Laboratory Investigation of Cobalt Regulation in Horses

by Ross Gregory Wenzel

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Professor Philip Doble

University of Technology Sydney Faculty of Science

July 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Ross Gregory Wenzel declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Mathematical and Physical Sciences at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature: Production Note: Signature removed prior to publication.

Date: 6th July 2021.

The main content of the following Chapters has been published in the following peer-reviewed papers:

Chapter 2: Major, D. & Wenzel, R. 2016, 'Commentary on Paper: "Controlling the misuse of cobalt in horses", *Drug testing and analysis*, vol. 8, no. 8, pp. 880-81.

Chapter 4: Bishop, D.P., Blanes, L., Wilson, A.B., Wilbanks, T., Killeen, K., Grimm, R., Wenzel, R., Major, D., Macka, M., Clarke, D., Schmid, R., Cole, N. & Doble, P.A. 2017, 'Microfluidic high performance liquid chromatography-chip hyphenation to inductively coupled plasma–mass spectrometry', *Journal of Chromatography A*, vol. 1497, pp. 64-9.

Wenzel, R., Major, D., Hesp, K. & Doble, P. 2018, 'Determination of Vitamin B12 in Equine Urine by Liquid Chromatography–Inductively Coupled–Plasma Mass Spectrometry', *Journal of Trace Elements in Medicine and Biology*. vol. 50, pp. 634-39.

Chapter 5: Wenzel, R., Major, D., Hesp, K., Hall, E. & Doble, P. 2019, 'Cobalt accumulation in horses following repeated administration of cobalt chloride', *Australian Veterinary Journal*, vol. 97, no. 11, pp. 465-72.

The list of manuscripts is provided in Appendix 9.9.

ACKNOWLEDGEMENTS

I would like to express my gratitude to the following people and organisations: -

My project supervisor Prof. Philip Doble from the University of Technology Sydney for accepting me as a research student, providing valuable advice and allowing me the freedom to pursue projection directions as they evolved.

My employer, New South Wales Health Pathology, for supporting my application for post graduate study and providing study leave and flexible working hours. I also acknowledge my employer's financial support allowing me to present sections of my thesis research at international conferences (*11th International Society of Trace Element Research in Humans Conference,* Dubrovnik, Croatia, 2015 and *16th International Symposium on Trace Elements in Man and Animals*, Saint-Petersburg, Russia, June 2017).

Dr Derek Major, consulting veterinarian, who has been pivotal in shaping this research project; Karly Hesp for her assistance analysing samples; Dr Evelyn Hall, Veterinary Biostatistics, University of Sydney, Camden, for providing statistical interpretations of results; Dr Christine Smith, Managing Director of Agnes Banks Equine Clinic Pty Ltd, for providing access to the test mare herd and facilities, and to the staff of the Clinic, in particular Mark Wiggett, Emily Holden, Kylie Dale and Sandy Wesselink, for assistance in horse handling and sample collection. Dr Paul Milham for his editorial assistance.

My part-time candidature was supported by an Australian Government Research Training Program Scholarship, and the Australian Research Council Linkage Project LP120200079.

Special gratitude is due to my family and friends for their support, understanding and patience.

TABLE OF CONTENTS

CERTIFICATE OF ORIGINAL AUTHORSHIP	i
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	xii
COMMON ABBREVIATIONS	xvi
ABSTRACT	xviii
1. GENERAL INTRODUCTION	1
1.1 Summary	1
1.2 Background and scope	1
1.3 Cobalt – origin, occurrence, and properties	4
1.4 Cobalt as an essential trace element	5
1.5 Cobalt toxicity	8
1.6 Cobalt as a treatment for anaemia	11
1.6.1 Erythropoeitin	12
1.6.2 Hypoxia-inducible factor	14
1.7 Policy on the use of cobalt in sports	16
1.8 Establishment of international threshold values for urine and plasma co	obalt 18
1.9 Study significance	19
1.9.1 Darrel Graham case	22
1.9.2 Rachel Scott case	
1.9.3 Peter Moody case	
1.9.4 Danny O'Brien case	
1.10 Thesis objectives, hypotheses, and hypothesis testing	
1.11 Conclusion	
2. COMMENTARY ON RESEARCH PAPER 'CONTROLLING THE M	MISUSE OF
COBALT IN HORSES'	
2.1 Summary	
2.2 Paper commentary	
2.3 Authors' response	41

