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Objectives: Maternal smoking causes fetal underdevelopment and results in births

which are small for gestation age due to intrauterine undernutrition, leading to various

metabolic disorders in adulthood. Furthermore, postnatal high fat diet (HFD) consumption

is also a potent obesogenic factor, which can interact with maternal smoking. In this

study, we aimed to determine whether maternal HFD consumption during pregnancy can

reverse the adverse impact of maternal smoking and change the response to postnatal

HFD consumption.

Methods: Female mice were exposed to cigarette smoke (SE, 2 cigarettes/day) or

sham exposed for 5 weeks before mating, with half of the SE dams fed HFD (43%

fat, SE+HFD). The same treatment continued throughout gestation and lactation. Male

offspring from each maternal group were fed the same HFD or chow after weaning and

sacrificed at 13 weeks.

Results: Maternal SE alone increased body weight and fat mass in HFD-fed offspring,

while SE+HFD offspring showed the highest energy intake and glucose metabolic

disorder in adulthood. In addition, postnatal HFD increased the body weight and

aggravated the metabolic disorder caused by maternal SE and SE+HFD.

Conclusions: Maternal HFD consumption could not ameliorate the adverse effect of

maternal SE but exaggerate metabolic disorders in adult offspring. Smoking cessation

and a healthy diet are needed during pregnancy to optimize the health outcome in

the offspring.
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WHAT THIS PAPER ADDS

What Is Already Known on This Subject
Maternal smoking is one of the known risk factors for the
development of obesity in offspring. A number of studies have
provided evidence that maternal cigarette smoke exposure (SE)
leads to low birth weight and faster weight gain during the
suckling period, called catch-up growth. This fast postnatal
growth is commonly observed in children, which may lead to
obesity during childhood as shown in the weaning offspring in
this study.

What Important Gaps in Knowledge Exist
on This Topic
Maternal high fat diet (HFD) consumption, on the other hand,
can lead to in utero overnutrition. However, it is unclear
whether in the setting of maternal SE, HFD consumption
may mask the impact of in utero undernutrition caused by
maternal SE. Furthermore, we cannot exclude the possibility
that postnatal HFD consumption may worsen the regulation of
energy consumption in offspring with in utero SE.

What This Paper Adds
Our study demonstrated that maternal SE during pregnancy
results in increased adiposity and metabolic disorders if the
offspring are exposed to HFD after weaning. The additional
exposure to HFD failed to counteract with cigarette SE leading
to even more severe metabolic disorders in adult offspring.
Therefore, both quitting smoking and maintaining a healthy diet
are vital for the healthy future of the offspring.

KEY MESSAGES

- Maternal smoking exposure (SE) decreased body weight
without affecting the daily energy intake of breeders.

- Maternal HFD consumption could not ameliorate the adverse
effect of maternal SE but exaggerate metabolic disorders in
adult offspring.

- Postnatal HFD failed to counteract with cigarette SE but
further increased the body weight and aggravated the
metabolic disorder caused by maternal SE and SE+HFD.

INTRODUCTION

Obesity is occurring at alarming rates globally, which is linked
to various complications, such as metabolic disorders, diabetes,
cardiovascular disease, cancers, osteoarthritis, and reproductive
problems (1–3). About 2.1 billion people worldwide are estimated
to be overweight or obese, increasing their risk of developing
associated insulin resistance and cardiovascular disease, adding
to the already enormous cost of obesity-related diseases (3, 4).
The consumption of food high in energy and fat is the major
driver of the obesity pandemic. However, many obese people may
also have had a suboptimal intrauterine environment which may
interact with obesity-induced risks.

Maternal smoking is one of the known risk factors for
the development of obesity in offspring. Epidemiological

investigations revealed that maternal smoking/second-hand
cigarette smoke exposure (SE) during pregnancy is also a
major cause of intrauterine undernutrition, even the mothers
do not necessarily eat less during pregnancy compared with
non-smokers (5, 6). This is caused by placental limitation,
leading to pre-term birth, low body weight, and reduced
head circumference at birth (7–9). However, postnatal catch-
up growth results in maternal smoking being associated with
an increased risk of obesity in offspring in both childhood
and adulthood (10–12). Secondary to this catch-up growth,
maternal SE has also been shown to contribute to later metabolic
disorders in the offspring, such as glucose intolerance and type
2 diabetes, fatty liver changes, dyslipidemia, and cardiovascular
disease (13–17). This has been suggested to be linked to
increased eating disorders in such offspring (8, 18). Therefore,
the impact of maternal SE offspring is more than just intrauterine
undernutrition and fetal growth restriction, with long-lasting
effects on one’s adulthood.

