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Abstract 

Urban water scarcity from ongoing drought and an increasing population are driving a 

range of water saving options to be explored in Melbourne (Australia). This paper 

assesses the cost-effectiveness of five water treatment and industrial reuse options 

in the Fishermans Bend industrial area at Port Melbourne. In consultation with 

industrial stakeholders and the local water utility, the study design began by 

identifying potential water sources and sinks in the area. Treatment technologies for 

each option – using a combination of membrane bioreactors (MBR) and in some 

cases reverse osmosis (RO) technologies – were developed. In evaluating the 

potential for future implementation, the cost effectiveness ($/kiloLitre) was assessed 

relative to water supply augmentation and water demand management options 

available in Melbourne. Additionally, the opportunities and barriers for option 

implementation in Port Melbourne were contrasted with the Kwinana Industrial Area, 

Western Australia where many regional synergy projects have been undertaken. This 

identifies that the future implementation of industrial ecology opportunities requires 

strong and ongoing stakeholder involvement as described in this paper.  
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1 INTRODUCTION 

1.1 Industrial symbiosis and regional synergies 

Industrial Symbiosis is perhaps the best-known application of industrial ecology 

principles. It deals with the exchange of by-products, water, energy, and process 

wastes among closely situated firms [1-6]. Because of the many links between firms, 
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an industrial area is transformed into an ‘industrial ecosystem’. Synergistic links 

between firms are labelled ‘industrial symbiosis’ as defined by Chertow: “Industrial 

symbiosis engages traditionally separate industries in a collective approach to 

competitive advantage involving physical exchange of materials, energy, water, 

and/or by-products.  The keys to industrial symbiosis are collaboration and the 

synergistic possibilities offered by geographic proximity” [7]. Localised industrial 

ecology in the form of industrial symbiosis could also have the broader benefit of 

linking to regional development [8]. The related term ‘regional synergies’ was 

formulated in 2005 as a result of a study focused to encourage and facilitate the 

greater utilisation of regional synergy opportunities to improve the overall eco-

efficiency of resource processing intensive regions [9]. The study found several other 

terms and definitions for Industrial Symbiosis, with a common implementation aim at 

‘creating a system for trading material, energy, and water by-products among 

companies, usually within a park, neighbourhood, or region’ [10]. In the present 

paper, the authors use the term ‘regional synergies’, as it better emphasises the 

broader cooperative organisational focus of the activity based on the synergistic use 

of water, energy or by-products (rather than giving primary focus to the synergistic 

use of materials and energy via collaboration).  

Both industrial symbiosis and regional synergies have a focus on the benefits of 

promoting inter-firm exchanges, for waste, energy and water, however less attention 

has been given to how the waste hierarchy often phrased as 'reduce, reuse, recycle’ 

[11] applies differently with waste, energy and water. For waste, one can minimise 

resource use on-site and then with whatever is left as a solid waste product, seek to 

find a use at a neighbouring firm for the product. Similarly for energy, recovery and 

use of low grade heat from one processes for another is common. By contrast, with 

water there is a greater tension between reducing on-site use though water use 

efficiency (which is generally cheaper and conserves the water resource in the first 

place), if there is a water recycling or reuse synergy, which created a symbiotic 

relationship with a neighbouring firm. In addition to providing safe and reliable water 

supplies, Australia’s National Water Initiative seeks to increase water use efficiency 

and as Lowe [12] notes, "The trading of wastes as byproducts is not a good in itself if 

there are more effective waste reduction solutions upstream." The tension can 

manifests where using less water on site leads to an increasing concentration in 

wastewater discharges, which in turn requires greater treatment costs (and 

resources). In integrated resources planning for urban water [13-17] a cost 

effectiveness framework is used to rank the desirability of efficiency versus recycling 
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options for conserving water in the city and the options proposed in this paper will be 

discussed in this context, together with barriers and opportunities for regional 

synergy development. This contrasts the industrial symbiosis and industrial ecology 

literature where, even with a water focus (such as [18] or [19] who even mentions 

integrated resources planning) there is little discussion of how to reconcile trade offs 

between options promoting recycling versus options promoting efficiency.  

 

1.2 Sustainable urban water management in Australia 
Whilst approximately 70% of water in Australia is used in agriculture and irrigation, 

15% in industry and 15% in residential demand, in urban centres where water is 

generally sourced from localised catchment unconnected from major river systems, 

the majority of water is used by residential customers (householders), rather than 

industry. In the Melbourne area, annual water consumption is approximately 470 GL 

divided between the following uses: 60% in residential homes, 30% in industry and 

commercial uses, 10% in non-revenue water [20]. Consequently, water saving 

initiatives are directed toward both residential consumers and industry, and the 

relative costs for saving water in each sector become highly relevant to which options 

the government-owned utility pursues (which serves both residential and 

commercial/industrial sectors). Urban water scarcity from drought, climate change 

and an increasing population are driving a range of water saving options to be 

explored and implemented in Melbourne and indeed throughout Australian cities [17, 

20, 21]. Options developed by government-owned water utilities in Australian cities to 

reduce water use include: encouraging the uptake and installation of water efficient 

toilets, low flow showerheads and water efficient washing machines; the installation 

rain tanks in homes and industry; assisting industry to save water through efficiency 

and recycling initiatives; and the construction of a desalination plants in addition to 

the existing rain-fed water supply system.  

