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Abstract. This paper addresses the problem of detecting natural con-
taminants in freshly shorn wool fleece in RGB images using deep learning-
based semantic segmentation. The challenge of inconsistent annotation
is overcome by learning the probability of contamination as opposed to
a discrete class. From the continuous value predictions, contaminated
regions can be extracted by selectively thresholding on the probability
of contamination. Furthermore, the imbalance of the class distributions
is accounted for by adaptively weighting each pixel’s contribution to
the loss function. Results show that the adaptive weight improves the
prediction accuracy and overall outperforms learning an approximated
representation by quantising the distributions.
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1 Introduction

Wool handling is a highly manual and repetitive task. A major bottleneck in
this activity is the identification of contaminants [6] that must be removed by
hand, known as skirting (Fig. 1). Automation of this process can improve both
efficiency and accuracy, which is anticipated to increase the productivity and
thus translate to significant savings in cost for the wool growers.

A vision system that identifies contaminants in wool is a crucial aspect of the
automation process. The system should capture images and specify the regions
that contain contaminants and those that have clean wool. Previously studies
on contaminant detection in wool from monocular cameras [25, 18] consider non-
organic substances such as fibres from packing material, fertiliser bags or hay
bale twine. These methods use thresholding to identify image pixels with colour
properties different to the background wool. The natural contaminants that are
removed from fresh wool during skirting, such as urine-stain, dung, pigmenta-
tion/medullation and vegetable matter, are less distinguishable by their colour
and, therefore, prior work for an on-farm system is limited.
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Fig. 1: The manual skirting process of contaminated wool fleece [1]. Left: Two
wool handlers move along the edge of the fleece. Right: Close up of the hand
position and gripping.

Machine learning, in particular deep learning, has profoundly improved the
performance of visual perception [8] for a broad range of applications such as
recognition, classification and segmentation [20]. Recently, deep learning has
been applied in the related task of foreign fibre detection in cotton [21, 22]. We
conjecture that the application of deep learning to contaminant detection in wool
fleece will not only deliver highly accurate results but also generalise to more
difficult scenarios, where colour differentiation, as in [25, 18], is unsuited.

This work addresses the challenge of learning to identify natural contami-
nants in wool fleeces from RGB images. A strong prerequisite for this task is
access to a large, annotated dataset, which constitutes pixel-level annotation of
the contaminated wool. Unfortunately, annotation may be inconsistent due to
the difficulty of identifying contamination in images. Furthermore, some con-
taminants are continuous in nature – contamination is in the spectrum from
“light” to “heavy”. As such, annotators may disagree on what parts of the fleece
should be removed. The end result is that multiple annotations are presented
to the learning algorithm from which a meaningful output should be derived;
see Fig. 2. Consequently, our system learns to predict the continuous blending
between the classes based on noisy pixel labels. More specifically, a deep learning
architecture for pixel-wise classification is employed to predict the probabilities
of each class. We propose to weight the influence of each pixel in the loss function
according to the frequency of the distribution in the dataset by extending the
formulation in [13].

We report the performance of deep learning-based semantic segmentation
on newly collected and annotated datasets that represent two scenarios: (1)
Delineation around the edge of wool fleeces that separates the portion that is
skirted and (2) Bathurst burr (a species of weed) contamination on fleece off-cuts.
In comparison to predicting a quantised set of classes, the probabilistic output
is more general. We show how adjustment on the contaminant threshold can be
set to promote more aggressive or conservative contaminant removal, which is
highly useful in industry as external factors, such as the daily market value or
lot size, contribute to the degree at which wool handlers remove contaminants.
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Fig. 2: Examples of wool contamination and annotation. Dubbo dataset on top
row and Bathurst burr dataset on bottom row. Left: Inconsistent annotations
of contaminated wool, background and vegetable matter. Middle: Discrete class
representation from the combinations of the annotations. Right: Probabilistic
prediction of each class encoded to RGB.

The remainder of this paper is organised as follows. Sec. 2 discusses related
work. In Sec. 3, we present our approach for predicting class probabilities from
noisy labels. Sec. 4 introduces the new datasets of wool contamination. Sec. 5
presents the experiments and finally in Sec. 6 we conclude the paper.

2 Related Work

2.1 Contaminant Detection in Wool

Detection of contaminants in wool from vision sensors has been a topic of research
in wool technology for decades [4]. In this early work, an NIR camera observes the
wool and then PCA with soft independent modelling of class analogies is applied
to discriminate between polymeric material (polyethylene and polypropylene)
and contaminant-free wool. More recently, Zhang et al. [25] present a system
that uses RGB cameras, in which the polypropylene contaminants are identified
through global and local adaptive threshold in the RGB and HSV colour spaces.
This vision system is integrated with a mechanical system in [24] to additionally
remove and sort the contaminants in real time. Similarly, Su et al. [18] develop
an online system to detect and remove contaminants in wool. As in [25, 24],
thresholding on the RGB values identifies the contaminants.

