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ABSTRACT 32 

We report the first ‘multi-biome’ analysis integrating bacterial, viral, and fungal communities 33 

in bronchiectasis (651 microbiomes in 217 patients) employing weighted Similarity Network 34 

Fusion (wSNF): codified as an online webtool (https://integrative-microbiomics.ntu.edu.sg/) 35 

to identify patients at highest risk of exacerbation. Frequent exacerbators exhibit less complex 36 

microbial co-occurrence networks, reduced diversity and a higher degree of antagonistic 37 

interactions. Interactome dynamics, derived longitudinally (153 microbiomes in 17 patients), 38 

illustrate significantly increased and antagonistic interactions during exacerbations which 39 

resolve following treatment within an otherwise stable multi-biome. Assessment of the 40 

Pseudomonas-interactome reveals that its network rather than Pseudomonas abundance is key 41 

in determining bronchiectasis exacerbation risk, and, that incorporating microbial interactions 42 

improves models that predict clinical outcome. Validating interactomes and demonstrating 43 

their clinical applicability was achieved through functional metagenomics and confirmatory 44 

experimentation. A whole-genome shotgun metagenomic validation in an independent cohort 45 

of 166 patients, including bacteriophage assessment, served to validate the multi-biome 46 

interactions detected by targeted amplicon sequencing and confirmed microbial interactions 47 

linked to exacerbation risk. ‘Integrative microbiomics’ captures microbial interactions 48 

determining exacerbation risk which cannot be appreciated by studying a single microbial 49 

group. Antibiotic strategies likely target interaction networks rather than individual microbes 50 

providing a fresh approach to understanding respiratory infection. 51 

 52 
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ABBREVIATIONS  57 
BMI: Body mass index 58 

BSI: Bronchiectasis severity index 59 

CAMEB: Cohort of Asian and Matched European Bronchiectasis 60 

CF: Cystic Fibrosis 61 

COPD: Chronic Obstructive Pulmonary Disease 62 

CRS: Chronic rhinosinusitis 63 

DD: Dundee 64 

HRCT: high resolution computed tomography  65 

IQR: Interquartile range 66 

ITS: Internal Transcribed Spacer  67 

KL: Kullback-Leibler 68 

LEfSe: Linear Discriminant Analysis Effect Size 69 

NCBI: National Center for Biotechnology Information 70 

PBS: Phosphate-buffered Saline 71 

RDP: Ribosomal Database Project 72 

RT-qPCR: Real-time quantitative Polymerase Chain Reaction 73 

SG-KL: Singapore-Kuala Lumpur 74 

SNF: Similarity Network Fusion 75 

SRA: Sequence Read Archives   76 
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INTRODUCTION 77 

The global burden of bronchiectasis is increasing, and, there remains a lack of proven treatment 78 

options due to disease heterogeneity, however, this is being addressed through endo-79 

phenotyping efforts and the identification of treatable traits 1-4. Recurrent infection and 80 

inflammation result in progressive irreversible airway dilatation characterised by an altered 81 

airway microbiome 2,5,6. Bacterial, viral and fungal communities in bronchiectasis have been 82 

investigated and associated with clinical outcomes including exacerbations 7-9. While specific 83 

bacteria, viruses and fungi are implicated in bronchiectasis exacerbations, prior bacterial 84 

microbiome studies illustrate minimal actual change during exacerbations based on simplistic 85 

single kingdom analyses focused on dominant bacterial taxa or dissimilarity metrics 86 

demonstrating our incomplete understanding of the microbiome’s role 10. Exacerbation 87 

occurrence and frequency in bronchiectasis and other respiratory diseases remain a major cause 88 

of morbidity and key driver of mortality, however, the precise microbial relationships 89 

underpinning exacerbations remain complex with most accepting simplistic single-kingdom 90 

models of bacterial overgrowth causing infection which is then suppressed by antibiotics 5,10,11. 91 

Disease heterogeneity in bronchiectasis has hindered clinical trials, and, patient stratification 92 

based on microbiomes may provide focused and precision-based therapy given the variability 93 

in clinical, immunological and inflammatory phenotypes, aetiologies and therapeutic responses 94 

1,7,12. Critically, however, most microbiome studies to date have considered bacteria, viruses, 95 

and fungi as separate entities, but, the true microbiome, consisting of all microorganisms and 96 

their genes within a single body space includes bacteria, viruses, and fungi. Prior studies are 97 

therefore incomplete, and a greater understanding of disease likely gained through holistic and 98 

integrated ‘multi-biome’ analysis, which more accurately represents the in-vivo state. Here, we 99 

perform the first integrated ‘multi-biome’ analysis of the bronchiectasis airway combining 100 

bacterial, viral, and fungal community profiles from individual patients including longitudinal 101 
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assessment during exacerbations. We demonstrate that ‘integrative microbiomics’ provides a 102 

novel framework for understanding exacerbations with potential application across respiratory 103 

diseases. 104 

 105 

RESULTS 106 

Multi-biome data integration by weighted Similarity Network Fusion (wSNF) identifies 107 

exacerbators: To evaluate the bronchiectasis microbiome, we assessed respiratory specimens 108 

in 217 patients capturing bacterial, fungal and viral microbiomes in each patient (3 profiles per 109 

patient, total; 651 microbiomes). These patients were recruited as part of the CAMEB study; a 110 

cross-sectional Cohort of Asian and Matched European Bronchiectasis 8. Patients had a median 111 

age of 68 (range: 60-74 years old) with equal gender distribution. Most had idiopathic or post-112 

infection (non-mycobacterial) bronchiectasis and classified as moderate to severe disease 113 

(median Bronchiectasis Severity Index (BSI) = 9; range 6-13). For inclusion patients had 114 

confirmed radiological bronchiectasis by high resolution computed tomography (HRCT) and 115 

were recruited during outpatient attendance when clinically stable (further details in the online 116 

methods; full patient demographics and clinical details are described in supplementary table 117 

S1). Having previously characterized the fungal mycobiome in the CAMEB cohort, we first 118 

generated bacterial and viral microbiome profiles for all patients to assess a more holistic 119 

microbiome in each individual (Supplementary figures S1 and S2, Supplementary table S4) 8. 120 

We subsequently integrated the derived bacterial, viral, and fungal community profiles in a 121 

novel analysis by implementing a weighted SNF approach as each -biome differentially 122 

influences the overall multi-biome based on its individual taxonomic composition and richness 123 

(Figure 1a-b and Supplementary figure S3). Weighting each -biome relative to taxonomic 124 

richness was achieved according to the total number of observed taxa present in a particular -125 

biome, with filtering based on a prevalence of at least 5% across the entire patient cohort; i.e. 126 