	2.4 Limitations of the statistical approach presented in the paper titled 'Interlabor	atory
	trial for the measurement of total cobalt in equine urine and plasma by ICP-MS'.	43
	2.5 Conclusions	44
3.	PILOT STUDIES	46
	3.1 Summary	46
	3.2 Introduction	46
	3.3 Study outline	47
	3.4 Experiment design	49
	3.5 Materials and methods	52
	3.5.1 Testing site	52
	3.5.2 Laboratory conditions	52
	3.5.3 Instrumentation	53
	3.5.4 Feedstuffs and supplements	57
	3.5.5 Reagents and materials	59
	3.5.6 Sample collection and processing	63
	3.5.7 Quality assurance	67
	3.5.8 ICP-MS analysis	68
	3.6 Results and discussion	72
	3.6.1 Method validation	72
	3.6.2 Sample storage	74
	3.6.3 Cobalt content of feedstuffs and supplements	76
	3.6.4 Cobalt excretion	78
	3.6.5 Hemoplex [®]	83
	3.6.6 Sample matrix correlation	85
	3.6.7 Cobalt accumulation	88
	3.6.8 Exercise	91
	3.6.9 Cyanocobalamin	93
	3.6.10 Pharmacokinetic study	95
	3.6.11 Cobalt displacement	97
	3.6.12 Intramuscular administration	100
	3.6.13 Oral administration	101
	3.6.14 Cobalt salt	104

3.6.15 Comparison of creatinine and specific gravity	107
3.7 Study Limitations	107
3.8 Conclusion	108
4. DEVELOPMENT OF A METHOD TO DISTINGUISH ORGA	NIC FROM
INORGANIC COBALT	110
4.1 Summary	110
4.2 Introduction	110
4.3 Materials and methods	111
4.3.1 Background	111
4.3.2 Animal	111
4.3.3 Cobalt administration	112
4.3.4 Sample collection	112
4.3.5 Determination of creatinine concentration	112
4.3.6 Determination of total cobalt concentrations by ICP-MS	113
4.3.7 Determination of B12 by Chemiluminescent Microparticle Int	trinsic Factor
Assay	115
4.3.8 Determination of B12 by HPLC-ICP-MS	116
4.4 Results and discussion	117
4.4.1 Method validation	117
4.4.2 Results	120
4.4.3 Discussion	125
4.5 Conclusions	127
5. COBALT ACCUMULATION IN HORSES FOLLOWING	REPEATED
ADMINISTRATION OF COBALT CHLORIDE	
5.1 Preamble	128
5.2 Summary	128
5.3 Introduction	129
5.4 Materials and methods	131
5.4.1 Sample collection	132
5.4.2 Determination of creatinine concentration	133
5.4.3 Determination of haematocrit	133
5.4.4 Determination of cobalt concentration	134

5.4.5 Statistical analysis and calculations	136
5.5 Results	138
5.6 Discussion	146
5.6.1 Limitations of this study	150
5.7 Conclusion	151
5.8 Magazine article - Cobalt Misuse in Horses is 'Ill-Conceived'	151
6. INFLUENCE OF HYDRATION STATUS ON URINARY	COBALT
CONCENTRATION	154
6.1 Preamble	154
6.2 Introduction	154
6.3 Materials and methods	156
6.3.1 Determination of creatinine concentration and specific gravity	156
6.3.2 Determination of creatinine in urine samples exceeding the cobal	t threshold
	156
6.4 Results	157
6.5 Discussion	157
6.5.1 Creatinine	157
6.5.2 Osmolality	159
6.5.3 Specific gravity	160
6.5.4 Sample stability	161
6.5.5 Validation of hydration correction method	161
6.5.6 Derivation of a hydration corrected urinary cobalt threshold	
6.5.7 Can urine be used for quantitative determinations at extremes of	hydration?
	166
6.6 Conclusion	167
7. GENERAL DISCUSSION	
7.1 Can cobalt enhance performance in trained athletes?	
7.2 Should cobalt use be regulated?	172
7.3 Call for review of cobalt testing and penalties in the Australian racing in	ndustry 173
7.4 Conclusions	179
7.5 Final recommendations	
8. LITERATURE CITED	