While these systems show strong results, they focus on detecting contami-
nants that are vastly different to the wool. The approaches do not detect natural
contaminants, which appear as stains or more subtle colour/textural changes
compared to plastic material. A more promising direction is the use of modern
deep learning techniques, which has been applied to the related task of detecting
foreign fibres in cotton [16, 21, 22]. Indeed, this task has attracted significant at-
tention that dedicated datasets have been compiled for developing and training
learning algorithms [12].
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2.2 Semantic Segmentation

Within the computer vision community, the task of assigning a class label to
every pixel in the image is known as semantic segmentation. This differs from
classification for which an entire image is assigned a single class label. In the
context of deep learning, seminal work by Long et al. [10] adapted existing
convolutional neural networks (CNNs) for classification to the task of semantic
segmentation by converting them to fully convolutional architectures through
the replacement of the classification layer(s) with an upsampling convolutional
layer. Ronnenberg et al. [13] introduce U-Net, which extends [10] by mirroring
the convolution structure in the upsampling stage with consecutive convolu-
tional layers. The larger number of feature channels in the decoder, as compared
to [10], propagates contextual information to higher resolution layers, yielding
more precise segmentation with fewer training images. A plethora of adapta-
tions and modifications now exist, which is motivated by the broad range of
applications that this technique can be applied, e.g., autonomous driving [7, 15].

Supervised learning from noisy pixel-wise labels is a growing trend because
it is often difficult to avoid annotation error in complex, real-world data [5,
17]. Zheng and Yang [26] show that incorporating predicted uncertainty in the
optimisation procedure leads to better domain adaptation when learning from
pseudo labels. In similar work, noisy pre-segmentation masks in the target do-
main are refined by a label cleaning network that is trained jointly with the
segmentation network using the same feature encodings [9]. Similar to our work,
the problem of noise at boundaries (i.e., label transition) due to poor image
resolution or annotator error is addressed in [2]. By introducing a pixel-weight
that is determined by the pixel’s distance to its nearest pixel of another class,
the loss function is less affected by potential incorrectly labelled pixels. Cheng et
al. [3] train a GAN to both revise spatially noisy labelling and output a label
weight that, similar to [2], reduces the influence of untrustworthy samples. This
method, however, requires access to the underlying ground truth during training
in order to learn the mapping between clean and noisy samples.

3 Semantic Segmentation from Noisy Annotations

3.1 Problem Definition

Classical semantic segmentation assumes a dataset D = {X ,Y} that consists of
images X with corresponding labels Y. Each pixel x ∈ Ω has a corresponding
unique label yx belonging to one of the known set of classes C = {1, . . . , C}. The
task during inference is to predict the label yx for each x for any test image.

In this work, labelled images are provided by N annotators, in other words,
D̃ = {X ,Y1, ...,YN}. Each x is assigned a set of potentially different labels, thus
no single class can be assumed. Instead, each pixel has a corresponding probabil-
ity distribution over the classes C. Formally, the dataset consists of images where
each x ∈ Ω has an associated probability distribution p(x) = F (y1x, ..., y

N
x ) where
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F : ZC×C → RC maps the set of annotated labels to a probability distribution
over C such that ∑

c∈C
p(xc) = 1, (1)

is satisfied where xc ∈ x are the individual class probability values. The task
during inference is to predict the probability p(x) for each x for any test image.

3.2 Learning Probabilistic Output

Pixel-wise prediction using deep convolutional networks was first introduced by
Long et al. [10]. The fully convolutional network learns a pixel-to-pixel mapping
through an encoder (the feature extraction layers of a classification CNN) and
a decoder to upsample the feature map to the original input resolution. The
output is a class prediction for each pixel and the parameters are optimised
according to a classification loss applied over every pixel in the input image.
Numerous modifications and enhancements have been applied to extend this
basic principle. A good discussion is given in [11].

Our work learns to predict a distribution instead of a discrete class, which is
trivially achieved by using the softmax activation as final layer. The activation
function outputs the value of each class zc ∈ z in the range [0, 1]. Eq. (1) is
satisfied due to the normalisation in the denominator

σ(z)c =
ezc∑
c∈C e

zc
. (2)

A variety of loss functions for real value regression can be applied to minimise
the difference between the input probability distributions and the corresponding
predictions. Prior work for classical semantic segmentation show that the issue of
class imbalance should be addressed by assigning a weight to each class [13, 19]
so that classes represented by very few samples have more contribution during
learning. As such, the more common classes do not dominate the optimisation,
enabling less common classes to also be precisely learned. For the discrete class
scenario, the inverse of the volume of each class is used as the weight. For the
probabilistic scenario, computing the weight is less straight forward because it
is uncountable.