 

One strategy to reduce the industrial demand on the centralised supply system would 

be to recycle water between companies within a heavy industrial area such as Port 

Melbourne. This initial activity could also encourage companies to pursue further 

initiatives to reduce impacts related to energy and waste. A scoping study of the 

technologies, costs, barriers and opportunities for water reuse synergies forms the 

focus of this paper. Water reuse synergies have been identified and successfully 

implemented at other industrial areas in Australia, most notably in Kwinana, Western 

Australia [22] and similarities and differences between the barriers and drivers are 
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discussed in this paper. The Kwinana Industrial Area in Western Australia is used a 

comparison example in this paper as is was found to be one of the best international 

examples of regional synergy development, in terms of the level and maturity of the 

industry involvement and collaboration, and the commitment to future regional 

resource synergy projects [9]. 

1.3 Aims 
The aims of this paper are to: 

1. Explore potential industrial water reuse synergies identified in the Port 

Melbourne area and the process by which they were developed; 

2. Evaluate the role of a cost-effectiveness framework in prioritising reuse 

synergy options relative to other water saving options in the urban context; 

3. Discuss the barriers and drivers for implementation of industrial water reuse 

synergies in Port Melbourne, and contrast them with the barriers and drivers 

in Kwinana, Western Australia; 

4. Recommend generalised areas for further research – informed by the 

industrial symbiosis literature – to overcome barriers and promote the 

appropriate development of regional synergies. 
 

2 APPROACH 

2.1 Background to Port Melbourne case study 

This project was initiated by the Victorian Smart Water Fund1 to explore the potential 

for industrial ecology opportunities in Melbourne. Following a literature and data 

review and consultation with industries in different parts of Melbourne, the Port 

Melbourne case study site was selected. A key factor the selection of this site, was 

that the companies had a commitment for exploring inter-company synergies and 

had already begun doing so of their own accord, thus the project could build on 

established buy-in from participants. The site is based in the Fishermans Bend area 

of Port Melbourne, an industrial zone located less than three kilometres from the 

centre of Melbourne, with historically much heavy industry and more recently 

increasing commercial and light industrial developments alongside established 

manufacturing and production sites. It is also located adjacent to residential and 

commercial urban renewal project at Docklands.  
                                                      
1 The Smart Water Fund was established by the Victorian Government and (government-
owned) water retailers in Melbourne to encourage and support innovative development of 
water and biosolids recycling and water saving projects within the community. See 
www.smartwater.com.au 
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The companies located at the Fisherman’s Bend site in Port Melbourne that 

participated in this study, along with the industrial activities performed by each 

company are: 

• Kraft (food production) 

• Boral (plasterboard production) 

• General Motors Holden (automotive manufacturing) 

• Boeing (metal component manufacture, soon to be carbon fibre manufacture) 

• Symex (commercial fats and proteins production) 

• Herald and Weekly Times (HWT) (newspaper printing) 

• Crema Group (precast concrete manufacture) 

• Independent Cement (cement production and precast manufacture). 

 

2.2 Overview of approach  

Preliminary stages of the broader project included a literature review of approaches 

to regional synergies identification [23], presentation to stakeholders from 

government and industry to identify potential case study sites, and development of a 

systematic approach for prioritising potential case study sites across Melbourne. This 

approach sought to combine generic industry locations based on information from the 

Australian Bureau of Statistics with generic input-output characteristics for industry 

types based on inventory databases in LCA software to identify potential sources and 

sinks for water and other materials and regional synergy ‘hot spots’ in Melbourne. 

The approach did not work as the generic data available on industry types in different 

areas of the city was too aggregated to identify specific areas of opportunity and 

average input output data from LCA software was not representative enough of local 

conditions. The application of a regional synergy toolkit developed and used in 

Kwinana was also considered, however was deemed to be too data intensive for this 

project which was focussed primarily on water synergies [24]. 

  

Rather, the selection of the Port Melbourne case study was made in consultation with 

the water utility that had been approached by companies in the area seeking to 

explore water reuse opportunities. Ultimately, this was most favourable as 

opportunities initiated by industry themselves have been found to be more successful 

than those initiated by governments or regional authorities [25]. 
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The details of the approach taken in this case study are shown in Figure 1. The 

scope of the investigation was to identify water recycling opportunities between 

companies, rather than within companies or other on-site efficiency options (as these 

investigations are occurring through other programs lead by the water utility).  

 

 
Figure 1: Overview of approach 

Initial Port Melbourne Workshop Nov 07
Confirmed Project Interest from Participants

Data gathering f rom companies via templates

Analysis of  inputs and discharges 
for companies in Port Melbourne 

Preliminary Options 
based on water volumes 

Ref ined Option Scenarios 
based on water qualities and treatment technologies

Economic and Environmental Analysis 

Second Port Melbourne Workshop June 08 
Presentation of results

Final scoping study workshop Dec 2008
Presentation of scoping study findings

Individual telephone interviews with companies to 
identify future barriers and opportunities 

Consider institutional arrangements 
for Scenarios 

Review Kwinana Experience 

Explore potential for Port Melbourne Industry Council, 
based on Kwinana Experience 

Establishment of  Port Melbourne
Industrial Ecology Working Group 2009  

2.2.1 Data Collection and option development 
 

Data on the water inflows, outflows and quality of discharges and required inputs was 

gathered from each of the participating companies using a template, requesting 

quantitative and qualitative data for input and output water streams.  