9	. APPENDICES	. 197
	1. Ethics approvals for animal research	.197
	2. Method precision data as described in Section 3.6.1	.203
	4. Results of analysis for excretion study described in Section 3.6.4	.210
	5. Results of analysis for pilot studies described in Sections 3.6.5 - 3.6.7, 3.6.9) and
	3.6.15	.214
	6. Results of analysis for cobalt displacement study described in Section 3.6.11	.225
	7. Results of analysis for administration trials described in Chapters 5 and 6	.227
	8. Press release - Expert joint letter calling for a moratorium in racing cobalt cha	arges
		.232
	9. Published manuscripts	.233

LIST OF TABLES

Table 2.1. Comparison of plasma cobalt concentrations before and after protein
precipitation40
Table 3.1. Outline of the horses used and treatment protocols for the 3 phases
conducted in the Co administration pilot studies
Table 3.2. Calibration solutions preparation prepared in 5 mL tubes (3.5.5.6) using
calibrator diluent (3.5.5.30). Calibrators stable for 2 months at 4-8°C
Table 3.3. Summary of performance precision data (Appendix 9.2). Cobalt
concentrations reported in $\mu g L^{-1}$. Method 1 samples prepared in acidic diluent
(3.5.5.32) with helium as CRI gas. Method 2 samples prepared in alkaline diluent
(3.5.5.33) with hydrogen as CRI gas
Table 3.4. Cobalt concentrations in feedstuffs and supplements summarised from
results presented in Appendix 9.3. BLUD sachet results are the average of
measurements made in separate batches due to lack of homogeneity in this feed
additive. Where provided, manufacturer stated concentrations are shown. The Co
content of supplements noted to contain B12 were calculated by multiplying the
B12 concentration by 0.04348 and adding this value to the Co content if available. 77
Table 3.5. Excretion of cobalt, copper and iron in urine and manure after
administration of 40 mL VAM [®] (see Appendix 9.4 for calculations and raw data).
Excreted totals calculated by adding concentrations measured in acid digested
manure and urine
Table 3.6 Plasma and blood Co concentrations from samples collected immediately
prior to IV injection of Hemoplex [®]
Table 3.7 Urine, plasma and blood Co concentrations and urine pH measurements on
samples collected from mare Q after IV administration of 10 mL Hemoplex [®] on the
dates shown. Time denotes the duration elapsed since Hemoplex [®] administration.
Exercise was through hobbled track work at 1630 19/8, 1400 22/8 and 1400 25/8.
Results for samples collected on exercise days are shown in bold type. $NR = No$
result where sample was unable to be collected from an uncooperative mare92
Table 3.8 Urine and blood Co concentrations after IV administration of 1 mg Co as
cobalt gluconate (mare E) and 1 mg Co as B12 (mares F and R)94

- Table 3.10 Results of urine and blood analysis following the IM injection of 25 mL

 Tripart.
 100

- Table 4.2. Instrument parameters: Varian Prostar HPLC system.
 116
- **Table 4.3.** Cobalt, creatinine, and cyanocobalamin results for Nature Vet Vitamin B12 solution and horse urine samples. B12 Co concentrations interpolated from calibration curve of peak areas from stock standard (calibration standards at 0.00, 3.20, 16.0, 80.0, 400, 2000 and 10000 μ g L⁻¹). Total Co determined by ICP-MS and creatinine by Jaffe reaction method on automated biochemistry platform. Creatinine adjusted results calculated by dividing B12 or Co result by creatinine concentration.