 6 

bacteriome (62 genera) > mycobiome (52 genera) > virome (4 viral species) observed across 127 

217 patients. Assessment of weighting based on these stable observed inter-kingdom taxa 128 

(n=118) resulted in assigned weightings of 53% (52/118) for bacteria, 44% for fungi (52/118) 129 

and 3% for viruses (4/118) in our network fusion consistent with the breadth of information 130 

content underlying each -biome network (Figure 1b). After spectral clustering of the resultant 131 

similarity matrix, we identify two patient clusters (Figure 1c). The mean misclassification ratio 132 

over 100 iterations was found to be 12.43%, indicating a cluster robustness of 87.6%. The 133 

weighted SNF method employed has been codified and is openly available as an online webtool 134 

(https://integrative-microbiomics.ntu.edu.sg/; see online methods). Microbes within each 135 

cluster reveal a range of discriminant bacterial, fungal, and viral taxa highlighting potential 136 

interaction between them to define the observed clinical state (Figure 1d). Patients from the 137 

larger cluster (cluster 1, n = 134) exhibit greater microbial diversity (Figure 1e) and had better 138 

clinical outcomes than those in the smaller cluster (cluster 2, n = 83) in terms of exacerbations 139 

and symptoms (Figure 1f-g). Additional geographic and clinical differences between the 140 

clusters included a higher proportion of European patients in the frequently exacerbating 141 

cluster (82% versus 16%, p<0.001) with patients in this cluster also exhibiting a higher BMI 142 

(20-31 versus 18-24, p<0.001), higher prevalence of chronic rhinosinusitis (CRS) (36% vs 143 

18%, p<0.001) greater inhaled corticosteroid (ICS) use (50% versus 26%, p<0.001), and 144 

likelihood of a smoking history (41% versus 22%, p<0.005). The presence of CRS was 145 

increased in Cluster 2 but not associated with a greater presence of taxa known to be over-146 

represented in sinus disease (Supplementary figure S4) suggesting that our sampling 147 

methodologies were robust to such influence13. The influence of therapy (ICS and antibiotic 148 

use) on microbiome composition is illustrated in Supplementary figure S5. Patients in cluster 149 

2 carried a relative risk of 2.36 (95% CI 1.6-3.5; p<0.0001) for exhibiting the ‘frequent 150 

exacerbator’ phenotype, defined as experiencing >=3 exacerbations annually 14. Importantly, 151 

https://integrative-microbiomics.ntu.edu.sg/
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while lung function and disease severity between the clusters is comparable (Figure 1h-i); 152 

evaluating the multi-biome provides a clinically meaningful patient stratification by accurately 153 

identifying ‘high-frequency’ exacerbators in comparison to analysis of the bacterial 154 

microbiome alone (Supplementary table S5), a clear demonstration of the clinical utility of our 155 

integrated analysis. In contrast to existing bronchiectasis paradigms, the ‘high frequency’ 156 

exacerbation cluster had lower prevalence (31% vs 66%, p>0.001) and relative abundance 157 

(1.7% vs 10.8%, p>0.001) of Pseudomonas.  158 

 159 

Co-occurrence analyses reveals an antagonistic interactome in high-frequency 160 

exacerbators: To characterise microbial interactions (the interactome) within each cluster, a 161 

weighted co-occurrence approach using an ensemble of similarity measures and regression 162 

techniques was employed to generate microbial association networks (Figure 2a-b). 163 

Leveraging methodology of Faust et al. 15 mitigated against compositionality of relative 164 

abundance data and provided a framework (based on graph theory) where microbes (described 165 

as nodes) may be assessed in terms of their interconnection with (predicted) interacting partners 166 

(edges) which can be positively or negatively correlated (see supplementary material). 167 

Therefore, a positive interaction between microbes is defined by the consensus ensemble 168 

correlative score whereby a positive value represents the co-occurrence of microbes and a 169 

negative value co-exclusion. While the low frequency exacerbation cluster had a higher total 170 

number of microbes and microbial interactions, the high frequency exacerbation cluster 171 

exhibits lower diversity and a greater proportion of negative interactions between constituent 172 

microbes (Figure 2c). An altered interactome is therefore evident in the high frequency 173 

exacerbation cluster suggestive of opposing microbial interactions which potentially drives this 174 

observed clinical state (Figure 2d-e). 175 

 176 
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Busy, critical and influential microbes within the interactome: Adopting network-based 177 

approaches permits an assessment of alternate metrics to characterise microbiomes for 178 

potential clinical applicability 16. We next evaluated network metrics including node degree, 179 

stress- and betweenness-centrality (of the nodes) to describe microbes within a network that 180 

we refer to as ‘busy’ (microbes with an increased number of direct interactions with other 181 

microbes), ‘critical’ (key microbes to maintain network integrity) and ‘influential’ (microbes 182 

influencing other microbes within a network including indirectly). Using this approach, we 183 

identified key taxa of clinical relevance and potential targets for antimicrobial intervention in 184 

our clusters (Figure 3a-b). With these metrics, a different view of cluster-specific interactomes 185 

is appreciated with Rothia, Streptococcus, Candida, Actinomyces and Haemophilus the highest 186 

ranked taxa in the low frequency exacerbation cluster demonstrating characteristics of being 187 

busy, critical and influential within their network. Of these taxa, only Haemophilus is similarly 188 

ranked in the high frequency exacerbation cluster alongside Cryptococcus, Leptotrichia, 189 

Poryphyromonas, Prevotella and Veillonella (Figure 3b, Supplementary table S6). Critically, 190 

while some of the top taxa identified in each respective cluster commonly share the busy, 191 

influential and critical network characteristics (e.g. Streptococcus, Haemophilus, Candida and 192 

Cryptococcus), all importantly exhibit markedly different interaction networks when assessed 193 

independently within their respective clusters where they also exhibit variable prevalence 194 

(Supplementary figures S6 and S7). This suggests that a microbe’s interactome rather than the 195 

microbe itself dictates clinical status such as the presence of a high risk for exacerbations. 196 

Therefore, classification based on the interactome provides superior resolution to that provided 197 

by a single microbe (e.g. Pseudomonas spp.) to identify patient populations at highest risk of 198 

adverse clinical outcome. Conversely, when interaction networks were assessed in a supervised 199 

manner, by splitting patients into groups based on their known exacerbation frequency (<3 vs 200 