Maternal high fat diet (HFD) consumption, on the other
hand, can lead to in utero overnutrition. However, it is unclear
whether in the setting of maternal SE, HFD consumption
may mask the impact of in utero undernutrition caused by
maternal SE. Furthermore, we can’t exclude the possibility that
maternal HFD consumptionmay worsen the regulation of energy
consumption in offspring with in utero SE, as both can encourage
energy overconsumption in rodent models (19, 20). Maternal
nicotine exposure is a strong risk factor for obesogenic overeating
in childhood (21). Interestingly, prenatal growth retardation
during infancy has been reported in obese mothers who smoked
during pregnancy (5). This indicates that HFD consumption
might not be able to reverse the intrauterine undernutrition
resulted from maternal smoking. In animal studies, maternal
HFD consumption during pregnancy also results in increased
milk intake during the suckling period, and overfeeding during
this period can have additive effects to further induce fat over
accumulation resulting in metabolic disorder (22, 23). However,
this conclusion is difficult to apply to humans due to the
complexity of dietary and smoking behaviors between different
individuals, as well as other external factors.

One of the widely studied appetite regulatory networks is
in the hypothalamus, consisting of neurons expressing the
appetite stimulator neuropeptide Y (NPY) and its counterpart,
appetite suppressors α-melanocyte stimulating hormone (α-
MSH) coded by proopiomelanocortin (POMC) (24). While
maternal SE may induce smoking quitting type of rebound
response of NPY in the offspring’s brain (6), maternal obesity
leads to a heightened response of NPY signaling after fasting
(25). However, it is unclear how maternal SE and maternal
HFD consumption interact to influence brain appetite regulators
in the offspring. Skeletal muscle is a key metabolic organ
for glucose metabolism. Both maternal HFD and SE exposure
during pregnancy may affect muscle genesis, and thereafter
metabolic function (26, 27). Myoblast determination protein
1 (Myod1) promotes transcriptional activation of Myogenin
(Myog) during myogenesis (28). It is unknown how they are
affected by prenatal and postnatal insults, which were examined
in this study.
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Furthermore, epidemiological studies have found that HFD
consumed early in life is a risk factor for childhood weight
gain and later adulthood obesity, accompanied by various
metabolic dysfunction (29, 30). Thus, we hypothesized that
post-weaning HFD exposure may further exaggerate metabolic
disorders caused by maternal SE, whereas, additional HFD
exposure in the SE mothers may ameliorate the adverse impact
on the metabolic regulators in the offspring. In this study, we
exposed the dams to cigarette smoke with/without access to
a HFD and also offered the same HFD to half of the litter
after weaning. We aimed to examine the interaction between
maternal and postnatal environmental factors on the metabolic
outcomes in the offspring, including body weight, organ weight,
gene expression of metabolic markers in the hypothalamus and
metabolic organs.

MATERIALS AND METHODS

Animals
According to the previous findings on the strain dependence of
the response to SE (31), Balb/c mice were used for this study.
Female mice breeders (aged 6 weeks) were housed at 20 ±

2◦C in sterile micro-isolator cages and maintained on a 12:12 h
light/dark cycle (lights on at 06:00 h). They were allowed a week
to adapt to their new environment, with ad libitum access to
standard rodent chow and water. The study was approved by
the Animal Ethics Committee of the San Yet-sun University
(number: SYSU-IACUC-2020-B0552).