Table 5.1. Performance characteristics of cobalt in quality control material. SeronormTM trace element controls were used as internal controls. External quality assurance data are presented from the 2018 rounds of the Royal College of Pathologists of Australasia Quality Assurance Program (RCPAQAP) and Quebec Multi-Element Quality Assurance Scheme (QMEQAS). Method accuracy is

- Table 5.2. Summary of Pearson correlation analysis of cobalt concentration between

 different sample matrices (Figures 5.7–5.11). Calculations performed on results

 from all the collection points for the 6 treatment horses.

 140
- Table 6.1. Cobalt and creatinine results on 12 urine samples from horses found to have exceeded the Co threshold. Specific gravity (SG) results were calculated from the correlation points plotted in Figure 6.1 using the equation $y = 0.0188 \ln(x) + 1.023$ where y = SG and x = creatinine concentration. Creatinine adjusted Co results were calculated by dividing the total Co concentration by the creatinine concentration. Standardised SG adjusted cobalt concentrations were calculated using the equation (Levine & Fahy 1945) of $C_{st} = C_m x$ ((SG_{ref} - 1)/(SG_{meas} - 1)) where C_{st} is the urinary analyte adjusted to a standardised SG concentration; Cm is the measured analyte value before adjustment; SG_{ref} is the reference value (in this case 1.0337 as the indicated median SG for racehorses) to which analyte concentrations are normalised; SG_{meas} is the SG measured in a given specimen. Variation is the percent difference between the uncorrected raw total Co measurement and the standardised Table A2-9.1 Method 1 precision data for samples prepared in an acidic diluent with Table A2-9.2 Method 2 precision data for samples prepared in an alkaline diluent with Table A3-9.3 Results of analysis for first batch of digested feedstuffs and supplements. Replicate measurements and dry weights of the sub-samples given. Track torque was composed of 4 different types of grain. They have been analysed in triplicate

- Table A3-9.5 Results of analysis for liquid supplements. Where provided,

 manufacturer stated concentrations are shown. Liquid density was determined by

 weighing 1 mL of supplement. The Co content of supplements containing both B12

 and Co were added to provide the total calculated Co concentration. ICP-MS

 measurements were performed on supplements diluted by volume. Element

 concentrations by mass were calculated from the sample density.

 208
- Table A4-9.6 Cobalt, copper and iron concentrations in timed urine collections from

 horses A and B.
 210
- Table A4-9.8 Copper concentrations in manure collected over 84 hours from Horses

 A and B.
 212

- Table A5-9.11 Results of analysis for Co displacement study described in Section

 3.6.11.

LIST OF FIGURES

Figure 1.1 Structural formula of cobalamin. Vitamin B12 (cyanocobalamin) has the
CN group in the upper ligand (X = CN). Methylcobalamin (X = CH_{3-}) and
adenosylcobalamin (X = 5'-deoxyadenosyl-) are the biologically active cofactor
forms of cobalamin. Figure adapted from (Randaccio et al. 2010)7
Figure 1.2. Overview of erythropoiesis regulation at numerous levels by multiple
factors including Epo. The duration from Epo stimulation to mature erythrocyte
release is shown. Epo response duration highlights the limitations of using race day
urine collections to investigate Epo upregulation by Co. Figure adapted from
(Hattangadi et al. 2011)14
Figure 1.3. Schematic illustration of regulatory mechanisms of PHD hydroxylase
activities. Figure adapted from (Fong & Takeda 2008)
Figure 2.1 Plasma cobalt following IV administration of Hemo-15 to horses. Figure
reproduced from (Ho et al. 2016)42
Figure 3.1. Schematic diagram of the collision reaction interface. Figure adapted from
(Kalinitchenko, Wang & Sturman 2008)55
Figure 3.2. Schematic diagram of the 90° reflecting ion optics system of the Varian
820MS. Ions enter through the interface region via the skimmer cone (1) before
being reflected (arrow) and focused by the ion mirror (2). The turbomolecular pump
(3) is swung away from its operating position (4). A set of curved fringe rods (5)
create a double off-axis system. Figure adapted from (Elliott, Knowles &
Kalinitchenko 2004)56
Figure 3.3. Injectable solutions measured for total cobalt content
Figure 3.4. Feedstuffs measured for total cobalt content
Figure 3.5. Jugular vein blood collection
Figure 3.6. Insertion of Infusette [®] catheter through the urethral sphincter
Figure 3.7. Urine collection in 70 mL polypropylene sample container (3.5.5.8) via
Infusette® catheter65
Figure 3.8. 24-hour urine collections were performed by connecting a Foley catheter
via extension tubing to a sealed collection bag that was tied to a horse rug
Figure 3.9. Total manure collected over 84 hours mixed with a measured volume of
water using a paint stirrer67

