
Frontiers in Endocrinology | www.frontiersi

Edited by:
Anca Dana Dobrian,

Eastern Virginia Medical School,
United States

Reviewed by:
Cathal M. McCarthy,

University College Cork, Ireland
Luis Sobrevia,

Pontificia Universidad Católica
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Diabetes in pregnancy is associated with adverse pregnancy outcomes including preterm
birth. Although the mechanisms leading to these pregnancy complications are still poorly
understood, aberrant angiogenesis and endothelial dysfunction play a key role. FKBPL
and SIRT-1 are critical regulators of angiogenesis, however, their roles in pregnancies
affected by diabetes have not been examined before in detail. Hence, this study aimed to
investigate the role of FKBPL and SIRT-1 in pre-gestational (type 1 diabetes mellitus, T1D)
and gestational diabetes mellitus (GDM). Placental protein expression of important
angiogenesis proteins, FKBPL, SIRT-1, PlGF and VEGF-R1, was determined from
pregnant women with GDM or T1D, and in the first trimester trophoblast cells exposed
to high glucose (25 mM) and varying oxygen concentrations [21%, 6.5%, 2.5% (ACH-
3Ps)]. Endothelial cell function was assessed in high glucose conditions (30 mM) and
following FKBPL overexpression. Placental FKBPL protein expression was
downregulated in T1D (FKBPL; p<0.05) whereas PlGF/VEGF-R1 were upregulated
(p<0.05); correlations adjusted for gestational age were also significant. In the presence
of GDM, only SIRT-1 was significantly downregulated (p<0.05) even when adjusted for
gestational age (r=-0.92, p=0.001). Both FKBPL and SIRT-1 protein expression was
reduced in ACH-3P cells in high glucose conditions associated with 6.5%/2.5% oxygen
concentrations compared to experimental normoxia (21%; p<0.05). FKBPL
overexpression in endothelial cells (HUVECs) exacerbated reduction in tubule formation
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compared to empty vector control, in high glucose conditions (junctions; p<0.01,
branches; p<0.05). In conclusion, FKBPL and/or SIRT-1 downregulation in response to
diabetic pregnancies may have a key role in the development of vascular dysfunction and
associated complications affected by impaired placental angiogenesis.
Keywords: FKBPL, SIRT-1, GDM, pregnancy, angiogenesis, Diabetes, Trophoblasts, endothelial cells
INTRODUCTION

Hyperglycaemia is one of the most common pregnancy
complications, affecting one in six pregnancies (1). Hyperglycaemia
in pregnancy could be due to: i) type 2 diabetes mellitus (T2D)
characterised by hyperglycaemia, insulin resistance and some
insulin deficiency (2), ii) type 1 diabetes mellitus (T1D) - an
autoimmune disease where the body’s immune system attacks
insulin-secreting pancreatic b islet cells leading to insulin
deficiency (3), and iii) gestational diabetes mellitus (GDM) that
occurs only in pregnancy characterised by impaired insulin
function due to the production of hormones by the placenta
leading to insulin resistance. GDM is usually a transient
condition during pregnancy, which resolves immediately after
delivery of the baby, although in some women GDM continues
as T2D beyond pregnancy (4, 5). The vast majority (~86%) of
hyperglycaemia cases in pregnancy are attributed to GDM (6).

Gestational hypertension and preeclampsia are the leading
causes of morbidity and mortality in pregnancy (7), and in the
presence of hyperglycaemia, the risk of these conditions is
increased up to 4-fold (8). Indeed, elevated fasting blood
glucose and HbA1c have been associated with increased risk of
preeclampsia in pregnant women with GDM, T1D or T2D (9–
11). In addition, hyperglycaemia during pregnancy can lead to
several other adverse neonatal complications, including the
large for gestational age (LGA) foetus, shoulder dystocia,
respiratory distress syndrome and neonatal hypoglycaemia
(12). Hyperglycaemia in pregnancy also increases the risk of
perinatal death and stillbirth by at least two- to three-fold,
particularly in the presence of T1D and T2D compared to
healthy pregnant controls (13, 14). Women who develop GDM
in pregnancy have a 50% increased risk of developing GDM in a
subsequent pregnancy, and a 10-fold increased risk of developing
T2D within 10 years following pregnancy (15). In addition,
children born to mothers with GDM or pre-existing diabetes
are at higher risk of developing obesity, T2D and cardiovascular
disease during their life-time (16–18). Despite clear
epidemiological link between diabetes in pregnancy and both
short- and long-term pregnancy complications, the mechanisms
of these associations are still poorly understood.