Modeling of Maternal SE and HFD Feeding
After acclimatization, female breeders were randomly divided
into three groups with similar average body weight: sham
exposed fed a chow (CHOW+SHAM, representing a healthy
control), chow-fed SE (CHOW+SE, representing smokers
consuming a balanced diet), and HFD-fed SE (HFD+SE,
representing smokers consuming a “junk” diet). For SE, animals
were placed inside a perspex chamber (18 L) and exposed to
the smoke produced by two cigarettes (Double Happiness; Tar:
8mg; nicotine: 0.7mg; CO: 10mg), twice daily for 5 weeks before
mating, during pregnancy and lactation as described in Chan
et al. (32). The sham exposed animals were handled identically
but were not exposed to cigarette smoke. Mice were fed either
standard rodent chow (3.76 kcal/g, 16% energy as fat, 20% as
protein, Research Diets, Inc., United States), or a pellet HFD (4.7
kcal/g, 43% energy as fat, 20% as protein, 35% as carbohydrate,
Research Diets, Inc., United States. Supplementary Table 1) (33,
34). Body weight and 24-h caloric intake were measured once
a week as previously described (14, 35). After 5 weeks of pre-
conditioning, females were housed and mated with male mice.
The same treatment was continued until pups weaned.

Postnatal Litter Size Adjustment and
Post-Weaning HFD Feeding
On day 1 after birth, litters were adjusted to a size of 4–
6 animals per litter (sex ratio 1:1) to minimize the impact
of milk competition. At the age of 20 days (weaning age),
male pups were used in the current study. Half of the male

pups from the same litter were given a chow diet, while
the other half were given the pellet HFD used in the dams.
This further yielded six experimental groups, described as
the maternal diet + maternal exposure – offspring diet. The
six groups were CHOW+SHAM-CHOW, CHOW+SE-CHOW,
HFD+SE-CHOW, CHOW+SHAM-HFD, CHOW+SE-HFD,
andHFD+SE-HFD. Body weight and food intake were measured
once a week until mice reached 13 weeks of age.

Offspring IP Glucose Tolerance Test
(IPGTT)
Intraperitoneal glucose tolerance test (IPGTT) was carried out
as previously described (13). Briefly, 11 weeks old male offspring
were fasted for 5 h. Blood samples were collected from the tail
tip to establish a baseline glucose level (T0), which was measured
again at 15, 30, 60, and 90min after glucose injection (2 g/kg, ip).
The area under the curve (AUC) was calculated for each mouse
during IPGTT.

Sample Collection
Dams were culled 1 day after pups were weaned and male
offspring were culled at 13 weeks. After overnight fasting and
deep anesthesia (ketamine/xylazine 180/32 mg/kg), blood was
collected by cardiac puncture and blood glucose was measured
immediately (Accu-Chek glucose meter, Roche) in the dams.
Plasma was stored at −20◦C for insulin and triglyceride (TG)
measurements. Then animals were killed by decapitation and
the hypothalamus was micro-dissected. Brown adipose tissue
(BAT), epididymal fat, retroperitoneal (Rp) fat, mesenteric fat
was dissected and weighed, as well as organs (liver and heart)
and skeletal muscle [soleus, extensor digitorum longus (EDL),
and tibialis]. Rp fat, BAT, and skeletal muscle were kept providing
further markers of substrate metabolism.

Plasma TG and Insulin Assays
Plasma TG was measured using glycerol standard (equivalent
to 0–8.46mM; G7793, Sigma-Aldrich) and TG reagent (T2449,
Sigma-Aldrich) as previously described (35). Briefly, samples
and standards were incubated with triglyceride reagent at
37◦C for 20min and read on a microplate reader (51119000,
Thermo Scientific) at 490 nm. Plasma insulin concentrations
were measured using a commercially available ELISA kit
(KA3812, Abnova).

Quantitative Real-Time PCR
Total RNA was isolated using TriZol reagent (15596026,
Invitrogen) according to the manufacturer’s instructions. The
purified total RNA was used as a template to generate first-strand
cDNA synthesis kit (RR036A, Takara). TaqMan probe/primers
that were pre-optimized and validated by the manufacturer (only
probe sequence provided by Thermo Fisher Scientific, USA,
Supplementary Table 2) were used for quantitative real-time
PCR (StepOnePlus Real-Time PCR System, Applied Biosystem).
Markers of appetite regulation, including Npy, Npy Y1 receptor
(Npy1r), Pomc, and single minded gene (Sim1), were measured
in the hypothalamus. Marker involved in substrate metabolism
carnitine palmitoyl-transferase (Cpt1α) and Tnfα were measured
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TABLE 1 | Parameters of the dams.