>2) as opposed to weighted-SNF, the observed network configurations from the unsupervised 201 
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analysis were comparable but with the notable appearance of Pseudomonas spp. among the top 202 

taxa of frequent exacerbators (Supplementary figure S8). 203 

 204 

As Pseudomonas spp. are strongly associated to exacerbations in bronchiectasis, we next 205 

specifically assessed Pseudomonas-interaction networks 17. Interestingly, Pseudomonas spp. 206 

were identified in both unsupervised exacerbation clusters, suggesting that its presence alone 207 

does not adequately account for the different exacerbation frequencies between clusters (Figure 208 

3a-b). Pseudomonas spp. exhibits distinct interactomes based on a patient’s exacerbation 209 

frequency, and, while an overall trend toward more negative interactions is observed in the 210 

high frequency exacerbation cluster (Figure 2c-e), the Pseudomonas-interaction network 211 

within this cluster instead exhibits a greater number of positive interactions (Figure 3c).  212 

Notably however, the Pseudomonas-interaction network in the low frequency exacerbation 213 

cluster exhibits greater negative interactions (n=18 vs n=5, Figure 3d). Several important 214 

differences in Pseudomonas-interaction networks between clusters were evident: 215 

Pseudomonas exerts a greater negative influence on Haemophilus and lesser negative influence 216 

on Streptococcus in the high frequency exacerbation cluster. Critically, and of interest, 217 

antithesis relationships were observed in respect to Aspergillus, Prevotella, Veillonella, 218 

Neisseria and human parainfluenza virus 3 between clusters where positive interactions 219 

predominate in the high frequency and negative interactions in the low frequency exacerbation 220 

clusters respectively (Figure 3d). Therefore, Pseudomonas spp. presence alone does not 221 

adequately explain the published links between this microbe and bronchiectasis exacerbations. 222 

 223 

Differential network analysis during exacerbation reveals ‘core’ and ‘ancillary’ 224 

interactomes: As interactomes differ based on exacerbation frequency, we next evaluated the 225 

interactome prospectively across the course of exacerbations in an independent bronchiectasis 226 
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cohort recruited from two hospitals in the East of Scotland.  Patients had a median age of 72 227 

(range: 68-74 year) and were predominantly female (65%). Most had idiopathic bronchiectasis 228 

(65%) and classified as moderate to severe disease (median BSI 10; range 6-14) (further details 229 

in the online methods; patient demographics and clinical details are described in supplementary 230 

table S2). Here, we assessed bacterial, fungal, and viral microbiome profiles generated for these 231 

17 patients across three timepoints (total; 153 microbiomes). We assessed the interactome at 232 

baseline (pre-exacerbation), during exacerbation and post-exacerbation (following antibiotic 233 

therapy). A comparison of detected microbes revealed broad comparability of longitudinal 234 

multi-biome signatures across the assessed timepoints with no significant differences observed 235 

in microbial composition, α- and β-diversity suggesting overall stability of the microbiome 236 

across exacerbation and recovery (Figure 4a-c, Supplementary figure S9). In contrast however, 237 

co-occurrence analysis revealed major changes in interactomes with an increase in the number 238 

and strength of negative interactions during exacerbations when compared to baseline (pre-239 

exacerbation) or following treatment (post-exacerbation) (Figure 4d-f). A detailed comparison 240 

of changes from baseline to exacerbation and from exacerbation to post-exacerbation clearly 241 

illustrates a dynamic shift to a new ‘post-exacerbation’ network (Figure 4g). Fewer interactions 242 

are observed during and post-exacerbation compared to baseline, likely explained by broad 243 

spectrum antibiotic usage which eliminates potentially interacting microorganisms and, 244 

greatest overlap is observed between the exacerbation and post-exacerbation state (Figure 5a). 245 

Importantly, a ‘core’ interactome of 64 ‘conserved’ microbial interactions exist with the 246 

strongest interactions noted between Prevotella , Leptotrichia and Veillonella (Figure 5a). To 247 

further characterise the key microbial interactions related specifically to the exacerbation state, 248 

differential network analysis was implemented which illustrates ‘core’ and ‘ancillary’ 249 

networks (Figure 5b). The ‘core’ network remains unaltered by exacerbation or therapy and 250 

includes some principal microbiota including bacteria such as Streptococcus, Prevotella, 251 
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Veillonella, Neisseria, Leptotrichia, and Rothia. Some conserved fungal and viral based 252 

interactions involve Cryptococcus and Rhinovirus, respectively. The interactions most 253 

susceptible to variability with exacerbation and treatment (‘ancillary’ network) includes more 254 

established respiratory pathogens such as the bacteria Pseudomonas, Haemophilus, 255 

Stenotrophomonas, Moraxella and Staphylococcus but also Saccharomyces, Candida (fungi), 256 

Influenza virus B and Metapneumovirus (viruses) (Figure 5b).  257 

 258 

Next, we assessed the clinical utility of our derived network-based interactomes by predicting 259 

the influence of antibiotic exposure on its contained microbiome. Patient therapy was driven 260 

by culture-based microbiologic work up that compared well with the 16S rRNA analysis of the 261 

bacteriome (Supplementary figure S10), leading to several patients in the longitudinal study 262 

(n=12) receiving β-lactam antibiotics for treatment of their initial exacerbation (Supplementary 263 

table S8). We used the baseline (pre-β-lactam exposure) interactome network (Figure 5c) to 264 

predict network re-configuration post β-lactam treatment by artificially reducing the abundance 265 

of β-lactam-sensitive microbes by 75% (Figure 5d, see Online methods for further details). We 266 

then compared our ‘simulated’ network to that actually observed among our β-lactam-treated 267 

patients following therapy (Figure 5e). Our network-based prediction had reliable 268 

comparability to the network actually observed in β-lactam-treated patients with respect to 269 

several microbial nodes. Notably, the rank order difference in key microbial taxa post antibiotic 270 

treatment was correctly predicted for 10 out of 13 taxa in our simulated model further validating 271 

our derived interactomes and their potential for clinical relevance and translatability (Figure 272 

5c-e, Supplementary table S7). As a prognostic indicator, we also found that interactions rather 273 

than individual microbial abundance served as a better predictor of time to next exacerbation 274 

among patients in the longitudinal arm of the study (Supplementary figure S11). 275 

 276 
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Functional and microbiological validation of low and high exacerbation frequency 277 

clusters: To assess function in identified clusters, we performed initial metagenomic 278 

sequencing on a subset of n=20 patients from each cluster (total, n = 40; Supplementary table 279 

S9). Linear discriminant analysis (LDA) identified a significant number of genes enriched in 280 

the high exacerbation frequency cluster highlighting potential genetic components related to 281 

exacerbation phenotypes and observed differences in the corresponding microbial interactome 282 