 

The collected enabled a graphical mapping of potential water sources and sinks 

across the study area, based initially only on volumes. Inputs ranged from 5kL/day to 

700kL/day and discharges ranged from 2kL/day to 400kL/day. Two broad classes of 

generalised options were then explored, the first having a centralised treatment 

facility involving all major companies and the second involving pairs of individual 

companies, one acting as the source and the other as a sink. 
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Detailed options were developed using the water quality data (initially to match 

discharge and required input pH) in addition to quantity data, including required 

technologies and costs. The latter are discussed further in Section 3. The economics 

of each option, including capital and operating costs together with cost effectiveness 

analysis ($/kilolitre) was then calculated.  

 

2.2.2 Cost effectiveness Framework for Option Assessment 
 
Water reuse synergies identified in this paper were evaluated using a cost-

effectiveness framework ($/kilolitre) based on levelised unit cost as described by 

White and Fane [14, 28]. Cost-effectiveness is the cornerstone of Integrated 

Resources Planning which has been advocated in the water and energy industries 

for comparing supply augmentation and demand reduction measures on an equal 

footing [21, 26]. Its use in this case study is twofold. Firstly, it is to rank the cost-

effectiveness of the reuse synergy options developed on an equivalent basis. 

Secondly, it is used to compare the water reuse synergy options relative to other 

options such as on-site water demand reduction (efficiency) measures (e.g. from the 

installation of more water-efficient technologies such as showers, toilets and other 

equipment, or changed water-using behaviours such as using less water during 

cleaning) and also desalination which the utility could consider implementing in order 

to ensure supply-demand balance in the longer term. Energy impacts were 

considered in addition to financial costs.  

 

2.2.3 Implementation barriers and drivers 
 
The options for regional water synergies between companies were presented to 

participating companies at a second workshop. Feedback at the workshop on 

barriers and drivers was followed up with individual discussions with companies and 

the experiences were compared with those of Kwinana, Western Australia, where 

there has been  experience in implementing regional water synergies [22]. An 

important aspect of the Kwinana model was the central role played by the Kwinana 

Industries Council.  Consequently a similar industry-based reference group was 

proposed and has led to the formation of an industrial ecology working group 

amongst the Port Melbourne companies following the conclusion of the scoping study 

to assist with further development of options and implementation.  
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3 RESULTS AND DISCUSSION 

 

This section presents  the options and technologies identified, their cost effectiveness 

as well as an introduction to barriers and opportunities associated with option 

implementation.  

 

3.1 Technology options 

 

Five water reuse options investigated are presented in Figure 2.  
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Figure 2: Overview of options 

Option 1: Recover 275kL/day of wastewater from Kraft  using MBR to produce 
250kL of Class A quality water for reuse at Boral 

Kraft BoralMBR275 250

25107
Sludge

or Holden, Boeing, HWT, Crema, 
Independent Cement

Symex, HWT

Kraft BoralMBR275 250

25107
Sludge

or Holden, Boeing, HWT, Crema, 
Independent Cement

Symex, HWT

 
Option 2: Recover 382kL/day of wastewater from Kraft using MBR to produce 
around 282kL/day of Class A water for reuse at Boral, Crema, Independent Cement 

Kraft MBR382 343

390

l. Cement

Crema

Boral
>250

30

<2
Sludge

Symex, HWT

or Holden, Boeing, HWT

Kraft MBR382 343

390

l. Cement

Crema

Boral
>250

30

<2
Sludge

Symex, HWT

or Holden, Boeing, HWT  
Option 3: Recover 310kL/day of wastewater from Kraft using MBR and R/O on 50% 
of the MBR Class A product stream, to produce 250kL/day of lower-salt water for 
reuse at Boral 

125

Kraft BoralMBR310

2872
Sludge

RO282

125

157

32
Reject

125

Kraft BoralMBR310

2872
Sludge

RO282

125

157

32
Reject

 
Option 4: Recover 343kL/day of wastewater from Kraft using MBR and R/O 
polishing of the entire Class A stream to produce 250kL/day of very high quality 
water for reuse at Boral 

Kraft BoralMBR+RO310 250

3072
Sludge

30
Reject

Symex, HWT

or Holden, Boeing, HWT

Kraft BoralMBR+RO310 250

3072
Sludge

30
Reject

Symex, HWT

or Holden, Boeing, HWT

 
Option 5: Recover 175 kL/day of wastewater from Kraft using MBR and 50% potable 
water dilution to generate 250 kL/day of low salt water for use at Boral 

125

Kraft
Boral

MBR139

14243
Sludge

Potable
125

125

Kraft
Boral

MBR139

14243
Sludge

Potable
125
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The major companies that were assumed to be sources of wastewater or sinks for 

reclaimed water are given in the coloured/shaded boxes in the figure for indicative 

purposes, and other possible companies that could function in these roles are also 

given in separate boxes in italics in the figure. The specific water volumes depicted 

are based on data collected directly from companies; 382 kL/day is the maximum 

available for recycling from Kraft (determining volumes in Option 2) and 250 kL/day is 

approximately the volume which Boral could accept as recycled water (determining 

volumes in Options 1, 3, 4, 5). 

