ENERGY EFFICIENT AND LOW-LATENCY COMMUNICATIONS FOR FUTURE WIRELESS NETWORKS

by Tien Thai VU

Dissertation submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

under the supervision of

Principal supervisor: Dr. Diep N. Nguyen and Co-supervisors:

Dr. Hoang Dinh

Prof. Eryk Dutkiewicz

School of Electrical and Data Engineering University of Technology Sydney Sydney, Australia

August 2021

ABSTRACT

The ever-growing number of smart and mobile devices as well as their emerging applications call for novel solutions to address new challenges in energy efficiency and latency requirements. This thesis aims to develop novel protocols, resource allocation algorithms, and network architectures to enable low-latency services for mobile devices and applications (e.g., missioncritical applications in intelligent transportation systems, healthcare, gaming, and virtual/augmented reality applications). Specifically, we first introduce proactive resource allocation approaches to reduce the communications delay in machine type communications. Exploiting the correlation between smart devices (e.g., sensors), we propose an algorithm to proactively allocate uplink resources for these devices, and thereby reducing the expected uplink delay. Second, to address the energy efficiency problem for hardware-constrained devices, we propose a multi-tier task-offloading network architecture. In this novel network architecture, computation tasks from these devices can be offloaded to a network of computation-aiding servers or fog/edge nodes to minimize the energy consumption subject to the delay constraints of services. Because computing resources on fog nodes are usually limited, while task offloading demands from user devices are high, we develop an unprecedented model, allowing fog nodes and a powerful cloud server to collaborate to meet all tasks' requirements. Our experimental results demonstrate that the proposed solution can attain the optimal energy efficiency while meeting strict latency requirements for all devices and computing tasks. Finally, to address the fairness in allocating commu-

nication and computation resources of heterogeneous fog nodes for mobile devices considering diverse requirements (i.e., delay, security, and application compatibility), we adopt the proportional fairness criterion to develop a joint task offloading and resource allocation solution. The experimental results (i.e., fairness indexes, energy benefit, and energy consumption) show that the proposed scheme can attain the maximum proportional fairness in terms of the energy benefit (from offloading to fog nodes).

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Tien Thai VU, declare that this thesis is submitted in fulfilment of the

requirements for the award of the degree of Doctor of Philosophy, in the

School of Electrical and Data Engineering, Faculty of Engineering and In-

formation Technology, at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference of acknowl-

edged. In addition, I certify that all information sources and literature used

are indicated in the thesis. This document has not been submitted for qual-

ifications at any other academic institution.

This research is supported by the Australian Government Research Training

Program and the Ministry of Education and Training (MOET) – Vietnam.

Name of Student: Tien Thai VU

Production Note:

 $Signature\ of\ Student:\ Signature\ removed\ prior\ to\ publication.$

Date: 05 August 2021

ACKNOWLEDGMENTS

First and foremost, I am so much indebted to my beloved wife and children, who are always with me during this course. Completing this Ph.D. degree would not be possible without their love and immense support. I also want to thank my dear parents, sisters, and relatives for their continuous encouragement and support.

I would like to express my sincerest gratitude to my principal supervisor, Dr. Diep N. Nguyen (University of Technology Sydney, Australia), who has helped me through some difficulties during my Ph.D. studies. He has been always encouraged me to strive for excellence in my career. This work would not have been completed without his mentoring, patience, motivation, and unflinching support. Sincere thanks are also extended to my co-supervisors Dr. Hoang Dinh and Prof. Eryk Dutkiewicz for their kindness, support, advice, and encouragement throughout this research.

I also acknowledge the staff of the School of Electrical and Data Engineering as well as the Graduate Research School for their immense support during the difficult time of my studies.

I acknowledge the Vietnamese Government Scholarship (VIED scholarship) for the financial support towards this research. I also acknowledge the UTS-VIED scholarship for the supplement to the VIED scholarship.

Finally, to all my friends, thank you for your advice and encouragement in many times of crisis. Your friendship makes my life a wonderful experience. I cannot list all the names here, but you are always on my mind.