(Figure 6a). Functional mapping of these genes identified several microbial virulence related 283 

pathways enriched in the high exacerbation frequency cluster including functional categories 284 

related to quorum sensing, biofilm formation and antibiotic resistance (Figure 6b). To further 285 

assess and validate specific interactions within our derived interactomes, we selected the 286 

interaction between P. aeruginosa and A. fumigatus for further interrogation. These two 287 

organisms exhibit net opposing interactions from our originally derived clusters (Figure 3c-d): 288 

co-exclusion in the low and co-occurrence in the high exacerbation frequency clusters 289 

respectively (Figure 6c). Comparisons of P. aeruginosa clinical isolates derived from patients 290 

belonging to the low and high exacerbation frequency clusters respectively reveal these 291 

contrasting interactions (Figure 6d-e). Consistent with the observation from our derived 292 

interactomes (Figure 3c-d and 6c), the low exacerbation frequency cluster isolate (LEF) 293 

exhibited negative interactions with A. fumigatus whereas no such inhibitory effect was 294 

observed with the high exacerbation frequency cluster isolate (HEF) (Figure 6d-e). Further, 295 

though their growth was comparable, the HEF and LEF isolates exhibited clear variability in 296 

surface motility (Figure 6d – compare control plates) suggesting significant phenotypic 297 

differences between strains. Taken together, these in-vitro observations are consistent with our 298 

in vivo-derived interactomes further validating their accuracy and clinical relevance.  299 

 300 
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Whole genome shotgun metagenomics independently identifies and validates clinical 301 

exacerbation risk and associated microbial interactions in bronchiectasis: To further 302 

validate the association between microbial interactions and exacerbation, we performed whole-303 

genome shotgun sequencing on an independently recruited bronchiectasis cohort from four 304 

separate jurisdictions (n=166; Singapore, Malaysia, Scotland and Italy) (Figure 7, 305 

Supplementary table S10). Functional analysis led to the independent identification of two 306 

patient clusters, again distinguished by the overrepresentation of microbial virulence functions 307 

including chemotaxis, two-component systems, secretion systems and siderophore production 308 

pathways co-incident with higher exacerbation frequency (Figure 7a-c). Patient clusters 309 

exhibited significant differences in lung function (FEV1 % predicted) (p=0.035) while disease 310 

severity (BSI) and symptoms (MMRC scores) were comparable (Figure 7d, Supplementary 311 

figure S12).  312 

 313 

Next, to independently re-evaluate the multi-biome analysis performed previously using 314 

targeted amplicon sequencing data and validate the interactome (Figures 1-3), we first 315 

performed a greater in-depth analysis of the virome (including bacteriophages) generating a 316 

rich viral profile based on metagenomic data (Supplementary Results, Supplementary figure 317 

S13). Microbiome integration was then achieved by wSNF applying weights as described 318 

previously and assigned as follows: bacteriome (992 genera) > virome (703 viral contigs) > 319 

Mycobiome (16 genera) (Figure 7e-h). Implementation of integrative microbiomics again 320 

resulted in successful stratification of bronchiectasis patients into two clusters separated by 321 

exacerbation risk, but in this case with even greater precision than the initial functional 322 

metagenomic analysis (supplementary table S11). In addition to a greater frequency of 323 

exacerbations (akin to our earlier HEF cluster), patients in the higher risk cluster by 324 

metagenomics (‘SC2’) demonstrate significantly reduced lung function (as FEV1 % predicted;  325 
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p=0.0179) while symptoms (MMRC score) and disease severity (BSI) were comparable 326 

between clusters (SC1 versus SC2). Although an increased prevalence of CRS was observed 327 

in our initial clustering (derived from targeted amplicon sequencing analysis), this was not 328 

replicated by metagenomic analysis (26.9% vs 36.2%, p = 0.5565). Similarly, metagenomic 329 

validation did not detect differences in ICS use (43.3% vs 40.6%, p = 0.850) or antibiotic 330 

therapy (52.6 vs 37.8% p = 0.08207) which were both comparable between clusters. The key 331 

difference in exacerbation frequency between our identified clusters however was consistent 332 

between both sequencing approaches, especially regarding their interactomes, which in turn 333 

represents a strong validation of its clinical relevance (Figure 7i-k).  334 

 335 

Co-occurrence analysis of the high-risk cluster from the metagenomics sequencing approach 336 

reveals important interaction networks and keystone taxa (which now include bacteriophages) 337 

which themselves exhibit a marked shift in phage profile between clusters (Supplementary 338 

figure S13a-e). There are also clear differences in overall network configuration between the 339 

low (SC1) and high (SC2) exacerbation clusters, which now can also provide additional 340 

information on an increased abundance of antimicrobial resistance determinants in SC2 (Figure 341 

7i-j, Supplementary figure S13f).  342 

 343 

The derivation of network configurations from two independent bronchiectasis cohorts and 344 

using two sequencing approaches further facilitated a direct comparison between interactomes 345 

generated by targeted and metagenomic sequencing, respectively, in relation to the high 346 

exacerbation risk clusters (i.e. HEF versus SC2). Direct comparison between microbes detected 347 

by both approaches revealed that 89.9% of interactions (i.e. 267 interactions between 18 348 

microbes) were common between HEF and SC2 clusters which strongly validates associations 349 
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of these networks with clinical exacerbation risk confirming the overall importance and 350 

relevance of interactome analysis.  351 

352 
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DISCUSSION 353 

Here, we present to the best of the authors knowledge, the first ‘multi-biome’ analysis using 354 

‘integrative microbiomics’ combining bacterial, viral, and fungal communities in individual 355 

patients. By developing a novel weighted-SNF methodology, accessible through an open 356 

access online platform, we identify frequent exacerbators with high precision and classify 357 

microbes within an ‘interactome’ as ‘busy’, ‘influential’ and/or ‘critical’. Frequent 358 

exacerbators exhibit antagonistic interactomes, and longitudinal assessment over an 359 

exacerbation reveals disrupted interactomes, undetectable by assessing microbial identity 360 

alone, and which can predict subsequent exacerbation. The ‘interactome’ during exacerbations 361 

demonstrates ‘core’ and ‘ancillary’ networks, amenable to therapy, and, by use of simulation 362 

followed by confirmatory validation, we demonstrate its clinical relevance for modelling 363 

microbiome re-configuration in response to antibiotic exposure. Functional validation of 364 

interactomes was achieved by metagenomics which illustrates high activity in microbial 365 

virulence pathways indicative of chronic lung adaptation in frequent exacerbators. 366 