 

Two assumptions in calculating the quantities of water produced by each scenario 

were made: 

• 9% loss in water volume due to sludge generation from the MBR treatment 

process; 

• 20% loss in water volume within the retentate / reject stream from an RO 

process used to polish either part or all of the Class A water in some 

scenarios. 

 

This treatment train abbreviated in Figure 2 as “MBR” consists of the following five 

upstream and downstream components with the Membrane bioreactor (MBR) 

technology being the central component:  

1. Upstream anaerobic sludge blanket (UASB) pre-treatment stage, 

2. Aerobic activated sludge process to reduce BOD, 

3. Anoxic stage to reduce nutrient concentrations, 

4. Membrane bioreactor itself (MBR) stage (incorporating ultrafiltration) to 

produce Class A reclaimed water, and 

5. UV disinfection stage. 

Reverse Osmosis (RO) technology to remove salt load is depicted additionally in 

options 3 and 4. 

 

High BOD/COD, suspended solids (SS) and nutrient (nitrogen and phosphorous) 

loads in source wastewater from Kraft will require a biological treatment process to 

reduce these levels to comply with Class A reclaimed water criteria2 .  As a 

consequence the treatment system included a combination of the three established 
                                                      
2 Class A water may be utilised for urban (non-potable) use with uncontrolled public access; 
agricultural use e.g. human food crops consumed raw or industrial use in open systems with 
worker exposure potential [27] EPA Victoria. Use of reclaimed water. Guidelines for 
environmental management. Melbourne: Environmental Protection Authority Victoria; 2003. 
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processing systems treatment process types, i.e. anaerobic followed by anoxic 

followed by aerobic. 

 

The upflow anaerobic sludge blanket (UASB) technology can treat high organic loads 

and is followed with a complete mix activated sludge plant which is less susceptible 

to shock loads while maintaining effective BOD and phosphorous removal. The levels 

of nitrogen in the waste water require an anoxic denitrification step. The anoxic step 

would be operated with sequential mixing and settling and will be operated in 

conjunction with membrane bioreactor modules (MBR) to allow the retention of 

higher biomass concentration, negate the need for a substantial sized clarifier, 

reduce the risk associated with SS carryover into the reclaimed water, and minimize 

the requirements for disinfection. The MBR unit contains ultrafiltration membranes 

which effectively eliminates SS and reduces bacteria populations to below the Class 

A limits. The final UV disinfection stage minimises the risk of pathogens that may 

have passed through the membrane.  

 

Installing a balance tank allows for flow balancing by reducing peak flow to the 

system and storing a portion of the daily peak to equalise the characteristics of the 

product water. Furthermore, this will allow a volume to be delivered to the system 

during low flow periods, especially after-hours and weekends, to maintain the 

efficiency of the biological activity in the system.  

 

Further issues associated with implementation of the treatment enabling the regional 

synergy for water include land availability, odour control and sludge disposal.  

 

3.2 Assumptions, capital and operating costs, cost-effectiveness, 
energy intensity 

 

An economic analysis was conducted to evaluate each of the options shown in 

Figure 2. 

 

The financial viability of each scenario and the cost-effectiveness ($/kiloLitre) of 

water supplied in each option was calculated and compared in Table 1. The intention 

of the analysis in Table 1 is not to identify one preferred option, but to investigate 



Giurco, D., Bossilkov, A., Patterson, J., Kazaglis, A. (2011) Journal of Cleaner Production 19:867-876  
[ACCEPTED MANUSCRIPT, UNCORRECTED] 

how the financial viability and cost-effectiveness3 differ between the scenarios, to 

assess the potential for regional synergy implementation.  

 

The assumptions made in the economic analysis are given below: 

 

Cost elements included: 

• Treatment plant capital costs (including plant construction, equipment, and 

balance tanks); 

• Operating costs (including energy costs, trade waste costs). 

 

Cost elements excluded: 

• Costs of land acquisition were excluded and could be significant; 

• Pipeline costs were calculated to be AUD100-300 per metre and given the 

distances involved of up to 200 m, this equates to AUD20-60,000 which is 

deemed not significant in a multi million dollar project. 

 

Treatment plant construction and operation: 

• The major structural elements of the plant are designed and constructed for a 

minimum of a 20 year life span (economic modelling done for 10 year time 

frame); 

• Membranes on the MBR will require replacement at 3–5 years while RO 

membranes if installed may require replacement at 1–2 years; 

• Other operating equipment such as pumps, blowers, diffuser membranes, 

valves will need regular maintenance and have life spans of around 5 years; 

• Plant construction could be completed within a 12 month time frame; 

• Plant operates for 300 days/year. 