Figure 3.10. Dr Derek Major performing abdominal surgery on a horse at ABEC79
Figure 3.11 Creatinine adjusted urinary Co concentrations following 40 mL injections
of Hemoplex [®] in mares A, B, C and R84
Figure 3.12 Plasma Co concentrations following 40 mL injections of Hemoplex [®] in
mares A, B, C and R85
Figure 3.13. Urine and plasma Co concentrations for pilot study samples ($n = 280$)86
Figure 3.14. Blood and plasma Co concentrations for pilot study samples ($n = 280$)87
Figure 3.15 Trough plasma and blood Co concentrations from samples collected prior
to IV injection of Hemoplex [®] . Cobalt administration ceased 23 rd March91
Figure 3.16 Creatinine adjusted urinary Co concentrations following the injection at
time 0 of 1 mg Co as cobalt gluconate to mare E and 1 mg Co as B12 to mares F
and R95
Figure 3.17. Results from pharmacokinetic study following the IV injection of 10 mL
Hemoplex [®] . Horses C and D were control horses while horses M and N were
harness racing horses previously found to have breached the Co threshold97
Figure 3.18 Urinary Co concentrations following the IV administration of 10 mL Pre-
Ferrin
Figure 3.19 Plasma Co concentrations following the IV administration of 10 mL
Pre-Ferrin
Figure 3.20 Blood Co concentrations following the IV administration of 10 mL
Pre-Ferrin
Figure 3.21 Urine and plasma Co concentrations following the IM injection of 25 mL
Tripart
Figure 3.22 Urinary cobalt concentrations measured after the ingestion of 10 mg Co
as cobalt chloride (Mare I) and 25 mg Co as cobalt chloride (Boston and Mare J). 103
Figure 3.23 Urinary Co concentrations following the administration of 1.0 mg Co as
CoCl ₂ to <i>Mare E</i> and 1.0 mg Co as CoSO ₄ to <i>Mare F</i> 106
Figure 3.24 Urinary Co concentrations following the administration of 1.0 mg Co as
Figure 3.24 Urinary Co concentrations following the administration of 1.0 mg Co as CoCl ₂ to <i>Mare E</i> and 1.0 mg Co as CoSO ₄ to <i>Mare F</i>
 Figure 3.24 Urinary Co concentrations following the administration of 1.0 mg Co as CoCl₂ to <i>Mare E</i> and 1.0 mg Co as CoSO₄ to <i>Mare F</i>106 Figure 3.25 Correlation between creatinine and specific gravity determined in 162
 Figure 3.24 Urinary Co concentrations following the administration of 1.0 mg Co as CoCl₂ to <i>Mare E</i> and 1.0 mg Co as CoSO₄ to <i>Mare F</i>106 Figure 3.25 Correlation between creatinine and specific gravity determined in 162 urine samples from the pilot study (Appendix 9.5). Specific gravity (y) = 0.0119 ln