Microbiological evidence supports the interactome approach by demonstrating differential 367 

interaction between P. aeruginosa and A. fumigatus in frequent compared to infrequent 368 

exacerbators, an inter-kingdom pairing recognized and validated in subsequent metagenomic 369 

analysis. Taken together, our findings reveal a novel aspect of the microbiome with potential 370 

implications for the use of antibiotics in clinical practice. 371 

 372 

Infection is central to bronchiectasis pathogenesis and based upon conceptual frameworks such 373 

as the ‘vicious cycle and vicious vortex’ 2,3. Therefore, targeting bacteria with antibiotics 374 

reduces bacterial load, accompanying inflammation and therefore exacerbation risk, which, in 375 

turn alleviates symptoms and improves clinical outcomes, however, the role of co-existing, 376 

even commensal or ‘pathobiont’ microbes, is not considered in this model 18,19. Further, this 377 
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model fails to explain how or why patients improve despite receiving antibiotics not necessarily 378 

targeting their dominant pathogen, exemplified by macrolide use in Pseudomonas infection. 379 

Interactomes therefore alter how we think about antibiotic use and treat exacerbations in 380 

bronchiectasis offering reasons for unexplained clinical observations. For instance, it is well 381 

recognised that patients receiving amoxicillin or a macrolide in the presence of Pseudomonas 382 

improve, the latter thought to be due to the drugs anti-inflammatory properties or the presence 383 

of co-infection. Our interactome analysis during exacerbations, however, suggests that the 384 

prescribed antibiotic may change the interactome, conferring the observed clinical benefits. 385 

Therefore, modulating Pseudomonas-related interaction, within a susceptible interactome, 386 

rather than directly targeting the culprit organism itself, may restrict its pathogenic potential 387 

and provide good clinical outcome as observed with amoxicillin and macrolides. Additionally, 388 

the longstanding clinical phenomenon of benefit gained by administration of antibiotics to 389 

which a target organism may be resistant, established in cystic fibrosis, is potentially also 390 

explained by antibiotic-related effects on the interactome, where microorganisms susceptible 391 

to the prescribed drug influence interactions with the target pathogen thereby modulating its 392 

pathogenic ability indirectly. Additionally, the lack of detectable change in respiratory 393 

microbiomes during bronchiectasis exacerbations, and even following antibiotics suggests that 394 

microbial abundance alone provides an incomplete view of airway microbial ecology 10,20. Our 395 

analysis also offers the first metagenomic survey of bacteriophages in bronchiectasis, 396 

uncovering a striking change to bacteriophage profiles between our clinical exacerbation 397 

clusters. A higher burden of antimicrobial resistance genes related to these bacteriophages is 398 

demonstrated despite an absence of significant difference in antimicrobial therapy received 399 

between the clusters. Relationships between resident airway microbes and increased bacterial 400 

load during exacerbations, including mechanisms driving evolution from stability to 401 
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exacerbation are lacking, and an improved understanding of interactomes (including 402 

bacteriophages) provides key insight reflective of the in-vivo state.    403 

 404 

The value of data integration using SNF for multidimensional datasets (such as multi-omics) 405 

in airways disease such as COPD has been demonstrated, however, these methods have not 406 

been previously applied to microbiome integration 21. Conventional SNF is not optimized for 407 

biological systems such as multi-kingdom microbiomes where dynamism and potential 408 

dominance of one kingdom over the others needs to be considered. Employing a weighted SNF 409 

approach based on richness, we demonstrate improved patient stratification in bronchiectasis 410 

by identifying high frequency exacerbators with accuracy exceeding that of using a single 411 

microbial group. The methods described have been made accessible to the research community 412 

through our online webtool (https://integrative-microbiomics.ntu.edu.sg/) which has been road 413 

tested with several publicly available datasets suggesting broad applicability beyond 414 

respiratory disease.  415 

 416 

Traditionally, exacerbations are considered to occur when an increased bacterial load or 417 

acquisition of a new virus ensues, however, analysis of a single microbial group by bacterial 418 

abundance or viral PCR has been shown as inadequate to discriminate between the stable and 419 

exacerbation states in bronchiectasis 9,10. Interactome analysis goes deeper by identifying 420 

changing inter-kingdom interactions during an exacerbation. Despite identifying clinically 421 

relevant patient clusters tied to exacerbation frequency by integrative microbiomics; even the 422 

low frequency exacerbator group was enriched for key bronchiectasis pathogens associated to 423 

exacerbations including Pseudomonas and Aspergillus, suggesting that presence alone 424 

(including abundance) of a particular organism does not sufficiently explain the microbial 425 

dynamics occurring during exacerbations 8,22. To better understand this, we employed network 426 

https://integrative-microbiomics.ntu.edu.sg/
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analysis which provides insight into microbiome architecture, and, identifies keystone 427 

microbial taxa based on relationships within an overall community rather than on their 428 

occurrence or abundance alone 15,16. This captures, with greater accuracy, microbiome 429 

complexity and provides novel insights into events conferring clinical change such as 430 

exacerbations and/or therapeutic response 16. Our study is the first to employ such an approach 431 

to the airway microbiome, and, demonstrates that bronchiectasis patients at highest risk of 432 

exacerbations have an ‘interactome’ dominated by antagonistic interaction between microbial 433 

kingdoms, explaining their lower α-diversity, where microbes compete rather than co-operate 434 

with one another. Assessing the ‘interactome’ as a network of ‘busy’, ‘critical’ and ‘influential’ 435 

microbes within an airway ecosystem highlights the relevance of established bronchiectasis 436 

pathogens such as Haemophilus, however, particularly in the high-frequency exacerbation 437 

cluster, relationships with other bacteria such as anaerobes (Prevotella and Veillonella) or other 438 

kingdoms such as fungi (Cryptococcus) are novel and previously unrecognised in 439 

bronchiectasis. The uncovered relationship to anaerobes is particularly interesting as anaerobes 440 

are detected at high frequencies in the cystic fibrosis (CF) airway with conflicting results in 441 

attempts to link them with disease outcomes or exacerbations 23,24. Significantly, however, key 442 

pathogenic taxa such as Pseudomonas, with established links to bronchiectasis exacerbations 443 

demonstrate contrasting ‘interactomes’ between the low- and high-frequency exacerbators 444 

confirming the importance of appreciating this phenomenon to best apply it to precision 445 

microbiology. 446 

 447 

To further validate our findings, we temporally assessed the interactome in a prospective 448 

longitudinal bronchiectasis cohort experiencing exacerbations. This first confirmed findings of 449 

prior microbiome studies in bronchiectasis indicating stability of the microbiome across 450 

exacerbation and then following treatment with little change in microbial composition, α- or 451 
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β-diversity 5,10. Significantly however, we detected a changed ‘interactome’, not assessed by 452 

prior works, which did not employ integrative approaches. A clear shift toward antagonistic 453 

microbial relationships during exacerbation was evident, comparable to that observed in our 454 