We propose a weighting scheme based on the frequency of the probability
distribution for each pixel in the ground truth images. For each pixel x, the
weight is computed by

w(x) =
∏
c∈C

fc (p(xc))
−γ

, (3)

where fc : R→ R maps a pixel’s ground truth probability of class c to a frequency
value and γ ≥ 0 is a constant. The functions fc are approximated by fitting a
Gaussian process (GP) to the histogram of the counts per probability value. We
use 10 bins and a GP with the Matérn kernel with length scale 1.0 and smoothing
factor 1.5.
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Fig. 3: Acquisition of wool datasets (camera indicated by c). Left: Camera
mounted on trolley that is pushed parallel to freshly shorn wool fleeces. Right:
Plate mounted on linear actuator that moves wool samples below static camera.

The weights are applied to each pixel when computing the loss during train-
ing. For example, the pixel-wise L2 loss (i.e., mean squared error)

L2 (Ω) =
∑
x∈Ω

1

|C|
∑
c∈C

(p̂(xc)− p(xc))2 , (4)

becomes

Lw2 (Ω) =
∑
x∈Ω

w(x)

|C|
∑
c∈C

(p̂(xc)− p(xc))2 , (5)

where p̂(xc) is the predicted probability for class c of pixel x ∈ Ω. Similar
modifications can be applied to other losses such as the L1 or Huber loss.

4 Wool Datasets

Datasets of RGB images of wool fleece were collected to evaluate our proposed
work. A Flir Blackfly S USB3 RGB camera3 was used with a resolution of
1440×1080 pixels. Example images with annotation are provided in Fig. 2.

The Dubbo dataset consists of images of freshly shorn Merino fleece collected
on site in Dubbo, NSW, Australia. The camera was mounted on a trolley that
was pushed by a human operator along the edge of the skirting table; see Fig. 3
(left). Scanning was conducted at a slow pace to minimise motion blur. In total,
five fleeces were scanned four times, i.e., once per edge. For each scan, images
were hand selected such that visual overlap was minimised, resulting in a dataset
consisting of 126 images. The skirting lines were annotated by two expert wool
handlers. As discussed, the annotations do not necessarily agree due to differing
opinions and the difficulty to identify the boundary between the “good” and
contaminated wool in the images. In addition, the background was also anno-
tated. This was performed by non-wool handlers as domain experience was not

3 https://www.flir.com.au/products/blackfly-s-usb3/
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required. However, disagreement also exists in this annotation due to human er-
ror or ambiguity, e.g., thin wool that appears translucent over the background.
The final result was a set of masks, from each annotator, that depicts the regions
of the images that are either good wool (above the skirting line) or background
(below the background line). The remaining class of contaminated wool is de-
rived from the unlabelled pixels of the merged masks.

The Bathurst burr dataset consists of images of Merino fleece off-cuts. Each
off-cut was placed on the rig in Fig. 3 (right), which moves the wool underneath
the downward-facing statically mounted camera. Ten pieces of wool were scanned
and for each scan, three images were hand selected to minimise image overlap.
Due to the small number of images, 320×320 crops were extracted from the full
images to yield a total of 380 images. In this dataset, the wool pieces are taken
from different parts of the fleece and contain heavy Bathurst burr contamination.
Each annotator was requested to label the instances of burr that they were
confident about as well as those that they were uncertain about, by assigning a
different label. A total of five people performed the annotation.

The probabilistic annotation was obtained by merging the masks of each im-
age. Then, for each pixel, the number of class votes were counted and normalised
to obtain the probability distribution. For the Bathurst burr annotation, each
pixel assigned the uncertain label contributed a vote of 0.5.

Due to the small size of the datasets and to avoid samples from the same
fleece or piece of wool appearing in both the training and test sets, we provide
multiple splits for k-fold cross-validation. For the Dubbo dataset, for each fold,
one fleece is held out for testing while the remaining four fleece are used for
training. For the Bathurst burr dataset, pairs of scans, i.e., 1-2, 3-4, ..., 9-10, are
held out for testing and all remaining scans are used for training.