The placenta is a highly vascularised organ, which facilitates
adequate oxygen and nutrient transfer from the mother to foetus
as well as removal of foetal waste products through maternal
circulation (19). Placental development and growth are tightly
regulated by angiogenic factors, such as vascular endothelial
growth factor (VEGF), placental growth factor (PlGF), and their
receptors, which stimulate angiogenesis throughout pregnancy in
a controlled manner (20). However, in pregnancies complicated
n.org 2
by diabetes, pre-existing endothelial dysfunction and aberrant
angiogenesis can lead to hyper-vascularisation of the placenta
(21). This process of overstimulated placental angiogenesis can
lead to impairment in the integrity of both the maternal and foetal
vascular system as well as increased peripheral vascular resistance
and maternal hypertension (22).

FK506-binding protein like (FKBPL), a divergent member of
the immunophilin protein family, is a key anti-angiogenic
protein that also regulates glucocorticoid receptor signalling;
the mechanisms involve HSP90, CD44 and Notch (23–26). Both
of these key functions regulate metabolism and vascular health
(27, 28), therefore suggesting a potentially important role for
FKBPL in diabetes and the associated vascular dysfunction.
Sirtuin-1 (SIRT-1), an NAD+ dependant deacetylase, also has a
critical role in endothelial cell metabolism and function. In
diabetes, SIRT-1 is downregulated, which is often associated
with endothelial dysfunction (29, 30). Previous studies have also
demonstrated that FKBPL knockout mice were embryonically
lethal, highlighting its vital role in embryonic development.
Whilst heterozygous FKBPL knockdown mice developed
normally, the vasculature appeared leaky with compromised
integrity, implicating FKBPL with a key function in endothelial
function (31). FKBPL has also been shown to inhibit tumour
angiogenesis; this has led to the development of therapeutic
peptides for the treatment of solid tumours (32, 33). In
preeclampsia, FKBPL and its target protein, CD44, have
demonstrated their predictive and diagnostic biomarker
potential, likely reflective of the pathogenesis of preeclampsia
and placental hypoxia (34, 35). However, FKBPL’s role in the
context of diabetes in pregnancy has not yet been investigated.
Therefore, in this study, placental expression of FKBPL in
conjunction with SIRT-1, PlGF and VEGF-R1 was
investigated in human samples from pregnant women with
pre-existing diabetes (T1D), and GDM. FKBPL and SIRT-1
expression was also assessed in ACH-3P first trimester
trophoblasts in response to high glucose and varying oxygen
concentrations relevant to placental development (35). The
importance of FKBPL's role in endothelial cell angiogenesis in
both low and high glucose environments was demonstrated.
METHODS

Placental Samples
Pregnant women with GDM and T1D as well as healthy
pregnant controls, provided written informed consent as part
of their recruitment to the PREDICT study at the Royal Jubilee
Maternity Hospital (36). Ethical approval for this project was
June 2021 | Volume 12 | Article 650328

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Alqudah et al. Impaired Angiogenesis in Diabetic Pregnancies
obtained from the NHS Health Research Authority (ORECNI,
14/NW/1222) and the School of Medicine, Dentistry and
Biomedical Sciences (Queen’s University Belfast). Clinical
characteristics were recorded [age, BMI, gestational age (GA),
mode of delivery (MOD), parity and foetal sex], systolic blood
pressure (sBP) and diastolic blood pressure (dBP) were measured
according to the National Heart Foundation of Australia
protocol using automated devices as previously described (37)
in both the left and right arm of each patient on two occasions
during the first trimester. Women with T1D were on insulin
whereas we did not obtain information on medication from
women with GDM as they were recruited before any treatment
was initiated. Healthy controls did not take any medication.

Placental sections were collected from women with T1D, GDM
or healthy pregnancies after the baby was delivered. All slides were
stained by standard haematoxylin and eosin (H&E) procedure.
Following staining, placental morphology and pathophysiology
was assessed by a pathologist, DO. The parameters analysed
included placental maturity, vascularisation and branching of
chorionic villi by characterising the structure of chorionic villi,
area of terminal villi covered by blood vessels, presence or absence
of calcifications and syncytial knots. The distribution of syncytial
knots was quantified by counting the number of syncytial knots
per 100 terminal villi.
Immunofluorescence Staining
Placental section slides were prepared by the Northern Ireland
Biobank (38) using fresh tissue before being subjected to
immunofluorescence staining for FKBPL (Cat. no.: 10060-1-
AP; Proteintech, UK), SIRT-1 (Cat. no.: ab110304; Abcam,
UK), PlGF (Cat. no.: ab180734, Abcam, UK) and VEGF-R1
(Cat. no.: AF321, R&D systems, USA). Tissue slides were imaged
using a Leica DMi8 fluorescence inverted microscope using the
same magnification (20x) and exposure. Analysis was performed
using Image J software (NIH, US) by selecting six random fields
of view per section and measuring the intensity, with the assessor
blind to patient group. Protein expression was quantified as
previously described (39).