Contents

A	bstra	ct		iii
\mathbf{A}	cknov	wledgr	ments	ix
Ta	able o	of Con	tents	xi
Li	st of	Figur	es	xv
Li	st of	Table	S	xix
Li	st of	Publi	cations	xxi
1	INT	ROD	UCTION AND LITERATURE REVIEW	1
	1.1	Litera	ture Review and Motivations	2
		1.1.1	Low Latency Communications	2
		1.1.2	Energy Efficiency in Fog Computing	3
		1.1.3	Fairness in Fog Computing Resource Allocation	5
	1.2	Contr	ibutions	7
		1.2.1	2D Proactive Uplink Resource Allocation Algorithm for Event-	
			Based MTC Applications	7
		1.2.2	Optimal Energy Efficiency with Delay Constraints for Multi-	
			layer Cooperative Fog Computing Networks	8

xii CONTENTS

		1.2.3	Proportional Fairness for Fog Computing Resource Alloca-	
			tion using Dynamic Branch-and-Bound Benders Decomposi-	
			tion Algorithm	10
	1.3	Organ	ization of the Thesis	12
2	2D	Proac	tive Uplink Resource Allocation Algorithm for Event-	
	Bas	ed MT	CC Applications	15
	2.1	System	m Model	16
	2.2	2D Pr	oactive Uplink Resource Allocation Algorithm	18
		2.2.1	2D Proactive Uplink Resource Allocation	18
		2.2.2	2D Predictive Uplink Resource Allocation Algorithm	21
		2.2.3	Complexity Analysis	21
		2.2.4	Optimal Ring Width d_0	24
	2.3	Perfor	mance Analysis of 2D-PURA	25
	2.4	Nume	rical Results	28
	2.5	Conclu	usion	32
3	Opt	imal E	Energy Efficiency with Delay Constraints for Multi-layer	
	Coc	perati	ve Fog Computing Networks	35
	3.1	System	m Model and Problem Formulation	36
		3.1.1	Network Model	36
		3.1.2	Problem Formulation	40
	3.2	Propo	sed Optimal Solutions	43
		3.2.1	Convexity of Relaxed Problems	43
		3.2.2	Improved Branch and Bound Algorithm	44
		3.2.3	Feasibility-Finding Benders Decomposition	48
		3.2.4	Implementation Protocol and Complexity Analysis	61
	3.3	Perfor	mance Evaluation	64
		3.3.1	Offloading Analysis	64

CONTENTS	xii
----------	-----

		3.3.2	Experiment Setup	65
		3.3.3	Numerical Results	67
	3.4	Concl	usion	77
4	Pro	portio	nal Fairness for Fog Computing Resource Allocation	79
	4.1	System	m Model and Problem Formulation	80
		4.1.1	System Model	80
		4.1.2	Task Execution	81
		4.1.3	Problem Formulation	85
	4.2	Propo	sed Optimal Solutions	88
		4.2.1	Convexity of Relaxed Problem	88
		4.2.2	Dynamic Branch-and-Bound Benders Decomposition	89
		4.2.3	Distributed Solving Subproblems	90
		4.2.4	Cutting-Plane Generation	94
		4.2.5	Solving the Master Problem	95
		4.2.6	DBBD Procedure	101
		4.2.7	Complexity Analysis	103
	4.3	Perfor	mance Evaluation	106
		4.3.1	Experiment Setup	106
		4.3.2	Numerical Results	108
	4.4	Concl	usion	119
5	CO	NCLU	SIONS AND FUTURE WORK	121
	5.1	Innova	ations in this Thesis	121
		5.1.1	Low Latency Communications	121
		5.1.2	Energy Efficiency Fog Computing Resource Allocation	122
		5.1.3	Fairness for Fog Computing Resource Allocation	122
	5.2	Future	e Work	123
		5.2.1	Machine Learning for Proactive Resource Allocation	123

xiv CONTENTS

		5.2.2	Age of Information in Mobile Edge Computing Resource Al-	
			location	. 123
		5.2.3	AI-Empowered Mobile Edge Computing	. 123
		5.2.4	Online Learning to Estimate Parameters for Proactive Re-	
			source Allocation	. 124
\mathbf{A}	Pro	ofs of	Theorems in Chapter 3	125
	A.1	Proof	of Theorem 1	. 125
	A.2	Proof	of Theorem 2	. 125
	A.3	Proof	of Lemma 1	. 126
	A.4	Proof	of Theorem 3	. 126
	A.5	Proof	of Theorem 4	. 126
В	Pro	ofs of	Theorems in Chapter 4	129
	B.1	Proof	of Theorem 5	. 129
	B.2	Proof	of Theorem 6	. 130
	В.3	Proof	of Theorem 7	. 130
	B.4	Proof	of Theorem 8	. 130
	B.5	Proof	of Theorem 9	. 131
Al	obrev	viation	${f s}$	133
Bi	blio	raphy		137