5 Experiments

5.1 Implementation Details

This work is implemented in PyTorch using the segmentation models library [23].
We use the U-Net architecture [13] with MobileNet v2 encoder [14] as this setup is
lightweight, thus better for our datasets with small numbers of training images.
Models are pre-trained on ImageNet then trained on the wool datasets with
a batch size of 4 for 30 epochs with an initial learning rate of 10−3 that is
divided by 10 at epoch 15 and 25. All layers use ReLu activation except the
last layer that uses softmax activation. Batch normalisation is applied between
the convolutional and activation layers in the decoder. Images in the Dubbo
dataset are input to the network with the dimension 640×640 by padding the
shorter dimension and resizing. Images in the Bathurst burr dataset are input
at the patch resolution of 320×320. All training and testing is performed on an
NVIDIA RTX 2080 Ti.
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Table 1: Mean KL divergence for subsets of pixels for varying values of γ in
Eq. (3) applied to L2 loss. γ = 0.0 is equivalent to the unweighted loss in Eq. (4).

Dataset Dubbo Bathurst burr

γ 0.0 0.1 0.5 1.0 0.0 0.1 0.5 1.0

good 0.007 0.007 0.012 0.020 0.001 0.001 0.002 0.004
cont. 0.044 0.039 0.072 0.148 0.196 0.093 0.086 0.075
mix 0.072 0.057 0.028 0.014 0.045 0.043 0.034 0.025
all 0.015 0.013 0.020 0.045 0.004 0.003 0.003 0.005

5.2 Results and Discussion

Weighted Loss Function The performance of the proposed weighting scheme
for various values of γ in Eq. (3) applied to the L2 loss in Eq. (5) is provided
in Tab. 1. We report the mean Kullback–Leibler (KL) divergence for fully-
uncontaminated (good), fully-contaminated (cont.) and partially-contaminated
(mix ) pixels. The bottom row shows overall performance (all). Note that fully-
uncontaminated pixels are significantly more common than fully- or partially-
contaminated pixels. For both datasets, increasing γ improves the predictions
of the contaminated and mixed pixels at a sacrifice in performance on the good
pixels. This is expected because larger γ means a more extreme difference in the
weights between the dominant and less common distributions. With γ = 1.0,
although the gains on the contaminated and mixed pixels are significant, the
reduction of the more present good pixels results in worse overall performance
compared to no weighting scheme (i.e., γ = 0.0). A smaller value of γ is less
aggressive and strikes a balance, which achieves best performance for all pixels.

Comparison to Classification: We compare the performance of learning to
regress probabilities as opposed to learning a discrete set of quantised classes on
the Bathurst burr dataset. For discrete learning, we create sets of classes that
quantise the probabilities to different resolutions. The dice loss is employed for
learning classification. As shown in Fig. 4, when considering all pixels, the per-
formance between continuous and discrete learning is highly similar. However,
for the pixels that have a mixed class probability distribution, there is a notable
difference. Discrete learning has worst performance when the number of classes
is small. This is because the resolution is insufficient to predict the continuous
values. As the number of classes increases, the performance improves. However,
with even more classes, the performance begins to decrease because the classifica-
tion task is more difficult. Overall, directly regressing the probabilities performs
better than learning any discrete representation.

Flexible Contaminant Detection: An advantage of learning a probabilistic
representation is that the contamination boundary can be flexibly extracted from
a single trained model. An adjustable threshold can be applied such that a dif-
ferent skirting line is generated based on the contour in the predicted probability
map as shown in Fig. 5. This allows more conservative or aggressive contami-
nant removal. With a low probability of contamination, e.g., 25%, the predicted
skirting line follows the region where all annotators agree on contamination. On
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Fig. 4: Performance of learning continuous probabilities by regression in compar-
ison to discretising and learning by classification on the Bathurst burr dataset.
Boxes and error region derived from results of different splits.

Fig. 5: Predicted skirting lines for contamination probability of 25, 50 and 75%
in increasing shade of green. Annotated skirting lines in red and magenta.

the other hand, for a higher contamination probability, e.g., 75%, the predicted
skirting line follows the boundary where at least one annotator indicates con-
tamination. In between the extremes, e.g. 50%, the predicted skirting line is
approximately between the annotated lines.

6 Conclusion

This paper analysed the capability of deep learning-based semantic segmentation
for detecting natural contaminants in wool fleece from RGB images. To account
for the ambiguous annotation, we learned probabilistic outputs rather than dis-
crete class labels. The imbalance of the probability distributions was addressed
by a weighting scheme to bolster the loss function to the less occurring proba-
bilities. Our experiments on two new wool datasets showed that the weighting
scheme improves accuracy and that learning probabilities is more accurate than
learning discrete representations.

In future work we will expand on the datasets as well as incorporate more con-
taminants such as dermatitis, wool rot and other varieties of vegetable matter.
We also plan to investigate the capability of detecting contaminants in hyper-
spectral images. Finally, the vision system will be integrated with a mechanical
system to physically remove contaminants in the automated skirting process.
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