Cell Culture
ACH-3P cells were kindly provided by Professor Gernot Desoye
(Medical University of Graz, Austria). Briefly, immortalised
choriocarcinoma cells, AC1-1 cells, and primary trophoblast
cells isolated from the first trimester placenta were fused (40),
to form a unique ACH-3P cell line as previously described (41).
ACH-3P cells were maintained in Hams F-12 medium
supplemented with 10% FBS and all experiments were carried
out at Medical University of Graz. Short Tandem Repeat (STR)
DNA profiling analysis was performed using PowerPlex 16 HS
System (Promega, UK) for cell authentication. ACH-3P cells
were exposed to high glucose (25 mM) or mannitol (20 mM +
5 mM D-glucose) as an osmolality control under different
oxygen concentrations (21%, 6.5%, and 2.5%) for 24 h. This
was based on previous experimental design where the least cell
death was observed (35). Protein was then extracted for
downstream protein expression analysis by Western blotting.
Frontiers in Endocrinology | www.frontiersin.org 3
Human Umbilical Vein Endothelial Cells (HUVECs) (ATCC,
USA) kindly donated byDrAndrianaMargariti (Queen’s University
Belfast) were maintained in MV2 endothelial cell growth media
(PromoCell, Germany) supplemented with low serum growth
supplement containing the following: 5% foetal calf serum (FCS),
epidermalgrowth factor5ng/ml, basicfibroblast growth factor (FGF)
10 ng/ml, insulin-like growth factor 20 ng/ml, VEGF 0.5 ng/ml,
ascorbic acid 1 mg/ml and hydrocortisone 0.2 mg/ml.

All cells were maintained at 37°C in a humidified atmosphere
with 5% CO2.

Tubule Formation Assay
HUVECs were transfected with a FKBPL overexpressing plasmid
(pFKBPL; SinoBiological,USA) or empty vector plasmid (pCMV3;
Sino Biological, USA) for 24 h before being plated in Matrigel
(Corning, UK).HUVEC (7x105) were stainedwith calcein (2µg/ml;
Thermo Fisher Scientific, UK) prior to being seeded on phenol red
free conditions reduced-growth factorMatrigel under high glucose
conditions (30mM D-glucose) or mannitol (25 mM + 5 mM D-
glucose) for 24 h. Tubule formation was imaged by randomly
capturing six images per well using a DMi8 inverted florescence
microscope.Thenumberof branches and junctionswere quantified
using Image J software (NIH, USA).

Western Blotting
HUVEC and ACH-3P protein lysates were harvested using RIPA
buffer (SantaCruz Biotechnology, USA) supplemented with
protease and phosphatase inhibitor cocktails (Roche, UK) and
subjected to Western Blotting. FKBPL (Proteintech, UK, cat#
10060-1-AP) and SIRT-1 (Abcam, UK, cat# Ab110304)
antibodies were used at 1:1000 dilution. Appropriate HRP-
linked secondary antibodies were used at 1:10 000 before
chemiluminescent was applied and blots imaged as previously
described (34).

Statistical Analysis
All analysed parameters were tested for normality of the data using
the Kolmogorov-Smirnov test where possible. Differences between
the groups were evaluated by Student’s t-test or ANOVA with
Bonferroni post-hoc for normally distributed data or by Mann
Whitney or Kruskal-Wallis for non-normally distributed data.
Results are expressed as the mean ± the standard error of the
mean (SEM) and values were considered statistically significant if
p<0.05. Analyses were performed using Prism 5 software
(GraphPad Software, La Jolla, CA, USA). Partial correlation
analysis was performed to test the association between the
presence of diabetes and placental protein expression adjusted for
gestational age using SPSS 20.0 (IBM, USA).
RESULTS

Signs of Placental Hypo-Perfusion and
Increased Vascularisation Are Evident in
T1D and GDM
In order to assess placental morphology in pregnant women with
diabetes, H&E staining was performed on placental sections and
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quantification of syncytial knots performed. Increased numbers
of syncytial knots, aggregates of syncytial nuclei at the surface of
terminal villi (42), can be indicative of the presence of placental
hypoxia. However, advancing gestation is also consistent with an
increased presence of syncytial knots. These structures can
therefore be used to evaluate villous maturity (43). In normal
placentae, approximately 30% of terminal villi have syncytial
knots, whilst a higher percentage of syncytial knots is associated
with uteroplacental malperfusion (44). In twelve out of fourteen
placental samples from pregnant women with diabetes (T1D and
GDM), an increased number of syncytial knots was observed
compared to healthy pregnancies [Figures 1 (A; T1D, n=8,
p<0.05), B; GDM, n=6, p<0.05)]. Placental syncytial knots
were positively correlated with T1D (r=0.619, p=0.024), which
remained significant when adjusted for gestational age (r=0.66,
p=0.02). Although syncytial knots were positively correlated with
GDM (r=0.781, p=0.013), this correlation became non-
significant when correcting to gestational age (r=0.459,
p=0.252). Moreover, in all fourteen placental samples from
diabetic pregnancies (T1D and GDM), a general increase in
villous vascularity was observed, often associated with villous
immaturity. This suggests that there is an increased number of
capillaries and macrophages with the presence of fluid within the
villous structure, which is a well-recognised feature of maternal
diabetes (Figures 1C; T1D, D; GDM) (45). Furthermore,
overstimulated placental angiogenesis can lead to impairment
of the integrity of the vascular system and increased resistance to
Frontiers in Endocrinology | www.frontiersin.org 4
blood flow leading to hypoxia and the observed syncytial knots;
consistent with the observed increased pro-angiogenic and
reduced anti-angiogenic factors in these tissues (22). No
differences in calcification were observed between diabetic and
healthy placentae.