high-frequency exacerbation cluster, a finding unexplained by linear increases in pathogen 455 

dominance as reflected by comparable diversity indices. These findings, further validated by 456 

the ‘core’ and ‘ancillary’ interactomes during exacerbation, underlines the advantages 457 

conferred by network analysis, which reveals relationships undetectable by microbial 458 

abundance or identity assessment alone. Our novel approach highlights the importance of inter-459 

kingdom ‘interactomes’ that varies during exacerbations offering deeper insight into potential 460 

triggers of microbial virulence. Importantly, the ‘interactome’ provides significant, new, and 461 

previously unrecognised targets for antimicrobial therapy that may be considered as alternative 462 

or in combination to established regimens to increase efficacy. We importantly demonstrate 463 

and validate that simulated microbial networks can be re-configured in response to antibiotic 464 

therapy highlighting the clinical potential and applicability of the interactome approach as a 465 

model to predict therapy-induced microbial dynamics. What remains unknown and 466 

unaddressed by this work are the respective benefits of targeting ‘busy’, ‘critical’ or 467 

‘influential’ microbes within an ‘interactome’ and should be the subject of future studies. 468 

 469 

Through application of metagenomics, we demonstrate important functional differences in 470 

gene profiles across our identified patient clusters. Discriminating genes characterising 471 

frequent exacerbators include genes implicated in biofilm formation (glpP, glgC), quorum-472 

sensing and others with established roles in recalcitrant chronic infections 25,26. Against this 473 

backdrop, and to further demonstrate plausibility of interactions within an interactome based 474 

on underlying exacerbation frequency, we selected P. aeruginosa isolates from patients 475 

belonging to the high and low exacerbation frequency clusters respectively, and, assessed their 476 
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growth ability in co-culture with a laboratory strain of A. fumigatus. Interaction between P. 477 

aeruginosa and A. fumigatus has been shown to be clinically relevant in several prior works 27-478 

29. We successfully replicated in-vitro the expected in-vivo co-exclusion and co-occurrence 479 

interactions based on patient cluster membership highlighting a strong consistency between 480 

our derived interactomes and observed functional and microbiological outcomes. Our 481 

microbiological validation was however restricted to the well-established and easily cultivated 482 

microbes Pseudomonas and Aspergillus; long-studied exemplars of inter-kingdom 483 

communication in chronic respiratory disease. Further work is required to assess less 484 

established interactions emerging from our network analysis, aided by continued 485 

improvements in culture metagenomics 30.  486 

 487 

Our study represents, to the best of our knowledge, the first description of an ‘integrative 488 

microbiomics’ approach to the ‘multi-biome’ in chronic airways disease however does have 489 

limitations. First, the patients were recruited from the established CAMEB cohort which by 490 

design is cross-sectional, hence we use largely static data to predict dynamic interaction 8,12. 491 

This is partially overcome by inclusion of a longitudinal arm to our analysis to better assess 492 

temporal dynamics in association to exacerbation and antibiotic treatment. Next, although 16S 493 

methodologies are well established, there are inherent limitations, including under-494 

representation of mycobacteria, an important group of organisms in bronchiectasis 31. 495 

Additionally, fungal ITS sequencing approaches are challenged by under-developed reference 496 

databases 32. Our initial virome analysis, while broad, comprehensive, and informed by 497 

established literature, targets a known virus panel and therefore is subject to bias. This resulted 498 

in a much lower weighting of the virome in our SNF approach due to lower observed taxonomic 499 

richness, constrained by the employed methodologies. We at least partially attempted to 500 

overcome this through use of a metagenomics validation approach that assessed 501 
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bacteriophages. Future work and alternative approaches assessing viromes such as RNAseq 502 

may yield different results, and be more comprehensive allowing greater weighting of the viral 503 

contribution to the overall integrated microbiome, an important area of future exploration given 504 

the relatively poorly defined role of viruses in bronchiectasis. In addition, only young (healthy) 505 

controls were evaluated in our comparison of viral loads with bronchiectasis, and, additional 506 

older controls, comparable to age groups afflicted by bronchiectasis may have been of value. 507 

Further, while networks were weighted based on species richness, their true influence on the 508 

microbiome is not necessarily captured by richness alone, but rather a function of functional 509 

genes, competition, substrate utilization and energy flux through the ecosystem, traits that can’t 510 

be comprehensively assessed by sequencing alone. While metagenomics potentially represents 511 

a less biased alternative approach while we have performed as validation, it itself 512 

underestimates fungal presence given the significantly higher airway bacterial burden hence 513 

obscuring the influence that fungi have on the interactome. We further acknowledge that 514 

sputum is an imperfect matrix, and, make no inference about lower airway ecology, noting 515 

only the clinical associations between sputum as a surrogate, readily obtainable, non-invasive 516 

upper airway sample. Finally, while observational data suggests potential causal association, 517 

other factors may drive observed effects. Observed interactions may represent epiphenomena 518 

of a selectively operating immune system, for example, and our work did not include any 519 

assessment of host responses: another avenue for future work.  520 

 521 

Disrupting microbial networks through alteration of the ‘interactome’ is a novel consideration 522 

for chronic respiratory disease complicated by infection. The airway microbiome (and its 523 

accompanying interactome) is likely a critical predictor of antibiotic treatment response and 524 

provides a theoretical basis for understanding several phenomena associated with antibiotics 525 

that remain unexplained clinically including antimicrobial responses in apparently resistant 526 
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organisms. Manipulating microbiomes by means other than antibiotics are being explored and 527 

the effect of probiotics on the interactome should be considered. Holistic analytical approaches 528 

reflective of the in-vivo state, and, that which go beyond microbial identity alone must consider 529 

the complexity of inter-kingdom interactions demonstrated by ‘integrative microbiomics’ 530 

which may improve patient stratification, clinical trial design and therapeutic outcomes in 531 

bronchiectasis and other respiratory diseases. 532 

 533 
  534 
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Figure 1. Integration of multi-biome data through weighted-SNF identifies a cluster of 674 

bronchiectasis patients who frequently exacerbate. Overview of the multi-biome ‘integrative 675 

microbiomics’ strategy for analysis of ‘bacteriome’, ‘mycobiome’ and ‘virome’ datasets 676 

employing weighted Similarity Network Fusion (SNF) in bronchiectasis. (a) A heatmap 677 

illustrating the relative abundance of the top 20 identified taxa within the bacterial (blue) and 678 

fungal (green) communities respectively, and, the 17 viruses examined (red). Collectively, 679 

these kingdoms form the ‘multi-biome’ in the airway of patients with stable bronchiectasis 680 