 

Water input charges and energy tariffs: 

• Current water tariff taken as A$1.00/kL, and water and trade waste tariffs are 

planned to increase at 14.8% p.a. from 2009-2013 [29] and assumed 5% p.a. 

increase into future beyond 2013; 

• Water prices charged for reclaimed water are assumed to be 85% of potable 

water prices (author estimate) to provide an incentive for companies to 

purchase the recycled water;   
                                                      
3 Cost effectiveness was calculated using the levelised cost of water [28] Fane SA, Robinson 
J, White S. The use of levelised cost in comparing supply and demand side options for water 
supply and wastewater treatment. Water supply. 2003;3(3):185-92. 
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• Energy tariff assumed to be 10 cents/kWh [30] and forecast as fixed into 

future, this is likely to be an underestimate as energy prices would be 

expected to rise. 

 

Economic analysis: 

• 7% discount rate (as used by water utility); 

• Forecast horizon for plant operation was 10 years (beginning 2009); 

• Straight line depreciation (10% p.a.) of assets over forecast horizon. 

 
 
Table 1: Capital and operating costs, cost effectiveness and energy intensity 

Option Approx. capital 
cost (AUD) 

Approx. operating 
cost (AUD/yr) 

Cost effectiveness 
(AUD/kL) 

Energy intensity 
(kWh/kL) 

1 $2 500 000 $420 000 $9/kL 15.4 
2 $2 700 000 $550 000 $8/kL 15.0 
3 $2 700 000 $570 000 $14/kL 19.2 
4 $2 800 000 $730 000 $18/kL 28.1 
5 $2 700 000 $490 000 $27/kL 15.4 

 
 

Table 1 shows similar capital costs for all options, but increased operating costs for 

options 3 and 4 involving reverse osmosis. The cost effectiveness is also higher for 

options 3 and 4 involving reverse osmosis than for 1 and 2 which use MBR only. 

Option 5 has the highest cost per kL of water as it also includes the purchase of 

potable water for diluting the final salt content of the recycled water.  

 

In comparison with a range of water demand and supply options, water recycling 

options can be (and in this case are) expensive, particularly due to the limited size of 

the recycling facility. Were the facility to be larger, greater economies of scale could 

be realised, thereby reducing the unit cost. For example, water demand reduction 

(efficiency) options can vary between A$0.05/kL to A$1.50/kL, and desalination can 

vary between A$2/kL to A$5/kL [17, 31]. The usefulness of using a cost effectiveness 

frameworks is to raise the question of whether the utility would pay for this activity as 

a water saving measure when it can save or supply water more cheaply with other 

options. The options developed are not self sufficient from a cost perspective as 

outlined later and hence would not be implemented by companies in the absence of 
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financial assistance. There are also regulatory barriers to the companies themselves 

acting as third party water suppliers/recyclers4. 

 

The MBR options (options 1, 2 and 5) generate a unit energy demand of 

approximately 15 kWh/kL of wastewater treated, and option 4 which is 100% RO 

approximately doubles this energy demand to 28 kWh/kL. The current average 

energy intensity of water supply, distribution, pumping and treatment across Victoria 

is approximately 0.87 kWh/kL, and therefore this water recycling option will be highly 

energy intensive relative to catchment-based supplies and also compared to unit 

energy intensities reported for recent desalination projects across Australia. This 

could result in an increased energy demand of up to 1,100–2,300 MWh/a for a 250 

kL/day plant, or 1,500–3,000 MWh/a for a 340 kL/day plant. Depending on the 

greenhouse intensity of electricity used to power the treatment facility , this could 

produce greenhouse gas emissions of between 1,500–3,000 t/a or a 250 kL/day 

plant, or 2,000–4,000 t/a for a 340 kL/day plant.  

 

With the planned implementation of an Australian Carbon Pollution Reduction 

Scheme (CPRS) in 2013 it is likely that energy prices will increase due to a carbon 

cost component being passed onto consumers through increased energy tariffs and 

this could further reduce the financial viability of a water recycling scheme. 

 

In order to mitigate the significant additional energy and greenhouse costs of this 

type of scheme, various energy options should be investigated and concurrently 

implemented. These could range from energy recycling among the group of 

companies at the site including utilisation of waste heat, utility sharing of 

cogeneration capacity and boilers which are currently underutilised at various 

companies, installation of solar power to supply or augment energy for the treatment 

plant, or purchase of lower carbon-intensity electricity to supply the energy for the 

scheme. Overall, it will be essential to consider the energy implications of future 

options in addition to potable water savings.  

 

Cumulative cash flow after ten years is given in Table 2. None of the options are 

cash flow positive after ten years time unless some form of financial support is 

                                                      
4 Whilst third party operators can be water utilities in other parts of Australia, in particular, 
New South Wales (NSW) [32] Independent Pricing and Regulatory Tribunal (New South 
Wales). WICA Fact Sheet: Overview of licensing regime under the Water Industry 
Competition Act 2006. 2008., this is not possible in Melbourne, Victoria. 
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offered to the companies for implementation. The form of support outlined in the table 

is ‘0% interest on loan’ and an AUD 2,000,000 capital grant.  
 