- **Figure 4.1.** HPLC-ICP-MS chromatogram obtained from a 50 μL injection of the Nature Vet Vitamin B12 solution diluted 1000-fold to contain 45 μg L⁻¹ cobalt. ... 121
- **Figure 4.3.** HPLC-ICP-MS chromatogram obtained from a 50 μL injection of horse urine collected 2 hours after cyanocobalamin administration......122

- **Figure 5.2.** Creatinine adjusted urinary cobalt concentrations for the various groups. Last day of treatment at day 42 marked on the graph. Each point is the predicted mean value of 6 measurements (triplicate analysis of each sample collected from the 2 horses in the different groups). Error bars depict standard error of the mean. 140

- **Figure 5.5.** Red blood cell cobalt concentrations for the various groups. Red cell cobalt concentrations only plotted from day 42. Prior to this there was insufficient cobalt in the red cells to accurately calculate concentrations. Each point is the predicted

mean value of 6 measurements (triplicate analysis of each sample collected from the 2 horses in the different groups). Error bars depict standard error of the mean. 143

- Figure 6.2. Correlation between cobalt values adjusted to corresponding values of creatinine and standardised specific gravity (SG) determined in 85 urine samples collected during the study presented in Chapter 5. y = 1.38x; r = 0.97, P < 0.001..163

COMMON ABBREVIATIONS

Short form Description

ABEC	Agnes Banks Equine Clinic
AMU	Atomic mass units
AR	Aqua regia (4-parts HNO ₃ to 1-part HCl by volume)
B12	Vitamin B12, cyanocobalamin, cobalamin or other cobalt containing
	molecules based on a corrin structure
Co	Cobalt
Cr.	Creatinine
CRI	Collision reaction interface
c s ⁻¹	Counts sec ⁻¹ as measured by the ICP-MS detector
EDTA	Ethylenediaminetetraacetic acid
Еро	Erythropoietin
HIF	Hypoxia-inducible factor
HPLC	High performance liquid chromatography
HRNSW	Harness Racing New South Wales
ICP-MS	Inductively coupled plasma - mass spectrometer
ID	Internal diameter
IFHA	International Federation of Horse Racing Authorities
IM	Intramuscular
IV	Intravenous
LSD	Least significant differences
MCN	Micro-concentric glass nebuliser
NATA	National Association of Testing Authorities
NIST	National Institute of Standards and Technology
RCPAQAP	Royal College of Pathologists of Australasia Quality Assurance Program
RELM	Restricted maximum likelihood
RNSH	Royal North Shore Hospital
PHD	Prolyl hydroxylase
QMEQAS	Quebec Multi-Element Quality Assurance Scheme

SG	Specific gravity
SRM	Standard reference material
VHL	von Hippel-Lindau protein
WADA	World Anti-Doping Agency

ABSTRACT

It has been proposed that cobalt (Co) can be used as a performance enhancing drug for endurance athletes. The basis for enhanced performance stems from the 1950's, 60's and 70's, when some institutions advocated the use of high doses of Co to increase red blood cell production in patients with anaemia associated with renal disease. With increased red cell production, Co was thought to provide an advantage to athletes in endurance sports where a higher red cell mass would result in improved oxygen carrying capacity. Further research using in vitro cell lines elucidated a mechanism by which divalent cations, such as Co, could reduce the rate of degradation of a protein capable of inducing erythropoietin production and thereby red blood cell production.

Subsequently, some sporting bodies advised athletes of Co misuse investigation, and the international horse racing association introduced a threshold Co level. This thesis evolved after I was approached by a legal team to determine equine urinary Co concentrations. Given my experience investigating Co in patients with failed metal-on-metal prosthetic hips, it was immediately apparent that there were deficiencies in the approach being taken by the horse racing industry to manage Co misuse.

With the backing of literature reviews and original research, this thesis concludes that there was scant evidence to support the hypothesis that Co can enhance the athletic performance of racing horses. The research identified the need to differentiate inorganic Co from vitamin B12 when testing urine to assess Co misuse. Using original research to evaluate the cumulative nature of Co, this thesis demonstrates that urinary Co is an ineffective and unreliable means of screening for Co abuse in horses.