Placental FKBPL and SIRT-1 Expression Is
Reduced in T1D or GDM
Placental samples were collected from 14 pregnant women, six of
whom developed GDM and eight of whom had pre-existing
T1D. Control placental samples (n=8) were collected from
healthy pregnant women matched for BMI and age, and foetal
sex. Baseline characteristics are shown in Table 1. No statistically
significant differences in age, parity, BMI, blood pressure, foetal
sex or MOD were noted between any of the study groups
compared to their matched controls. However, gestational age
at delivery was lower in T1D and GDM patients compared
to controls.

To assess the role of FKBPL and SIRT-1 in pregnancies
complicated with diabetes, protein expression of FKBPL and
SIRT-1 within placental samples collected from pregnant
women with T1D or GDM was compared to controls, matched
for age, BMI, and foetal sex. Our results demonstrated significant
downregulation of FKBPL protein expression within placental
sections of T1D patients compared to healthy controls (Figure 2A,
n=8, p<0.05). FKBPL placental expression was negatively
correlated with T1D (Table 2, r=-0.581, p=0.037), which
A B

C D

FIGURE 1 | Signs of placenta hypoxia is evident concomitantly with increased levels of villous vascularity in diabetes. Paraffin-embedded placental sections were
stained with H&E with 2 separate fields/section imaged at 4x magnification. The number of syncytial knots which are aggregates of syncytial nuclei at the surface of
terminal villi (black spots indicated by arrows) are increased in placental samples from women with T1D (A) or GDM (B) compared to healthy controls (T1D, n=8, GDM,
n=6 unpaired t-test, *<0.05). Villous vascularity (indicated by increased red staining) is abundant in T1D (C) and GDM (D) compared to healthy controls.
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remained significant when correcting for gestational age (Table 2,
r=-0.65, p=0.022). SIRT-1 protein expression remained the same
within the placental sections in the presence of T1D compared to
controls (Figure 2B, n=8). No significant correlation was observed
between placental SIRT-1 expression and T1D (Table 2, r=-0.428,
p=0.145), however this correlation became borderline significant
when adjusted for gestational age (Table 2, r=-0.578, p=0.049).
Interestingly, PlGF protein expression was upregulated in
placentae collected from women with pre-existing T1D (Figure
2C, n=8, p<0.05) with a similar pattern observed for VEGF-R1
protein (Figure 2D, n=8, p<0.05). PlGF expression in the placenta
was positively correlated with T1D (Table 2, r=0.7, p=0.008),
which remained significant when correcting for gestational age
(Table 2, r=0.611, p=0.035). Similarly, VEGF-R1 expression was
positively correlated with T1D with borderline significance (Table
2, r=0.551, p=0.051), however after adjusting for gestational
age, this correlation was statistically significant (Table 2,
r=0.643, p=0.024).

In the presence of GDM, placental FKBPL protein expression
remained unchanged compared to healthy controls (Figure 3A,
n=6, GDM; n=3, controls) with non-significant negative
correlation (Table 2, r=-0.059, p=0.88), without further
improvement after correcting for gestational age (Table 2,
Frontiers in Endocrinology | www.frontiersin.org 5
r=-0.657, p=0.077). GDM led to reduced SIRT-1 protein
expression in the placenta (Figure 3B, n=6, p<0.05). SIRT-1
expression was negatively correlated with GDM (Table 2, r=-
0.964, p=0.000), which remained significant after adjusting for
gestational age (Table 2, r=-0.92, p=0.001). However, in contrast
to T1D and similar to FKBPL, placental PlGF and VEGF-R1
protein expression remained unchanged in the presence of GDM
compared to controls (Figure 3; C, PlGF; D, VEGF-R1). There
was no significant correlation between PlGF expression and
GDM (Table 2, r=0.358, p=0.345), which remained non-
significant after correcting the values to gestational age (Table
2, r=0.137, p=0.746). Similarly, the correlation between VEGF-
R1 expression and GDM within the placental sections was not
significant (Table 2, r=0.584, p=0.098) however, there was a
significant positive correlation once adjusted for gestational age
(Table 2, r=0.825, p=0.012).