 
Table 2:Cumulative cash flow after 10 years (negative figures bracketed) 
 

Option 

Cumulative Cash Flow after  
10 years ($million, Australian Dollars) 

All capital costs 
loaned at 0% 

interest 

$2m capital grant & 
10% interest on 

remaining loaned 
funds 

1: 250kL/day output MBR, one-to-one (Kraft-to-
Boral) or many-to-many $450 000 $1 400 000 

2: 282 kL/day output MBR, one-to-many or 
many-to-many ($210 000) $1 100 000 

3: 250 kL/day Kraft to Boral 50% MBR and 50% 
RO higher quality water than MBR only ($1 100 000) $300 000 

4: 250 kL/day Kraft to Boral 100% RO, one-to-
one (Kraft-to-Boral)  ($3 800 000) ($5 400 000) 

5: 250 kL/day (50% MBR recovered, 50% 
potable), one-to-one (Kraft-to-Boral)  ($1 100 000) ($2 600 000) 

 
 

Obtaining financial support for the project is a barrier, though not insurmountable – 

the capital sums are modest and government and utilities are spending significant 

amounts on water saving initiatives as the system storages for the rain fed system in 

Melbourne sit below 30% (a desalination plant with capacity of 150 GL/a is being built 

at a cost of approximately AUD 3 billion). The question of whether financial support is 

justified, relative to other activities which could be pursued to save water, depends to 

a large part on the other (including non-financial) barriers and opportunities which 

such a project contains. These barriers and opportunities in the Port Melbourne 

context are now discussed.  
 

3.3 Barriers and opportunities for water reuse synergies in Melbourne 

The challenges of rising water prices and trade waste prices act to make water 

recycling opportunities more cost-competitive with the price of water from the 

centralised mains water supply, however as Australia moves to implement an 

emissions trading scheme (Carbon Pollution Reduction Scheme), then the 

augmented energy requirements of a recycling scheme will impose an additional 

cost. A summary of drivers for water reuse synergies in Melbourne and their 

implications for this study are given in Table 3. 
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Table 3: Summary of context 

Item Description Implications for study 

Central Region 
Sustainable Water 
Strategy  
and  
Water supply-demand 
strategy for Melbourne 
2006 - 2055 

The Victorian Government has set 
short-term water conservation 
targets for the Central Region: 
- 25% reduction (from 1990s level) in 
overall and residential per capita 
drinking water use by 2015; 30% by 
2020 
- at least 1% annual reduction in 
current water consumption in the 
non-residential sector 

Contributions to reducing 
potable water consumption and 
consumption in the non-
residential sector will assist in 
meeting targets. 
 
The current recycled water 
target for Melbourne is 20% by 
2010. 

Water price increases Due to water scarcity and also 
commitment to desalination as a 
response, water prices are rising 
significantly over next 5 yrs 

Securing a local water supply 
through recycling becomes 
more cost-competitive 

Trade waste review Being conducted by Department of 
Sustainability and Environment and 
may lead to new charges for trade 
waste, particularly relating to metals  

Potential of increased trade 
waste charges provides further 
incentive for recycling between 
industries 

Carbon Pollution 
Reduction Scheme 
(proposed Australian 
emissions trading) 

Carbon intensity of options will have 
a future cost 

Favours water efficiency options 
over recycling which is more 
energy intensive 
Promotes use of cleaner energy 
sources including cogeneration 

Proximity to city  Land use in Port Melbourne is 
changing with less heavy industry 
and more commercial / light industry 

Consider current and future 
configuration of land uses in 
study 

Melbourne Water 
Sewage Strategy 
2060 

Role of centralised and decentralised 
infrastructure for Melbourne being 
re-examined 

Consider localised water 
treatment facility in Port 
Melbourne within wider network 

 
 

 

The last item envisages a greater role for localised water treatment plants, given that 

these will need new governance models and institutional arrangements, 

implementing one of  the discussed options discussed could provide a pilot case to 

resolving such issues. 

 

As individual companies have their own views, stakeholder interviews were 

undertaken to assess their individual barriers and opportunities. These are explored 

further in the next section and contrasted with those presented by companies in the 

Kwinana Industrial Area, which was chosen for comparison as it has a history of 

successful implementation of water, energy and by-product synergies. 
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4 BARRIERS AND OPPORTUNITIES – COMPARISON BETWEEN PORT 
MELBOURNE AND KWINANA INDUSTRIAL AREA (KIA) 

Valuable lessons can be learned from regional synergy experiences in Kwinana. The 

diverse range of identified barriers and opportunities at KIA has contributed to the 

long lasting cooperation between companies, facilitated by the Kwinana Industries 

Council (KIC) which addresses a broad range of issues common to the industries in 

the area. KIA is recognised as a  best practice example in implementation of regional 

synergies, characterised with its maturity, number of resource exchanges and the 

diverse blend of key processing and manufacturing industries [23].  

Table 4 below presents the major barriers and opportunities for both industrial areas 

Kwinana and Port Melbourne. Although not all drivers, barriers, and trigger events 

listed in the table are discussed in detail, some specific examples from Kwinana are 

also provided below to illustrate each of the main categories. The listed barriers and 

opportunities for KIA refer to the whole range of regional synergies (by-product and 

utility) and these are defined as a result of the in depth study carried out at Curtin 

University of Technology, WA, since 2004 [33].  On the other hand the identified 

barriers and opportunities for Port Melbourne only emerged as a result from the 

scoping study discussed and are limited only to potential water synergies. As can be 

seen from the table, whilst some barriers and opportunities are similar (corporate 

social responsibility within companies), there are differing region-specific issues. 