Chow+Sham Chow+SE HFD+SE

(n = 11) (n = 11) (n = 10)

BW initial (g) 18.47 ± 0.35 18.30 ± 0.40 18.01 ± 0.39

BW at mating (g) 20.47 ± 0.11 19.07 ± 0.18# 22.17 ± 0.58*

BW at weaning (g) 24.85 ± 0.98 20.59 ±0.24# 24.93 ± 0.98*

Energy intake (kJ/d) 36.82 ± 2.16 35.95 ± 1.96 41.97 ± 5.13

Liver (mg) 1,477.8 ±

33.9

1,168.1 ±

43.7#
1,289.5 ±

86.1*

Heart (mg) 119.6 ± 3.7 111.9 ± 2.4# 138.0 ± 7.0*

BAT (mg) 51.29 ± 4.2 48.58 ± 4.61# 79.81 ± 5.05*

Rp fat (mg) 32.11 ± 13.95 16.90 ± 8.46# 211.9 ± 32.9*

Epididymal fat (mg) 240.0 ± 87.3 122.6 ± 28.0# 811.8 ±

195.4*

Mesenteric fat (mg) 461.9 ± 50.4 379.9 ± 37.5# 628.8 ± 78.1*

Glucose (mM) 9.77 ± 0.11 9.43 ± 0.16# 9.13 ± 1.67

Results are showed as mean ± SEM. Data were analyzed by one-way ANOVA, followed

by post-hoc LSD tests. #p < 0.05, maternal SE effect; *p < 0.05, maternal HFD effect.

BAT, brown adipose tissue; BW, body weight; Rp, retroperitoneal.

in the Rp fat. Thermogenesis markers Uncoupling protein
(Ucp1 and Ucp3) were measured in BAT. Expression of muscle
metabolic markers PPARγ coactivator (Pgc1α and Pgc1β), Myog
and MyoD were measured in the soleus muscle.

Statistical Methods
Results are expressed as mean ± SEM. Data on blood glucose
level change during IPGTT was analyzed using one-way analysis
of variance (ANOVA) with repeated measures, followed by post-
hoc Fisher’s Least Significance Difference (LSD) tests. Differences
in other parameters in the dams and offspring were analyzed
using one-way ANOVA and two-way ANOVA, respectively,
followed by post-hoc LSD tests if the data were normally
distributed. If not, data were log transformed to achieve
normality of distribution before they were analyzed.

RESULTS

SE Decreased Body Weight Without
Affecting the Daily Energy Intake of
Breeders
Before the start of the experiment, the average body weight of
female mice was similar among the three groups. After 5 weeks of
treatments, mice exposed to cigarette smoke showed significantly
lower body weight than those with sham exposure (p < 0.05,
Table 1), whereas HFD feeding increased the body weight of the
mice with SE (p < 0.05, Table 1). This effect on body weight
persisted until these breeders were sacrificed. Interestingly, SE
did not affect the daily caloric intake, however, mice consumed
45.6% more calories if they were fed a HFD while exposed to
cigarette smoke.

SE reduced liver and fatmass, with reduced blood glucose level
(p < 0.05 vs. CHOW+SHAM, Table 1) which was consistent
with the literature. HFD+SE dams also had increased liver and

heart weight, as well as body fat such as BAT, Rp fat, epididymal
fat, and mesenteric fat, while SE markedly reduced the weights of
liver, heart, and fat tissues (p < 0.05 vs. CHOW+SE), with some
even greater than the control mice, however, the glucose level was
further reduced.

Postnatal HFD Increased the Body Weight
and Aggravated the Metabolic Disorder
Caused by Maternal SE and SE+HFD
At weaning (postnatal day 20), CHOW+SE and HFD+SE
pups appeared to have bigger body weights as compared with
those from control dams (CHOW+SHAM), indicating that both
maternal HFD and SE might raise the risk of obesity in young
mice (Table 2).

At 13 weeks, chow-fed offspring from CHOW+SE and
HFD+SE dams showed similar body weight with only larger liver
and heart in the SE-CHOW offspring. They also had a similar
ability to clear blood glucose during IPGTT (Figures 1A,B), with
similar plasma insulin and TG levels among the 3 chow-fed
offspring groups (Figures 1C,D).