FKBPL and SIRT-1 Protein Expression Are
Downregulated in Response to High
Glucose and Low Oxygen in ACH-3P
Trophoblast Cells
Having demonstrated that FKBPL and SIRT-1 are downregulated,
in the presence of T1D or GDMwithin the placentae, respectively,
collected following delivery, we wanted to investigate their
regulation by diabetic environment early in pregnancy. For this
purpose, we used a custom-made first-trimester trophoblast cell
line, ACH-3P, generated by fusing primary first trimester
trophoblasts with the choriocarcinoma cell line, AC1-1, so
thereby closely resembling primary extravillous trophoblasts (40,
41). In order to mimic conditions associated with early pregnancy
and placental development, ACH-3P cells were first exposed to
varying oxygen (O2) concentrations (21%, 6.5% and 2.5%), similar
to oxygen tension observed in the first trimester during placental
development (6.5%, 2.5%) (46–48). To investigate the effect of a
diabetic environment on FKBPL and SIRT-1 protein expression,
ACH-3P cells were also exposed to high glucose (25 mM D-
glucose) or normal glucose concentration (5 mM D-glucose + 20
mM Mannitol) in the presence of varying oxygen levels (21%,
6.5% and 2.5%) to mimic hyperglycaemic conditions in the first
trimester of diabetic pregnancy. The effect of varying oxygen
concentrations in ACH-3P cells was observed between 21% and
2.5% O2 in relation to downregulated FKBPL and SIRT-1 protein
expression (Figure 4A, n=3, p<0.05), and between 6.5% and 2.5%
O2 in relation to downregulated SIRT-1 protein expression
(Figure 4A, n=3, p<0.05). FKBPL protein expression was not
changed when ACH-3P cells were exposed to high glucose under
normal experimental oxygen conditions (21% O2) (Figure 4B,
n=3). Similarly, SIRT-1 protein expression also remained
unchanged when ACH-3P cells were exposed to the same
hyperglycaemic and normoxic conditions (Figure 4B, n=3).
However, under low oxygen tensions of 6.5% (Figure 4C) and
2.5% O2 (Figure 4D) in high glucose environment', both FKBPL
(n=3, p<0.05) and SIRT-1 (n=3, p<0.05) were downregulated,
suggesting this effect is dependent on low oxygen conditions,
consistent with hypoxia promoting a pro-angiogenic
phenotype (49).
TABLE 1 | Maternal baseline characteristics for pregnant women with type 1
diabetes and gestational diabetes.

T1D (n=8) Control (n=5) p
value

BMI 28.0 ± 6.9 25.9 ± 5.7 0.58
Age 24.6 ± 5.7 28.8 ± 4.8 0.20
sBP 115 ± 8.8 114 ± 8.7 0.92
dBP 73.8 ± 9.1 69.8 ± 24.4 0.36
Gestational age
(weeks)

35.38 ± 0.8 39 ± 1.4 0.009

Foetal sex 2 females 1 female 0.85
6 males 4 males

Parity 5 Nulliparous 2 Nulliparous 0.8
3 Primiparious or

multiparous
3 Primiparous or

multiparous
Mode of delivery
(MOD)

4 SVD 4 SVD 0.23
2 assisted c/s 1 primary c/s
2 primary c/s
GDM (n=6) Control (n=3) p

value
BMI 32.7 ± 8.9 29.34 ± 4.4 0.29
Age 31.8 ± 3.8 27 ± 2.6 0.06
sBP 122.1 ± 8.1 121.6 ± 1.8 0.9
dBP 85.3 ± 6.8 78.3 ± 8.1 0.16
Gestational age
(weeks)

36.8 ± 1.2 39 ± 0 0.02

Foetal sex 2 females 3 males 0.17
4 males

Parity 2 Nulliparous 2 Nulliparous 0.29
4 Primiparous or

multiparous
1 Primiparous or

multiparous
Mode of delivery
(MOD)

5 SVD 2 SVD 0.63
1 primary c/s 1 primary c/s
Data is presented as mean ± SD, two tailed paired Student’s t-test. Foetal sex was
calculated by assuming female is zero and male is one. Mode of delivery was calculated by
assuming SVD is zero, assisted c/s is one, and primary c/s is two. BMI, Body mass index;
sBP- Systolic blood pressure; dBP, Diastolic blood pressure; SVD, spontaneous vaginal
delivery; c/s, caesarean section.
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FKBPL Plays a Key Role in Regulating
Endothelial Cell Angiogenic Potential
in Hyperglycaemia
To determine whether overexpression of FKBPL in hyperglycaemic
and normal experimental oxygen (21% O2) conditions would
restore normal angiogenesis in diabetic pregnancies, HUVECs
were treated with a FKBPL overexpressing plasmid (pFKBPL) or
empty vector control plasmid (pCMV3) for 24 h before being
plated in Matrigel in the presence of high glucose media (30 mM)
or normal glucose media (5.5 mM + 24.5 mMMannitol) for 24 h.
The number of junctions and branches formed was lower with
FKBPL overexpression, consistent with its anti-angiogenic
properties, in normal glucose conditions compared to empty
Frontiers in Endocrinology | www.frontiersin.org 6
vector control [Figure 5, n=6, p<0.01 (junctions), p<0.001
(branches)]. High glucose environment itself led to a similar
reduction in endothelial cell angiogenic potential [(Figure 5,
n=6, p<0.01 (junctions), p<0.001 (branches)]. Furthermore, when
FKBPL was overexpressed in high glucose conditions, the number
of junctions and branches was further reduced compared to empty
vector high glucose control [(Figure 5, n=6, p<0.01 (junctions),
p<0.05 (branches)]. In addition, the number of junctions and
branches was lower with FKBPL overexpression in high glucose
media compared to FKBPL overexpression in normal glucose
media (Figure 5, n=6, p<0.01). This was performed at normal
experimental oxygen conditions of 21%. High glucose and FKBPL
overexpression appear to have additive effect on inhibition
of angiogenesis.
A B