 

 



Giurco, D., Bossilkov, A., Patterson, J., Kazaglis, A. (2011) Journal of Cleaner Production 19:867-876  
[ACCEPTED MANUSCRIPT, UNCORRECTED] 

Table 4 Barriers and Opportunities for Regional Synergies   

Kwinana Industrial Area Port Melbourne 

Barriers Opportunities Barriers Opportunities 
Economics 
• Relatively low price for utility 

resources discourages 
recycling 

• Relatively low costs for waste 
disposal 

• Increased revenue 
• Secure availability and 

access to vital process 
resources 

• Higher unit cost ($/kL) for 
recycled water than efficiency 
or desalination due to limited 
size of recycling plant 

• Water price security – lock 
in price for recycled supply 
to insulate against further 
rises in mains water 
charges 

Information availability 
• Confidentiality and 

commercial issues 
• Strong industry 

organisation 
• Local and regional studies 

have been undertaken 

• Uncertainty around quality 
tolerances for input water 
required 

• Sharing information may 
identify further synergies 
(not water) 

Corporate social responsibility and business strategy 
• Core business focus 
• Community engagement and 

perception 

• Corporate sustainability 
focus 

• Community engagement 
and perception 

• Cultural challenges within a 
company 

• Corporate sustainability 
focus 

 

Region specific issues 
• Distance between companies 

inhibits synergies 
• Major new project 

developments provide 
opportunities for new 
synergies 

• Changing industry presence in 
area (less heavy industry) 

• Some companies located 
1.5km from main cluster of 
companies 

• Limited land availability 

• Water scarcity encouraging 
a range of water saving 
options to be explored 

• Expansion development 

Regulation 
• Existing environmental 

regulations  
• New pollutant targeted 

regulations 
(e.g. carbon tax and 
mandatory energy audits) 

• Third parties (other than 
government utility) cannot sell 
recycled water to companies 
in Victoria  

• Trade waste review could 
raise costs for discharge 
and encourage recycling 

Technical issues 
• Availability of (reliable) 

recovery technologies 
• Major brownfield 

development within 
company 

• Water quality requirements 
for receiving companies 

• Perceived water quality and 
health and safety risks of 
recycled water 

• Opportunity to link with 
cogeneration on site 

• Water reuse synergies 
versus on-site efficiency? 

 

4.1 Economics 

Operational costs and revenue as synergy opportunity: The Port Melbourne water 

reuse synergy would only be viable with financial subsidy due to the higher unit costs 

than water efficiency and desalination options. In Kwinana, securing access to water 

is a greater driver in addition to synergy projects making good business sense, 

through a combination of lower input costs, lower operational costs and/or increased 

revenues. One of the recently identified synergies in Kwinana features a mineral 

processing plant that produces an effluent stream containing a small fraction of 

hydrocarbons. The plant’s water treatment is not designed to treat hydrocarbons so 

this effluent is currently disposed as waste at very high costs. The BP refinery 

wastewater treatment plant is especially designed to target hydrocarbons and could 

feasibly treat the effluent. The two companies are working on the operational 

arrangements (e.g. contracts) at present [34].   
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Resource scarcity as an economic opportunity: A number of utility synergies have 

come to fruition because of concerns for continued access to a vital resource for 

running the business.  The development of the Kwinana Water Reclamation Plant 

(KWRP) in 2004 was triggered to accommodate the establishment of HIsmelt (direct  

smelting) which was unable to secure another source of large volume process water  

[35]. In contrast in Port Melbourne, the concern was not over access to the water 

resource, but rather to water price security, meaning that by linking with the water 

reuse synergy, a fixed price may be negotiated thus avoiding planned future price 

rises in the mains supply.  

 

4.2 Information availability 

Local and regional studies as synergy opportunity: While some synergies were 

already happening it took an external study to review and document regional 

resource flows and synergy opportunities to create  broader industry interest and 

commitment for industrial symbiosis. In Kwinana, the regional economic impact study 

was coordinated by the Kwinana Industries Council and financially supported by the 

Commonwealth and state government. It revealed the exponential growth in the 

industry integration in the area over the 1990s, and suggested many more 

exchanges would in principle be possible. Similarly this study undertaken in Port 

Melbourne has identified further potential for co-generation in the area and 

implementation of a water reuse initiative could be used as a vehicle for closer 

collaboration amongst companies to realised synergies with energy and other 

resources.  

 

4.3 Corporate social responsibility and business strategy 

Community engagement and corporate sustainability as synergy opportunity: 

Industrial ecology opportunities can be driven by corporate social responsibility [36]. 

Kwinana is increasingly subject to urban encroachment and resulting higher 

community expectations, with regard to environmental and safety performance, and 

overall amenity. Kwinana is located on the shore of the Cockburn Sound, a sensitive 

marine environment and recreational area for local residents. The opportunity to 

transfer the discharge of treated process wastewater from the coastal area into the 

deep ocean outlet as part of the KWRP project was therefore an important 

consideration for local companies. In Port Melbourne, high-rise urban development is 
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occurring at Docklands located adjacent to Port Melbourne and overlooks the 

company sites. Several Port Melbourne companies are interested in pursuing a 

‘green icon’ project for the region and this could act as a trigger for strengthening 

relationships with the local communities and amongst neighbouring companies. 

However, if recycled water were to be the selected  project, it would need to be linked 

with a clean energy source due to the increased energy intensity of the process 

compared with mains water. 