With postnatal exposure to a HFD, the body weight, body
fat (BAT, RP, Epididymal, and Mesenteric fat) and skeletal
muscle mass (EDL, soleus, and tibialis), were significantly
greater in the offspring treatment. The mice from SE and
SE+HFD dams showed a faster growth rate as compared with
those from CHOW+SHAM dams (p < 0.05, CHOW+SHAM-
HFD vs. CHOW+SE-HFD, CHOW+SE-HFD vs. HFD+SE-
HFD, Table 2). A significant increase in energy intake was
only observed in the HFD+SE-HFD offspring (Table 2).
Moreover, CHOW+SE-HFD offspring showed significantly
bigger heart and muscle weights, while HFD+SE-HFD offspring
only showed larger muscle weight (EDL and Soleus) (p <

0.05, CHOW+SHAM-HFD vs. CHOW+SE-HFD, CHOW+SE-
HFD vs. HFD+SE-HFD, Table 2). HFD+SE-HFD offspring
developed more severe glucose intolerance during IPGTT than
CHOW+SHAM-HFD and CHOW+SE-HFD offspring (p <

0.05, Figure 1B); however, only CHOW+SHAM-HFD and
HFD+SE-HFD offspring showed increased plasma insulin levels
(Figure 1C). In addition, plasma TG levels were not affected by
postnatal HFD-consumption (Figure 1D).

Thus, maternal intervention, including SE and SE+HFD,
resulted in increased body weight at weaning; however, this
difference due to maternal programming diminished after
consuming a balanced chow diet. While maternal SE increased
body weight and heart weight without affecting adiposity when
the offspring consumed a HFD, maternal exposure to both SE
andHFD significantly increased caloric intake and resulted in the
largest fat mass although without statistical significance.

Effects on Hypothalamic Appetite
Regulators in Male Offspring
To investigate the effects of the maternal and postnatal
HFD consumption on the feeding regulators, we checked the
mRNA expression in the hypothalamus. In chow-fed offspring,
Pomc mRNA expression was significantly up-regulated in
the HFD+SE-CHOW group (p < 0.05 vs. CHOW+SHAM,
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TABLE 2 | Parameters of the male offspring.

Maternal treatments CHOW+SHAM CHOW+SE HFD+SE CHOW+SHAM CHOW+SE HFD+SE

Offspring diet CHOW HFD

(n = 16) (n = 8) (n = 12) (n = 16) (n = 8) (n = 13)

BW at 20 d (g) 7.01 ± 0.21 8.67 ± 0.33# 8.63 ± 0.30$ 7.14 ± 0.24* 9.28 ± 0.31*# 8.99 ± 0.34*$

BW at 13 weeks (g) 19.71 ± 0.32 21.4 ± 0.27 20.59 ± 0.47 25.22 ± 0.66* 27.6 ± 0.64*# 26.99 ± 0.96*

Energy intake (kJ/d) 46.19 ± 8.69 46.55 ± 6.99 36.87 ± 4.81 58.51 ± 3.71 52.74 ± 2.82 64.54 ± 1.81*

Liver (mg) 879.9 ± 22.4 969.6 ± 15.2# 883.7 ± 18.5 1,055.1 ± 25.5* 1,093.1 ± 16.5* 1,149.8 ± 50.3*

Heart (mg) 101.3 ± 2.3 110.6 ± 3.3# 107.6 ± 3.6 125.0 ± 2.1* 137.8 ± 2.9*# 131.5 ± 2.49*

BAT (mg) 66.13 ± 1.26 68.4 ± 2.35 70.8 ± 2.45 118.9 ± 5.58* 124.0 ± 8.67* 134.6 ± 8.05*

Rp fat (mg) 125.4 ± 9.2 145.7 ± 13.8 170.3 ± 7.8 412.6 ± 38.1* 474.3 ± 51.4* 452.4 ± 39.8*

Epididymal fat (mg) 295.7 ± 20.0 366.0 ± 20.0 391.0 ± 19.9 906.8 ± 88.9* 1,101.5 ± 103.8* 1,189.8 ± 116.8*

Mesenteric fat (mg) 398.0 ± 18.2 460.8 ± 11.0 466.0 ± 27.6 592.6 ± 37.3* 642.2 ± 48.8* 704.5 ± 44.2*

EDL (mg) 18.70 ± 0.85 18.41 ± 0.53 17.73 ± 0.69 20.56 ± 0.46* 23.89 ± 0.95*# 21.29 ± 0.94*$