List of Figures

2.1	MTC communications under a cellular network model	18
2.2	2D Predictive resource allocation model	19
2.3	2D Predictive uplink resource allocation algorithm	22
2.4	SR saving due to successful predictions for the 2D-PURA algorithm	
	when the period $\sigma=40$ subframes and the ring-crossing time τ_0 is	
	increased	29
2.5	Uplink resource wastage due to unsuccessful predictions for the 2D-	
	PURA algorithm when the period $\sigma = 40$ subframes and the ring-	
	crossing time τ_0 is increased	30
2.6	Mean uplink delay for the 2D-PURA algorithm when the period $\sigma=$	
	40 subframes and the ring-crossing time τ_0 and the threshold y are	
	varied	31
2.7	A comparison of mean uplink delay for the 2D-PURA algorithm, the	
	1D algorithm, and the standard method when the period $\sigma=40$	
	subframes	32
3.1	Three-layer cooperative fog computing network	37
3.2	Search Tree for the IBBA algorithm with Optimal Solution Selection.	47
3.3	Feasibility-Finding Benders Decomposition Model	50
3.4	Feasibility-Finding Benders Decomposition Procedure	51
3.5	Protocol defining the operation of proposed algorithms	61
	-	

3.6	Percentage of offloaded tasks and error rate as the task complexity	
	α_i is increased	69
3.7	Average consumed energy at mobile devices as the task complexity	
	α_i is increased	69
3.8	Average task processing delay as the task complexity α_i is increased.	70
3.9	Percentage of offloaded tasks and error rate as the delay requirement	
	t_i^r is less strict	72
3.10	Average consumed energy at mobile devices as the delay requirement	
	t_i^r is less strict	73
3.11	Percentage of offloaded tasks and average delay as the backhaul ca-	
	pacity W_j^c increases	74
3.12	Computation time and number of solved intermediate problems in	
	order to find an optimal solution when the task complexity α_i is	
	increased	76
3.13	Computation time and the number of solved intermediate problems	
	to find an optimal solution when the delay requirement t_i^r is less strict.	76
4.1	Three-layer cooperative fog computing network	81
4.2	Dynamic Branch-and-Bound Benders Decomposition	39
4.3	Jain's index and Min-Max Ratio of energy benefits as the number of	
	devices N is increased	10
4.4	Total consumed energy and energy benefits as the number of devices	
	N is increased	10
4.5	Jain's index and Min-Max Ratio of energy benefits as the fog nodes'	
	resources are increased	12
4.6	Total consumed energy and energy benefits as the fog nodes' resources	
	are increased	13
4.7	Jain's index and Min-Max Ratio of energy benefits as the fog nodes'	
	resources are increased while devices' configurations are the same 1	14

4.8	Total consumed energy and energy benefits as the fog nodes' resources
	are increased while devices' configurations are the same
4.9	Jain's index and Min-Max Ratio of energy benefits as the number of
	tasks is increased
4.10	Total consumed energy and energy benefits as the number of tasks is
	increased
4.11	The number of tasks offloaded to each fog node as the number of
	tasks is increased
4.12	The average delay of tasks as the number of tasks is increased 118

List of Tables

2.1	Experimental parameters	28
3.1	Experimental parameters	66
3.2	Complexity and computation times	78
4.1	Categories of tasks according to energy benefits and QoS satisfaction.	84
4.2	Experimental parameters	107

List of Publications

Journal publications

- Tien Thai VU, Diep N. Nguyen, Dinh Thai Hoang, Eryk Dutkiewicz, and Thuy V. Nguyen, "Optimal energy efficiency with delay constraints for multilayer cooperative fog computing networks", in *IEEE Transactions on Communications*, 2021. (related to Chapter 3)
- "Proportional fairness for fog computing resource allocation", in *IEEE Transactions on Mobile Computing*, 2021 (under submission). (related to Chapter 4)

Conference publications

- Tien Thai VU, Diep N. Nguyen, and Eryk Dutkiewicz, "2D proactive uplink resource allocation algorithm for event based MTC applications", in 2018 IEEE Wireless Communications and Networking Conference (WCNC), 2018. (related to Chapter 2)
- Tien Thai VU, Nguyen Van Huynh, Dinh Thai Hoang, Diep N. Nguyen, and Eryk Dutkiewicz, "Offloading energy efficiency with delay constraint for cooperative mobile edge computing networks", in 2018 IEEE Global Communications Conference (GLOBECOM), 2018. (related to Chapter 3)

- Tien Thai VU, Diep N. Nguyen, Dinh Thai Hoang, and Eryk Dutkiewicz,
 "QoS-aware fog computing resource allocation using feasibility-finding benders decomposition", in 2019 IEEE Global Communications Conference (GLOBE-COM), 2019. (related to Chapter 3)
- "Proportional fairness fog computing resource allocation using dynamic branchand-bound benders decomposition algorithm", in 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022 (under submission). (related to Chapter 4)