C D

FIGURE 2 | Placental angiogenic balance is disrupted in T1D. Placental slides from women with T1D versus age, BMI and foetal sex matched controls were stained
with (A) FKBPL, (B) SIRT-1, (C) PlGF and (D) VEGF-R1 primary antibodies, followed by staining with green Alexaflour or red Cy3 secondary antibody. Six images
per slide were taken at 20x magnification and the mean fluorescence quantified using Image J. Representative images inset. FKBPL/PlGF/SIRT-1: unpaired t-test,
n=8; VEGF-R1: Mann-Whitney, *<0.05). ns, non-significant.
TABLE 2 | Adjusted correlations for differences in gestational age between diabetic and healthy placentae.

Samples FKBPL SIRT-1 PIGF VEGF-R1

Pearson
correlation

Correlation
controlled by GA

Pearson
correlation

Correlation
controlled by GA

Pearson
correlation

Correlation
controlled by GA

Pearson
correlation

Correlation
controlled by GA

T1D r=-0.581 r=-0.65 r=-0.428 r=-0.578 r=0.7 r=0.611 r=0.551 r=0.643
p=0.037 p=0.022 p=0.145 p=0.049 p=0.008 p=0.035 p=0.051 p=0.024

GDM r=-0.059 r=-0.657 r=-0.964 r=-0.92 r=0.358 r=0.137 r=0.584 r=0.825
p=0.88 p=0.077 p=0.000 p=0.001 p=0.345 p=0.746 p=0.098 p=0.012
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DISCUSSION

Althoughdifferences at themolecular level betweenGDMandT1D
placentae were demonstrated in our study, both diabetic
phenotypes led to placental hypoxia or malperfusion. Previous
study suggested that GDM and T2D show higher degree of
uteroplacental malperfusion compared to T1D (50), which could
be due to differences in sample sizes between the studies or different
patient cohorts. In this study, we demonstrated that expression of
the key proteins in placental angiogenesis, FKBPL, SIRT-1, PlGF
and VEGF-R1 (31, 34, 51–53), is dysregulated in pregnancies
complicated by diabetes with differential molecular changes
observed between GDM and T1D. This is the first report to
demonstrate a role for FKBPL in diabetic pregnancies, showing
reduced expression of FKBPL inT1Donly.We also show that PlGF
and VEGF-R1 are upregulated in T1D, which represents an
overstimulated but aberrant angiogenesis profile, also supported
by placental histology results from diabetic pregnancies. Immune
adaptation during pregnancy is essential to facilitate optimal
conditions for foetal development and preparation for delivery
and lactation (54). Given the fact that T1D is an autoimmune
disease, several studies suggested that the immune adaptation is
disturbed in pregnant women with T1D in addition to chronic
inflammation, increasing the incidence of pregnancy complications
including preeclampsia (55–57). As discussed in the introduction,
FKBPL is a protein member of the immunophilin family with
Frontiers in Endocrinology | www.frontiersin.org 7
important roles in immune regulation (58). Furthermore, FKBPL
was described recently as a regulator of inflammation and vascular
integrity viamodulatingNF-kB signalling (59).Our results revealed
that FKBPL expression is reduced in T1D placentae suggesting that
FKBPLmay also have a role inmodulating immune adaptation and
inflammation in this setting. This should be explored further in
future studies. No changes in FKBPL, PlGF and VEGF-R1 protein
expression were observed in GDM cohort, which could be due to a
low number of samples, particularly controls, in this group (n=6,
GDM and n=3, healthy controls) given that there was a trend
observed with FKBPL and VEGF-R1.