Soleus (mg) 10.05 ± 0.36 11.33 ± 0.56 10.81 ± 0.37 12.28 ± 0.28* 15.4 ± 0.79*# 12.26 ± 0.66*$

Tibialis (mg) 70.48 ± 1.58 75.58 ± 1.28 71.29 ± 2.19 80.98 ± 1.33* 88.66 ± 1.91*# 83.83 ± 2.41*

Results are presented as mean ± SEM. Data were analyzed by multi-factor ANOVA, followed by post-hoc LSD tests. *p < 0.05, postnatal HFD effect; $p < 0.05, maternal HFD effect;

and #p < 0.05, maternal SE effect. BAT, brown adipose tissue; BW, body weight; EDL, extensor digitorum longus; Rp, retroperitoneal.

Figure 2A), whereas Sim 1 was significantly increased in the
CHOW+SE-CHOW and HFD+SE-CHOW groups (p < 0.05
vs. CHOW+SHAM, Figure 2B). Moreover, hypothalamic Npy
mRNA was only increased in CHOW+SE-CHOW offspring (p
< 0.05 vs. CHOW+SHAM, Figure 2C), although the level in
the HFD+SE-CHOWgroup was comparable to the CHOW+SE-
CHOW group. However, Npyr1r mRNA was similar among
chow-fed offspring.

In HFD-fed offspring, Pomc mRNA expression was increased
by HFD consumption (p < 0.05 vs. CHOW+SHAM-CHOW,
Figure 2A), which was further increased in CHOW+SE-HFD
mice (p < 0.05, CHOW+SE-HFD vs. CHOW+SHAM-HFD).
There was no difference in PomcmRNA level between HFD+SE-
HFD and CHOW+SE-HFD group. However, Sim 1 was only
significantly increased in the HFD+SE-HFD group compared
with the CHOW+SHAM-HFD group (p< 0.05, Figure 2B).Npy
was significantly upregulated in the CHOW+SE-HFD group (p
< 0.05 vs. CHOW+SHAM-HFD, Figure 2C) although similar to
its chow-fed littermates, whereasNpyr1rmRNAwas significantly
upregulated in the HFD+SE-HFD offspring (p < 0.05 vs.
CHOW+SHAM-HFD, Figure 2D).

Effects on the Substrate Metabolic in the
Fat and Muscle in the Offspring
Cpt1α is the rate-limiting step for fatty acid oxidation in the
mitochondrial, while Tnfα is a pro-inflammatory cytokine which
plays a key role in insulin resistance. The expression of Cpt1α
and Tnfα were no affected by neither maternal nor postnatal
interventions (Figures 3A,B). However, the expression of the
thermogenesis markers Ucp1 was significantly up-regulated
by postnatal HFD consumption in CHOW+SHAM-HFD and
HFD+SE-HFD groups compared with their chow-fed littermates
(p < 0.05, Figure 3C), while Ucp3 was significantly higher in

the HFD+SE-HFD compared with CHOW+SHAM-HFD and
CHOW+SE-HFD groups (p < 0.05, Figure 3D).

In soleus muscle, we check the expression of mitochondrial
biogenesis markers Pgc1α and Pgc1β, which were not
significantly affected by maternal programming nor postnatal
HFD consumption (Figures 4A,B), albeit a trend decrease in
Pgc1β expression in CHOW+SE-HFD and HFD+SE-HFD
groups. Furthermore, Myog expression was not different
among all groups (Figure 4C); however, Myod1 expression
was up-regulated in the HFD+SE-CHOW group (p < 0.05
vs. CHOW+SHAM-CHOW), which was further reduced
by postnatal HFD feeding (p < 0.05 vs. HFD+SE-CHOW,
Figure 4D).

DISCUSSION

In this study, we demonstrated that maternal SE exaggerates
metabolic disorders if the offspring consume a HFD after
weaning. The additional HFD consumption did not ameliorate or
reverse the adverse effects due to maternal SE. On the contrary,
maternal exposure to both SE and HFD led to the worst outcome
in the offspring fed a HFD after weaning.

Exposure to cigarette smoke alone induced significant wasting
in the dams, reflected by reduced both fat and lean body mass,
consistent with a previous study (13). While additional HFD
consumption only significantly increased the body weight at
mating, after lactation, the body weight of HFD+SE dams was
comparable to the control offspring. However, abdominal fat
masses were increased in mice exposed to cigarette smoke at this
time point. This is consistent with observations in humans that
smoking encourages the development of central obesity albeit
smaller body weight (36).

