18 [5], RORA [99,21], and ZEB1 [20]. 

mRNA sequences used in this analysis are detailed in Table S2. The mature miRNAs, hsa-

miR-652-3p and mmu-miR-652-3p are 100% homologous [153]. However, the target 

sequences in the genes they are predicted to bind are not all conserved between humans 

and mice. For instance, the RORA 3’-UTR is conserved in mice, with only a single base 

difference in the binding region (Fig 4a). Target sequences in ISL1, KLF9, ZEB1, and JAG1 are 

also well conserved in mice. However, single base differences are present in each gene 

corresponding to the miR-652-3p 5’ seed sequence, known to be influential in miRNA-mRNA 

targeting [154]. The hsa-miR-652-3p target sites in human LLGL1 and ENPP1, and the mmu-

miR-652-3p target site in mouse Arrb1 are all moderately conserved between the two 

https://www.ebi.ac.uk/Tools/psa/
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species, however, binding of the miR-652-3p seed sequence may be significantly impacted 

by 3’ changes in the target genes. Conservation of 3’-UTR target sites in human FGFR1 and 

FOXK1 in mice is poor, and miR-652-3p is not expected to bind these sites. The validated 

target site for Mtp18 in mice is not present in humans. 

Two separate studies have validated human HOXA9 as a hsa-miR-652-3p target. Both 

studies listed the target sequence predicted by the TargetScan v7.2 database [75]. However, 

this target sequence is not present within any HOXA9 mRNA transcripts in the Refseq 

database for either human or mouse [4, 64]. Rather, it is in a non-transcribed region over 

600 bp downstream of HOXA9 (Fig 4b). This non-transcribed region is also well conserved in 

mice. The predicted target sequence was validated in both studies using recombinant 

luciferase reporter constructs [4, 64]. miR-652-3p mimics and inhibitors modulated HOXA9 

expression, as determined by western blot, suggesting there may be a second miR-652-3p 

target site in the HOXA9 mRNA transcript, or that miR-652-3p could be targeting another 

protein upstream of HOXA9. Similar to the HOXA9 target site, the validated miR-652-3p 

target site in the human KCNN3 3’-UTR is not present in known mouse Kcnn3 mRNA 

transcripts (Fig 4c), but it is well conserved in the mouse genomic sequence downstream of 

Kcnn3 (data not shown).  

Though some validated 3’-UTR target sequences are not conserved between humans and 

mice, this does not necessarily mean miR-652-3p does not target these genes, as some 

miRNA are known to have several target sites within a single gene. Huang et al. predicted 

different miR-652-3p target sequences in human and mouse CCND2. Two predicted target 

sites in the human CCND2 3’-UTR are not well conserved in mice (Fig 4d), however a 

predicted target site in the mouse Cnnd2 coding sequence is well conserved in humans [49]. 

Western blot data confirmed miR-652-3p targeted both human CCND2 and mouse Ccnd2 

and the predicted target site in the mouse Ccnd2 coding sequence was validated by a 

standard recombinant-gene luciferase assay [49]. 

Mouse models remain a valuable tool for the elucidation of miR-652-3p activity. The 

interspecies conservation of miRNA binding sites should be considered when developing 

investigative models of miRNA activity.   

10. Conclusion 

The current literature illustrates the diverse roles miR-652-3p plays in maintaining cellular 

processes, and its contributions to disease pathogenesis. Validated gene targets have 

implicated miR-652-3p in regulation of cell differentiation, metabolism, proliferation, and 

apoptosis, and aberrant miR-652-3p expression in these systems can lead to oesophageal, 

lung, uveal, bladder, endometrial, and pancreatic cancers. Dysregulation of miR-652-3p has 

been associated with several cardiovascular diseases, with a number of cardiac repair genes 

confirmed as miR-652-3p targets. The ability of miR-652-3p to target JAG1, LLGL1, and ZEB1, 

could profoundly influence cell polarity maintenance, cell fate determination, generation of 

inflammatory immune responses, and initiation or repression of cancer metastasis.  
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Although miR-652-3p has been identified as a potential biomarker in a number of mental 

health and central nervous system diseases, the mechanisms by which miR-652-3p is 

associated with these conditions are yet to be uncovered. The activity of miR-652-3p in 

infectious disease also remains poorly understood and its association with mycobacterial 

infection provides an excellent opportunity for further investigation. Continued 

investigation into the actions of miR-652-3p offers considerable opportunity to develop new 

diagnostic and therapeutic targets to treat a range of human diseases. 
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13. Figures 