(n=217). Relative taxonomic abundance is expressed in the heatmap according to depth of 681 

colour (0-100%). (b) A schematic overview of conventional (unweighted) and our derived 682 

weighted Similarity Network Fusion (SNF) approach to assess the airway multi-biome. 683 

Weightage is assigned to each -biome dataset based on its taxonomic richness. The weight for 684 

each biome is calculated by the number of observed taxa present with a prevalence of at least 685 

5% across the patient cohort. Weighted SNF reflects the in-vivo state and overcomes 686 

weaknesses of conventional SNF methodologies. (c) A heatmap illustrating pairwise patient 687 

weighted-SNF similarity scores (range; 0 - 0.5, blue - red) assessed by spectral clustering. Two 688 

distinct patient clusters are illustrated by blue and purple bars above the heatmap respectively. 689 

Clusters are colour-coded as (1) blue and (2) purple. (d) Linear discriminant effect size (LEfSe) 690 

analysis of the observed clusters illustrating taxa that discriminate between the multi-biome 691 

profiles of each group. A bar plot details each of the identified discriminant taxa ranked by 692 

their effect size. Discriminant taxa with a log-transformed effect size of >3 are presented (n = 693 

31). Alpha diversity and clinical features of the identified multi-biome clusters are illustrated 694 

by box and whisker plots showing (e) alpha diversity (Shannon diversity index), (f) number of 695 

exacerbations in the preceding year, (g) breathlessness score (MMRC), (h) lung function (as 696 

FEV1 % predicted) and (i) bronchiectasis severity index (BSI) for patients in each cluster. 697 

Prefixes indicate whether identified taxa are bacterial (B), fungal (F) or viral (V) and 698 
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significance levels for observed between-group differences are indicated as follows: ns: non-699 

significant; *p<0.05; **p<0.01; ***p<0.001. 700 

 701 

Figure 2. Co-occurrence analysis reveals a less complex but distinct ‘multi-biome’ network 702 

among high frequency bronchiectasis exacerbators characterised by a greater proportion of 703 

negative microbial interactions. (a-b) Co-occurrence network maps of low (blue) and high 704 

(purple) exacerbation frequency clusters illustrating all identified inter-kingdom interactions 705 

between bacteria, fungi and viruses of the multi-biome. Interactions between microbes (or 706 

nodes) are represented by connecting lines (edges) where the number of interactions for each 707 

microbe (or node) is reflected by node size linked to the scale bar provided. Selected bacterial 708 

(light blue), fungal (green) and viral (red) taxa of clinical relevance are indicated by node 709 

coloration. (c) Summary table illustrating the network characteristics of the low and high 710 

exacerbation frequency networks illustrating the total number of detectable microbes (nodes) 711 

within each network and the total number of interactions (edges) separating out the number of 712 

negative interactions (negative edges) observed as a proportion of the overall detected 713 

interactions. (d-e) Visualization of positive and negative interactions between the most 714 

abundant taxa in each respective cluster is illustrated and coloured according to the figure 715 

legend. Interactions between microbes are classified as negative if the sign of the edge weights 716 

between them is negative (negative correlation) and vice versa. 717 

 718 

  719 
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Figure 3. ‘Busy’, ‘Critical’ and ‘Influential’ microbes (nodes) are characterized by distinct 720 

interaction networks among frequently exacerbating bronchiectasis patients. Network 721 

visualization of key microbial taxa in (a) low and (b) high exacerbation frequency 722 

bronchiectasis clusters. Coloured circles represent microbes and grey lines their associated 723 

interactions within the network. Taxa present at >1% relative abundance in at least 5% of the 724 

patient cohort are included. Circle size (degree) reflects the number of direct interactions for a 725 

given microbe (termed ‘busy’). Circle outline thickness represents the calculated stress 726 

centrality for each microbe termed ‘critical’ while circle colour depth reflects betweenness 727 

centrality or the ‘influence’ of the microbe within the network. Two bacterial (Streptococcus 728 

and Haemophilus) and two fungal (Candida and Cryptococcus) genera all demonstrate high 729 

calculated network metrics (in both clusters) and are therefore considered ‘busy’, ‘critical’ and 730 

‘influential’ within each network and are indicated by red borders. (c) Co-occurrence analysis 731 

illustrates distinct Pseudomonas-interaction networks associated with increased exacerbation 732 

frequency in bronchiectasis. An overview of microbial interaction networks in the low- (left 733 

side) and high- (right side) exacerbation frequency clusters. Microbes not interacting directly 734 

with Pseudomonas (i.e. not part of the Pseudomonas-interaction network) are coloured 735 

according to their respective clinical cluster membership as blue (low exacerbation frequency 736 

cluster) and purple (high exacerbation frequency cluster). Lines connecting microbes directly 737 

interacting with Pseudomonas are coloured to reflect positive or negative interaction as 738 

indicated in the colour legend. Colour depth reflects strength of the interaction (edge weight). 739 

(d) Co-occurrence analysis highlighting the Pseudomonas-interaction network in the low- and 740 

high- exacerbation frequency clusters (left and right sided respectively). Interactions are 741 

positioned according to their positive (green; top) or negative (red; bottom) association with 742 

Pseudomonas spp and where indicated in bold are reflective of an antithesis relationship.  743 

 744 
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Figure 4. Longitudinal analysis of the integrated multi-biome during bronchiectasis 745 

exacerbations. (a) Bacterial, fungal and viral community status were assessed longitudinally in 746 

n=17 bronchiectasis patients at baseline (pre-exacerbation) (‘B’), during an established 747 

pulmonary exacerbation (‘E’) and then post-exacerbation (‘P’) following completion of 748 

antibiotic therapy. Pie charts illustrate aggregate microbial composition of the bacterial, fungal 749 

and viral community profiles across each timepoint with the most abundant taxa indicated by 750 

colour legend. (b) Boxplots illustrating comparable α-diversity across baseline (‘B’), 751 

exacerbation (‘E’) and post-exacerbation (‘P’) specimens. Dotted lines indicate the 752 

longitudinal pattern of each individual patient (n=17). (c) Non-metric Multi-Dimensional 753 

Scaling (NMDS) plot illustrating comparable multi-biome β-diversity across baseline (‘B’), 754 

exacerbation (‘E’) and post-exacerbation (‘P’) specimens. Samples are grouped according to 755 

their respective longitudinal time-point and timepoints indicated by coloured planes (d-f) 756 