A number of studies have provided evidence that maternal SE
led to low birth weight and faster weight gain during the suckling

Frontiers in Nutrition | www.frontiersin.org 5 March 2021 | Volume 8 | Article 638576

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Huang et al. Maternal Smoke Exposure and HFD

FIGURE 1 | Blood glucose and lipid profile in male offspring. (A) Change in blood glucose levels during an IPGTT at 11 weeks. The area under the curve for panel (A)

is shown in panel (B). (C,D) The concentration of insulin (C) and TG (D) in plasma in male offspring at 13 weeks. All statistical results are showed as mean ± SEM.

Data were analyzed by two-way ANOVA, followed by post-hoc LSD tests. *p < 0.05 postnatal HFD effect, $p < 0.05 maternal HFD effects.

period, called catch-up growth (6, 37, 38). This fast postnatal
growth is commonly observed in children, which may lead to
obesity during childhood as shown in the weaning offspring
in this study (39, 40). Childhood BMI can positively correlate
with that in adulthood, which has been well-represented in the
offspring with in utero SE. This is not caused by overeating,
as the caloric intake was similar between CHOW+SE-HFD
andCHOW+SHAM-HFD offspring.Maternal nicotine exposure
has been shown to reduce hypothalamic Npy and increase
Pomc expression in newborns (6). The increase in both in the
CHOW+SE-HFD offspring may reflect a withdrawn rebound,
similar to the response in the smokers after quitting. This
may be attributed to larger fat mass in CHOW+SE-HFD
offspring. There are several homologs of UCPs, including UCP1

and UCP3, which are responsible for mediating thermogenesis
and basal metabolic rate in fat (41). Previously study showed
that caloric restriction could down-regulate UCP1 to and
UCP3 reserve energy expenditure (42, 43). Thus, the HFD
leads to an adaptive upregulation of UCPs to increase energy
expenditure as shown in CHOW+SHAM-HFDmice. Compared
with CHOW+SHAM-HFD offspring, those with intrauterine SE
had suppressed thermogenesis marker UCP1 in their BAT, which
may impair the adaptive increase in heat production observed
in CHOW+SHAM-HFD offspring, resulting in increased fat
mass in CHOW+SE-HFD offspring. Glucose intolerance in
CHOW+SE-HFD mice may be due to insulin insufficiency,
rather than insulin resistance in CHOW+SHAM-HFD, as
reflected by plasma insulin levels in these two groups. Increased
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FIGURE 2 | Expression of the energy homeostatic regulator in the hypothalamus. Hypothalamic mRNA expression of Pomc (A), Sim1 (B), Npy (C), and Npy1r (D) in

the male offspring at 13 weeks. Results are expressed as mean ± SEM. Data were analyzed by two-way ANOVA, followed by post-hoc LSD tests. *p < 0.05,

postnatal HFD effect; $p < 0.05, maternal HFD effect; and #p < 0.05, maternal SE effect. %p < 0.05.

insulin level is a sign of insulin resistance. HFD has been shown to
reduce insulin sensitivity and promote the development of type 2
diabetes (44). Previous studies have shown that maternal nicotine
treatment can interrupt β-cell functions in the offspring (45–47).

“Eat for two” is a traditional practice for pregnant women even
in the current obesity pandemic. As intrauterine undernutrition
is a key to maternal smoking, such practice may be more
appealing. However, in this study, we have shown that the
combination of maternal HFD and SE further exaggerates the
metabolic disorders than maternal SE alone when the offspring
were exposed to an obesogenic environment after birth. There are
several mechanisms suggested in this study. Firstly, overeating
was only observed in HFD+SE-HFD offspring, which may be
driven by markedly upregulated Npy1r, the orexigenic receptor
for NPY. This increase in activity was not counteracted by the
adaptive increase in Sim1 expression which lies downstream
of the receptor of the anorexigenic peptide αMSH. Secondly,

the heightened glucose intolerance may be a combination
of impaired β-cell function due to maternal SE and insulin
resistance due to both intrauterine and postnatal HFD exposure.
Albeit overeating, the body weight and fat mass in HFD+SE-
HFD seem to be controlled. This may be due to more than
doubled Ucp3 expression to increase the energy expenditure
while energy was over consumed.