 

Fig 1 Regulation of cell polarity and Notch signalling by miR-652-3p. Organisation of 

cytoplasmic components in epithelial cells and mitotic cells is regulated by the co-inhibitory 

activity of the PAR complex (composed of PAR3, PAR6, and aPKC) and the Scribble complex 

(composed of Scribble (SCRIB), DAP-5, and LLGL1 or LLGL2). LLGL1/2 competes with PAR3 to 

bind aPKC in the apical zone. PAR3 binds and activates aPKC, initiating phosphorylation of 

LLGL1/2, deactivating LLGL1/2 and transporting it to the basolateral zone. Phosphorylated 

LLGL1/2 is reactivated and binds the scribble complex in the basolateral zone. ZEB1 prevents 

the expression of LLGL2, interfering with the regulation of the PAR complex. NOTCH-ligand 

JAG1 activates NOTCH, causing cleavage of the Notch intracellular domain (NICD) which 

translocates to the nucleus and activates transcription factors. NUMB inhibits Notch 

signalling by ubiquitinating NICD, directing it to the proteasome for degradation. During 

asymmetric cell division, active aPKC phosphorylates NUMB in the apical zone, driving 

transport of NUMB to basolateral zone. Asymmetric distribution of NUMB during mitosis 

influences daughter cell phenotype. miR-652-3p inhibits the activity of both ZEB1 and LLGL1, 

which can either promote or inhibit cell polarity and differentiation of dividing cells 

depending on cell type, tissue location, and disease. miR-652-3p also inhibits expression of 

JAG1, controlling Notch signalling activity. 

 

 

Fig 2 Human miRNAs reported dysregulated with hsa-miR-652-3p in lung cancer, breast 

cancer, and gastrointestinal cancers. Lung cancers include non-small cell lung cancer and 

plural mesothelioma. Gastrointestinal cancer includes oesophageal cancer, gastric cancer, 

and colorectal cancer. 

 

 

Fig 3 Human miRNAs reported dysregulated with hsa-miR-652-3p in cardiovascular disease, 

cancer, and mental health and central nervous system diseases. Cardiovascular disease 

includes acute coronary syndrome, heart failure, venous thromboembolism, and obesity. 

Cancer includes bladder cancer, breast cancer, oesophageal cancer, gastric cancer, 

mesothelioma, non-small cell lung cancer, and osteosarcoma. CNS and mental health 

disease includes alcoholism, bipolar disorder, internet gaming disorder, multiple sclerosis, 

myotonic dystrophy, and schizophrenia. 
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Fig 4 mir-652-3p target sequences are conserved between humans and mice. Yellow 

indicates bases bound by miR-652-3p, as described in published literature. a The 3’-UTR of 

validated miR-652-3p target genes in humans and mice. b The in silico predicted miR-652-3p 

target site in HOXA9 reported in the literature is downstream of the transcribed mRNA. c 

The miR-652-3p target sequence in human KCNN3 is conserved in the mouse genome, but is 

not included in known mouse mRNA transcripts. d The predicted miR-652-3p binding sites in 

the human CCND2 3’-UTR are moderately conserved in mice. The predicted miR-652-3p 

binding site in the mouse Ccnd2 CDS is well conserved in humans. 