While SIRT-1 expression was not affected by T1D, it was
significantly downregulated in the presence of GDM. A large
body of evidence suggests that SIRT-1 regulates glucose and lipid
metabolism, in addition to inflammatory responses,
gluconeogenesis, and the levels of reactive oxygen species,
which together contribute to the development of insulin
resistance (60–62). Previous studies showed that SIRT-1
expression or activity is reduced in people with T2D, GDM, or
metabolic syndrome, which was also associated with endothelial
dysfunction (63, 64). Our work also validates these previous
findings that SIRT-1 is a key pathway affected by GDM (65). In
addition, the role of SIRT-1 in trophoblast function, important
for placental development has been demonstrated before (66).
Taken together, SIRT-1 might have a role in improving placental
development during GDM.
A B

C D

FIGURE 3 | Placental angiogenic balance is disrupted in GDM. Placental slides from women with GDM versus age, BMI and foetal sex matched controls were
stained with (A) FKBPL, (B) SIRT-1, (C) PlGF and (D) VEGF-R1 primary antibodies, followed by staining with green Alexaflour or red Cy3 secondary antibody. Six
images per slide were taken at 20x magnification and the mean fluorescence quantified using Image J. Representative images inset. SIRT-1: Mann-Whitney test;
n=6, *<0.05.
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Furthermore, we demonstrated in relevant in vitro models
that FKBPL and SIRT-1 proteins are reduced in both the
presence of hyperglycaemia and lower oxygen tension (relevant
for placental development) that could have adverse effects on
trophoblast function and placental development (35). It is
possible that oxidative stress could have a role in regulating
FKBPL and SIRT-1 in these conditions and this should be
explored in the future. This cell culture model in the presence
of high glucose does not differentiate between these two
phenotypes of diabetes (T1D and GDM), although
hyperglycaemia in the first trimester of pregnancy is present
more often in T1D. FKBPL showed a critical role in endothelial
angiogenic potential in both normal and high glucose
environment. This is important as the placenta is a highly
vascularised organ with a crucial role in supporting growth
and development of the foetus (19, 67). Controlled
angiogenesis is key for normal placental development during
pregnancy and any aberrant changes in angiogenic balance are
closely associated with development of pregnancy complications
such as preeclampsia. Dysregulation in FKBPL, SIRT-1, PlGF
Frontiers in Endocrinology | www.frontiersin.org 8
and VEGF-R1 demonstrated in this study, albeit with differential
regulation in T1D or GDM, indicate the presence of angiogenic
imbalance in pregnancies complicated by diabetes involving
likely different mechanisms. Further studies should investigate
how this affects trophoblast function and placental development.

Our previous study using FKBPL knockdown mice
demonstrated strong pro-angiogenic phenotype with early
signs of endothelial dysfunction (31). Findings from this study
support an anti-angiogenic role of FKBPL in endothelial cells,
however our data also suggest that low levels of endothelial
FKBPL could be beneficial in diabetic pregnancies. This is
because high levels of FKBPL appeared to cause further
restriction of angiogenesis in hyperglycaemic conditions. This
occurs despite reduced levels of FKBPL suggesting FKBPL
overexpression involves other compensatory mechanisms. The
effect of FKBPL overexpression on SIRT-1, VEGF-R1 and PlGF
would have been useful to determine in these settings. Further
investigations need to be conducted to better understand the
mechanisms and effectsot FKBPL on the integrity of endothelial
barrier in high glucose or diabetic environment. Moreover,
A B

C D

FIGURE 4 | FKBPL and SIRT-1 protein expression is reduced in ACH-3P cells in high glucose conditions in the presence of low oxygen levels. ACH-3P cells were
exposed to high glucose HG, (25mM) in the presence of varying oxygen (O2) conditions for 24 h before protein was extracted and Western Blotting performed.
(A) FKBPL and SIRT-1 protein expression is reduced by low oxygen (2.5%) conditions at normal glucose concentration. (B) FKBPL and SIRT-1 protein expression
remained unchanged in normal experimental oxygen conditions in the presence of high glucose compared to normal glucose. (C) FKBPL and (D) SIRT-1 protein
expression was reduced in high glucose conditions at 6.5% and 2.5% O2 compared to normal glucose conditions at the same oxygen levels. Protein expression
was normalised to GAPDH. (n=3, (A) one-way ANOVA with Bonferroni post-hoc test’ (B–D) unpaired t-test, *<0.05).
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SIRT-1, an important mediator of endothelial function, has been
previously reported to be decreased in diabetes and associated
with endothelial dysfunction (68), further supporting the
presence of endothelial dysfunction in pregnancies complicated
by diabetes potentially due to reduced levels of SIRT-1 or FKBPL.
Hypoxia is a pro-angiogenic stimuli and the link between
hypoxia and VEGF is well established (69). In pregnancies
complicated by T1D or GDM, there is an increase in the
expression levels of angiogenic growth factors perhaps as a
result of compensatory angiogenesis. Vascular endothelial
growth factor (VEGF) has been shown to increase as a result
of hypoxia, which has the potential to impair integrity of the
maternal and foetal vascular system (22, 70). Based on protein
expression assays, higher levels of VEGF were detected in
diabetic placentae compared to healthy placentae, indicative of
hypervascularisation in diabetic placenta and suggesting that
hypoxia is likely present in diabetic placentae (70, 71). This was
confirmed in an in vivo model of GDM showing that hypoxia
inducible factor-1a (HIF-1a) and VEGF levels were significantly
higher in placentae in the presence of hyperglycaemia (72). As
VEGF expression levels increase in the placenta in the presence
of diabetes, angiogenesis and chorionic villous branching are
stimulated offering larger surface area for nutrient uptake and
Frontiers in Endocrinology | www.frontiersin.org 9
allowing higher amounts of glucose to cross the placenta.
Consequently, this leads to foetal hyperglycaemia and
hyperinsulinemia (73). Furthermore, increased angiogenesis
and chorionic villous branching can cause higher blood flow
resistance and, potentially, higher maternal blood pressure that
may lead to gestational hypertension and/or preeclampsia (22).
Previous studies demonstrated that T1D and GDM can increase
the risk of preeclampsia up to 4-fold (74–76). Our findings
indicate that in diabetic placentae, there is an increase in
syncytial knots indicative of hypoxia, in association with
increased placental vascularity and immaturity. This could
potentially be linked to increased PlGF and VEGF or decreased
FKBPL or SIRT-1 expression as demonstrated in our study,
promoting development of immature and leaky capillaries in the
placenta (77). Considering that FKBPL was downregulated in
T1D placentae, and that angiogenic potential was further
reduced with FKBPL overexpression in high glucose
conditions, this may suggest that low levels of FKBPL in
diabetic placentae might be protective. However, the additive
inhibitory effect on angiogenesis by high glucose and FKBPL
overexpression appears to involve independent mechanisms.
This needs to be explored further perhaps in the absence of
growth factors within the media as these can also affect protein
A B