During the weight gain by HFD consumption, muscle mass is
also increased to support the increased body weight, as shown in
HFD-fed mice in this study. The greatest increase in HFD+SE-
HFD mice may be proportional to their body weight. Pgc1α
controls mitochondrial biogenesis and angiogenesis in skeleton
muscle (48–50); whereas, Pgc1β activates an anti-angiogenesis
gene program in the skeletal muscle and its overexpression
can induce muscle wasting by inhibiting ubiquitin-mediated
proteolysis (51, 52). In our present study, the trending decrease
in Pgc1β in mice from SE dams can help to explain the
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FIGURE 3 | Expression of energy metabolic regulators in fat tissue. mRNA expression of Cpt1α (A), Tnfα (B) in the white fat and, Ucp1 (C), and Ucp3 (D) in the

brown fat in the male offspring 13 weeks. Results are expressed as mean ± SEM. Data were analyzed by two-way ANOVA, followed by post-hoc LSD tests. *p <

0.05, postnatal HFD effect and #p < 0.05, maternal SE effect. %p < 0.05 vs. CHOW+SHAM-HFD and CHOW+SE-HFD.

increased muscle mass. However, this did not seem to lead to
an improvement in muscle metabolic function. Previous studies
suggested that Myod1 could promote transcriptional activation
to regulate the expression of muscle-specific genes, including
Myog, which plays a crucial role in the terminal differentiation
during myogenesis (28, 53). In this study, we found significantly
altered Myod1 expression but not Myog by maternal HFD+SE.
This may be an adaptation to prevent a reduction in muscle mass
by maternal SE, which is common in smokers (54). However, the
Myod1 changes in offspring from HFD+SE dams was reversed
by postnatal HFD consumption. This may be due to myogenesis,
as we observed in the other groups fed a HFD. However, further
studies are needed to examine the metabolic functions of the
muscle as well as mitochondrial function which is beyond the
scope of this study.

Whilst there was increased fat mass and unchanged fatty acid
metabolic marker Cpt1α, plasma TGwas not affected bymaternal
programming nor postnatal HFD consumption, which might be
due to the mouse strain specific. It has previously been shown
that with cigarette SE only during lactation, there were decreased
proteins levels of Ucp1 and Cpt1 and reduced sympathetic nerve
stimulation upon BAT in female adult rat (55). The same was
observed with the administration of isolated nicotine through
minipumps on the dams at the same period (56). Similarly, in
other rat model of SE only during lactation, SE group male adult
offspring did not changed insulinemia, despite higher serum
glucose levels, suggesting a pancreatic insulin secretory failure
(57). Nevertheless, it needs to be noted that none of the above
metabolic abnormalities were observed in the chow-fed offspring.
This highlights the importance of a healthy diet to prevent the
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FIGURE 4 | Expression of the metabolic regulator and myogenesis related gene in skeletal muscle tissue. Muscle mRNA expression of Pgc1α (A), Pgc1β (B), Myog

(C), and Myod1 (D) in the male offspring at 13 weeks. Results are expressed as mean ± SEM. Data were analyzed by two-way ANOVA, followed by post-hoc LSD

tests. *p < 0.05, postnatal HFD effect; %p < 0.05.

adverse impact ofmaternal programming onmetabolic outcomes
in adulthood. As this study was only performed with male mice,
it cannot be directly extended to the female offspring, due to the
sexual differences during maternal programming as shown by
the others (13, 58). In a similar model of SE, females offspring
showed increased glucose tolerance by maternal SE, which is
consistent with our founding (13). In addition, another study
showed that female offspring from the SE dams had lower levels
of anorexigenic neuropeptides, Cocaine-, and amphetamine-
regulated transcript and MSH, in their brains (59).

In conclusion, this study demonstrated that maternal SE
during pregnancy results in increased adiposity and worsened
metabolic disorders if the offspring are exposed to HFD after
weaning. The additional maternal exposure to HFD interacts
with SE which exacerbated metabolic disorders in the male
offspring by disrupting metabolic regulators. Therefore, both
quitting smoking and maintaining a healthy diet are vital for the
healthy future of the offspring.
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