 

Online Resource 1 miRNAs dysregulated with miR-652-3p 

 

Online Resource 2 Identified disease biomarker signatures utilising miR-652-3p 

 

Online Resource 3 Sequences used for inter-species alignment analysis of validated miR-

652-3p target genes 
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Human ENPP1 5055 TCAGCATTTGCTGGTATGGGTGGGGCCATGG  5085

                 .|    ||.||||||.||||.||       |

Mouse Enpp1 4866 CC----TTGGCTGGTGTGGGAGG-------G  4885

Human MTP18 1124 -------------------------------  1133

Mouse Mtp18 1353 AATCACAACCCAAGTGCTAACCTAATAAAAC  1383

Human ARRB1 3200 ------CCAGCACCTCCTGGGG---------  3206

                       ||.||..||.||||.|         

Mouse Arrb1 3330 CATGCCCCTGCCACTGCTGGCGCCATGCTTT  3360

Human RORA  1740 ATGGCCCTGCACAGACCTGGAGCGCCA--CA  1769

                 ||||||||||||||.||||||||||||  .|

Mouse Rora  1712 ATGGCCCTGCACAGCCCTGGAGCGCCAACAA  1742

Human LLGL1 4134 TTGTTAAAATTAG-CGCCATTTTAATATTAA  4163

                 ||.|.||||.||| .|   ||||||||||||

Mouse Llgl1 4246 TTTTAAAAACTAGTTG---TTTTAATATTAA  4273

Human ZEB1  4506 GCCTTAAGCAAGACCTGTGTGCTGTAAGTGC  4536

                 |||||||||||||||  ||||||.|||||||

Mouse Zeb1  4180 GCCTTAAGCAAGACC--TGTGCTCTAAGTGC  4208

Human JAG1  4119 CGTATAGCAGACCGCGGGCACTGCCGCCGCT  4150

                 ||||||||||||.|.|||  |||||||| .|

Mouse Jag1  3913 CGTATAGCAGACAGTGGG--CTGCCGCC-AT  3941

Human FOXK1 6017 -----ACTGGCTTCACGCTAGAGGGCGCCAT  6043

                      ||||    |||     ||.||     

Mouse Foxk1 4774 TCCGAACTG----CAC-----AGTGC-----  4790

Human ISL1  2317 AAATCAAAGCGCCATATGTAGAATTATATCT  2347

                 |||||||||||||||||||||||||||||||

Mouse Isl1  2445 AAATCAAAGCGCCATATGTAGAATTATATCT  2475

Human KLF9  2607 ------CGCCATAGCACAGCTGTC-TTTATG  2629

                       |.|||||||||||||||| ||||||

Mouse Klf9  1826 CCAACCCTCCATAGCACAGCTGTCTTTTATG  1856

Human FGFR1 4701 GGAGGTTGCAGTGAGCCGAGATTGCGCCATT  4732

                                            ||||

Mouse Fgfr1 4394 ---------------------------CATT  4398

Human HOXA9 8715  GCAATTGACGAGCCCCTAAGCGCCATAAAA  8745

                  .|||..|||.||||||.|||||||||||||

Mouse Hoxa9 17181 -CAACCGACAAGCCCCGAAGCGCCATAAAA 17149

Human KCNN3 10889 GACGTGAATTCTGATATTGGCGCCATAACT 10918

                                                       

Mouse Kcnn3  7619 ------------------------------  7618

3’UTR sequence:

Human CCND2  5686 ATTCTAAACAACCCAGAATGGTCAT--TTCA  5714

                  |||.|.||||.|.||.||..|||.|  ..|.

Mouse Ccnd2  5475 ATTTTCAACAGCACAAAAGAGTCCTCGAGCC  5505

Human CCND2  6000 ATCCCCAGCAAATCATCGGGCCATTGGATTT  6030

                  |     ||.|||..|.||     ||..|   

Mouse Ccnd2  5755 A-----AGAAAAAAAACG-----TTAAA---  5772

CDS sequence:

Human CCND2  1040 TCCTCAATAGCCTGCAGCAGTACCGTCAGGA  1070

                  |.||.||.|||||||||||||.||||||.||

Mouse Ccnd2  1033 TGCTGAACAGCCTGCAGCAGTTCCGTCAAGA  1063

a
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