FIGURE 5 | Angiogenic potential is further reduced with FKBPL overexpression in high glucose conditions in HUVECs. The number of (A) junctions and (B) branches
was quantified following FKBPL overexpression in HUVECs for 24 h. The cells were stained with calcein stain, before being plated in Matrigel and exposed to high
glucose (HG, 30 mM) or normal glucose (NG, 5.5 mM) media for 24 h. Six images/well were taken using a DMi8 microscope; representative images are shown inset.
Images were analysed based on the number of junctions and branches formed using ImageJ angiogenesis macros. (n=6, *<0.05, **<0.01, ***<0.001, One-way ANOVA,
followed by Bonferroni multiple comparison test).
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expression. We have previously shown in hypoxia (1% oxygen)
that overexpression of FKBPL restores normal angiogenesis (34),
which is not the case in high glucose conditions.

Trophoblast migration and invasion represent key processes
driving placental development, particularly during remodelling of
spiral uterine artery in pregnancy (78). We have previously shown
that the FKBPL plasma levels are reduced before the onset of
preeclampsia (34) and that low FKBPL levels lead to vascular
dysfunction (31) hence downregulation of FKBPL in T1D may
lead to vascular dysfunction and preeclampsia. This should be
explored in the future. In this study, we demonstrated that FKBPL
expression in ACH-3P first trimester trophoblast cells is
downregulated by varying lower oxygen levels, recapitulating
both normal and hypoxic conditions of the first trimester during
placental development (35). The observed reduction in FKBPL
levels could therefore play a role in promoting migration and
invasion of trophoblast cells. We have previously shown that
overexpression of FKBPL inhibited migration and invasion of
cancer cells (25, 79). Considering that hyperglycaemia has the
potential to decrease trophoblast invasion (80), FKBPL expression
was found to be reduced in high glucose conditions, but only in the
presence of low oxygen levels, which suggests that physiological
normal levels of FKBPLmay be important in determining primary
trophoblast invasion during the first trimester of pregnancy in
women with diabetes.

The limitations of this study include the small number of
placentae and differences in gestational age between the groups.
Nevertheless, using adjusted correlations we accounted for these
limitations. We were unable to obtain information on
medication for women with GDM, which is another limitation
of our study. Nevertheless, we also demonstrated similar findings
in terms of FKBPL and SIRT-1 regulation using our in vitro
models of first trimester trophoblasts and endothelial cells in
high glucose environment representative of diabetic pregnancies.
However, our in vitro model cannot differentiate between GDM
and T1D entirely. The effect of FKBPL overexpression in high
glucose endothelial cell environment on other angiogenesis-
related markers was not determined in this study.

In conclusion, placental FKBPL and SIRT-1 expression
appears to be downregulated in response to diabetes in T1D
and GDM, respectively, as well as following exposure to high
glucose in trophoblast cells only in low oxygen conditions. This
might suggest that carefully restoring FKBPL and SIRT-1 to
normal physiological levels in diabetic conditions may reduce
Frontiers in Endocrinology | www.frontiersin.org 10
hyper-vascularisation early in pregnancy, with a potential to
prevent subsequent pregnancy complications induced
by impaired placental growth. The FKBPL’s effect and
mechanism on endothelial cell angiogenesis, in association
with placental growth, in high glucose environment needs to
be deciphered further.
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