Visualization of the interactome’s positive and negative interactions between the most 757 

abundant taxa at (d) baseline (pre-exacerbation), (e) during exacerbation and (f) post-758 

exacerbation. Interactions between microbes are classified as negative if the sign of the edge 759 

weights between them is negative and vice versa, as indicated in the colour legend. To study 760 

the stability of interactions longitudinally across the three timepoints, the relative change in 761 

strength of an interaction (defined as "maximal (interaction strength) – minimal (interaction 762 

strength)") across timepoints was assessed. (g) Relative interaction change is plotted 763 

comparing the changes occurring between baseline and exacerbation (‘B vs E’) and 764 

exacerbation vs post exacerbation (‘E v P’). Pairwise matrices indicate the comparative change 765 

in interaction observed between individual bacteria, fungi or viruses. Magnitude of change is 766 

indicated by the presented colour scale.  767 

 768 
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Figure 5. ‘Integrative microbiomics’ of the multi-biome reveals a core and ancillary microbial 769 

network in bronchiectasis exacerbations. (a) A Venn diagram summarizing the observed 770 

interactions of the multi-biome across the longitudinal sampling timepoints (baseline: blue, 771 

exacerbation: red, post exacerbation: green) and their intersections. (b) Network analysis 772 

illustrating that a ‘core’ microbial network is present across the three longitudinal timepoints 773 

assessed (pre-exacerbation, during exacerbation and post-exacerbation). This occurs in parallel 774 

to the ‘ancillary’ microbial network implicated in bronchiectasis exacerbation. The presented 775 

network summary captures the common interactions to that in the baseline (pre-exacerbation) 776 

reference network and outlines condition specific networks (during exacerbation and post-777 

exacerbation). Levels of conservation for each specific interaction within the network is colour-778 

coded with blue indicating highly conserved interactions and purple highly variable 779 

interactions across the course of a bronchiectasis exacerbation. (c) Baseline network analysis 780 

of bronchiectasis patients who subsequently received β-lactam therapy for treatment of an 781 

exacerbation (n=12). (d) a simulated network based on 75% reduction in the abundance of β-782 

lactam-susceptible organisms and calculation of the re-configured network. (e) observed 783 

network reconfiguration in patients following β-lactam therapy. Circle size, outline thickness 784 

and colour respectively represent node importance based on network metrics; degree, stress 785 

centrality and betweenness centrality (c.f. figure 3).  786 

 787 

  788 



 34 

Figure 6. Functional characterisation of the high-exacerbation frequency cluster and its 789 

associated interactome. (a) Functional mapping of metagenomic data from n=20 patients from 790 

the low-exacerbation (LEF, blue) and high exacerbation frequency (HEF, purple) clusters was 791 

performed identifying 113 discriminant genes in the HEF cluster compared to 16 genes in the 792 

LEF cluster by Linear discriminant effect size (LEfSe) analysis. A bar plot illustrates effect 793 

size observed for discriminant genes in each group. Discriminant genes with a log-transformed 794 

effect size of >2 are presented (n = 129) (b) KEGG Pathway mapping of identified genes 795 

indicating enriched functional pathways in the HEF and LEF clusters. (c) Node and edge plots 796 

extracted from the LEF and HEF network cluster analysis (figure 3) highlighting opposing 797 

interactions between P. aeruginosa and A. fumigatus related to exacerbation frequency. Edges 798 

are coloured green or red reflecting a positive (co-occurrence) or negative (co-exclusion) 799 

interaction, respectively. Circle size, outline thickness and colour respectively represent node 800 

importance based on network metrics; degree, stress centrality, and betweenness centrality (c.f. 801 

figure 3). (d) Demonstration of strain-dependant inter-kingdom interaction between P. 802 

aeruginosa and A. fumigatus. Comparison of direct interactions between P. aeruginosa 803 

laboratory strain (‘PAO1’; grey) and isolates obtained from patients from the LEF and HEF 804 

clusters respectively (‘LEF’; blue, ‘HEF’; purple) with A. fumigatus (Af293) by disk inhibition 805 

assays. Colony zone diameter is indicated by a red circle for P. aeruginosa strains grown in 806 

the presence (+) or absence of (-) Af293 at 24h and 48h timepoints, respectively. (e) Analysis 807 

of P. aeruginosa zone diameters observed following co-culture with Af293 following 24h and 808 

48h incubation. Bars are coloured according to the respective P. aeruginosa strain as described 809 

above. Open bars indicate zone diameters observed in the absence of A. fumigatus and filled 810 

bars indicate zone diameters observed on co-culture. Error bars represent the standard deviation 811 

of triplicate determinations. ns: non-significant; **p<0.01; ***p<0.001.  812 

 813 
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Figure 7. Metagenomics reveals shifts in gene function and validates microbial interactions 814 

associated with clinical exacerbation in bronchiectasis. (a) Heatmap illustrating pairwise 815 

patient similarity scores (range; 0 - 0.5, cyan - turquoise) assessed by spectral clustering of 816 

functional gene assignments. Two distinct patient clusters are indicated (FC1 and FC2). (b) 817 

Linear discriminant effect size (LEfSe) analysis of the observed gene functional pathways that 818 

discriminate between each group (FC1 and FC2). A bar plot details each of the identified 819 

discriminant taxa ranked by their effect size. Discriminant pathways with a log-transformed 820 

effect size of >3 are presented (n = 42). Clinical features of the identified multi-biome clusters 821 

are illustrated by box and whisker plots showing (c) number of exacerbations in the preceding 822 

year and (d) bronchiectasis severity index (BSI) for patients in each cluster; ns: non-significant; 823 

***p<0.001. The aggregate relative abundance of (e) bacteria, (f) viruses and (g) fungi 824 

determined by taxonomic assignment of metagenomic reads across an independently recruited 825 

cohort of bronchiectasis patients (n=166). (h) Heatmap illustrating pairwise similarity scores 826 

and resultant patient stratification based on spectral clustering according to each individual -827 

biome view from metagenomics analysis (bacteria: blue, virus: red and fungi: green) and the 828 

weighted-SNF integrated microbiome (purple). (i) Co-occurrence analysis of taxa identified in 829 

wSNF clusters SC1 (low exacerbation) and (j) SC2 (high exacerbation). Circles represent 830 

microbial nodes and grey lines associated interactions within the network. Circle size (degree) 831 

reflects the number of direct interactions for a given microbe (termed ‘busy’). Circle outline 832 

thickness represents the calculated stress centrality for each microbe termed ‘critical’ while 833 

circle colour depth reflects betweenness centrality or the ‘influence’ of the microbe within the 834 

network. Bacteriome, virome and mycobiome nodes are respectively indicated by blue. red, 835 

green borders. (k) Network analysis illustrating conserved microbial interactions (bacteria and 836 

fungi only) present across targeted and metagenomic interactome analysis. Common 837 
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interactions to both networks are colour-coded according to the strength of the conserved 838 

interactions. 839 
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