 

Core business focus as synergy barrier: The focus of site personnel is on core 

business activities resulting in potential missed synergy opportunities unless there is 

an overwhelming commercial benefit. This has been discussed by Deutz and Gibbs 

[8]. This is also recognised by various site personnel who see one of the main aims 

of the regional synergies research is to identify and progress synergy opportunities, 

which are unrelated to core business. In Port Melbourne this is less of a concern as 

the utility would be the owner and operator of the plant.  

 

4.4 Region-specific issues 

Major capital projects as synergy opportunity: This refers to the opportunity to 

implement synergies when major capital projects are being undertaken. This can 

include new operations or significant capacity expansion projects in existing 

operations. In Port Melbourne there are no major heavy industrial customers coming 

to the region, rather there are more light industrial and commercial companies 

moving to the area. This contrasts Kwinana, where two new industrial facilities have 

been built and commissioned in 2004 (Kwinana Water Reclamation Plant and 

HIsmelt direct reduction iron making plant). The HIsmelt plant will be able to source a 

number of inputs locally in the Kwinana area, such as lime, lime kiln dust and treated 

wastewater and provide outputs with potential for reuse in the KIA, such as slag and 

gypsum. HIsmelt triggered the undertaking of the Kwinana Water Reclamation Plant 

(KWRP) as the groundwater allocation for the area had already been licensed to the 

existing industries and there was limited availability of catchment (scheme) water in 

Perth Metropolitan area.  

 

Distance between companies as synergy barrier: The distance between companies 

has been identified as a synergy barrier [35].  For the recovery and reuse of process 

energy and water the distance between involved operations does make it more 

complicated than just transferring a by-product across a boundary fence to a 
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neighbouring operation. Transporting water over longer distances is generally limited 

by the cost of piping and pumping as well as the layout of the established industrial 

operations. In Port Melbourne, this may favour a direct exchange between 

neighbouring companies rather than a centralised treatment plant which would need 

to cross many major roads.  

 

4.5 Regulation 

Environmental regulations as synergy barrier: Kwinana companies are experiencing 

obstacles in obtaining governmental approvals for use of alternative fuels and 

materials Although some by-product synergies appear techno-economical feasible 

and have a positive sustainability impact (e.g. alternative fuels in cement kilns, and 

use of bauxite residue for soil conditioning), their practical implementation have been 

halted by uncertainties in the legislative framework, in particular with regard to the 

final responsibility for approved reuse options, and community concern. Additionally, 

if a by-product is classified as a controlled waste (for example fly ash), strict 

transportation procedures and requirements apply. In Melbourne (and hence Port 

Melbourne) there is currently not provision for private operators to sell water (nor 

recycled water). This presents a barrier to an industry owned and operated plant, 

however, it is not the core business of the companies involved and their interest in 

establishing a plant as a revenue generating centre is limited – the business 

proposition is not favourable enough. Hence the most likely scenario would be for the 

government owned utility (South East Water) to own and operate the plant. The 

situation for private players entering as water retailers in Melbourne may change in 

future, however the Port Melbourne case study is unlikely to motivate such a change 

in legislation. By way of comparison, the state of New South Wales has recently 

enacted the Water Industry Competition Act (2006) allowing third parties to become 

licensed water retailers and local councils in Sydney to sell water. The success of 

this legislation as it becomes tested would provide useful input to any Melbourne-

based proposals seeking to adopt a similar approach.  

 

4.6 Technical issues 

Technical obsolescence of existing process equipment as synergy opportunity: The 

Kwinana Cogeneration Plant is located on land of the BP oil refinery, and produces 

all process steam for the refinery, and generates electricity for BP as well as the grid. 
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The cogeneration plant is fired with excess refinery gas from the oil refinery 

supplemented with natural gas. The cogeneration plant built in 1996, substituted both 

BP steam boilers that were in need of replacement at the time. This synergy is 

estimated to have saved the refinery in approximately 15 million AUD in capital 

expenditure while ensuring a cost competitive reliable source of steam and electricity 

for their refinery. In addition BP provides process water to the cogeneration plant and 

accepts their wastewater stream. A willingness to assess developing co-generation 

opportunities was identified in Port Melbourne, but is only currently being explored in 

detail. 

 

Role of regional synergies versus on-site efficiency: A key consideration for water 

reuse synergy projects is how recycling waste water for use at an adjacent site 

affects the pursuit of future water efficiency opportunities on site (which are very cost 

effective). Once a recycled water plant had started operation, reductions in water 

discharges to feed the plant (and increases in pollutant loads) would affect the 

viability of the recycled plant. Whilst an important consideration for water reuse 

synergies in Port Melbourne, this is less of a concern for other material exchanges in 

Kwiniana where by-products from some processes currently have no other uses and 

any reuse opportunity is beneficial. This highlights the importance of the cost 

effectiveness framework for contrasting the two.  
 

5 PLAN FOR FUTURE REGIONAL SYNERGY DEVELOPMENT 

This paper has provided an overview of the Port Melbourne scoping study of water 

reuse opportunities. By contrasting barriers and opportunities for regional synergy 

development between Kwinana and Port Melbourne, insights can be gained into the 

strategy which can lead to successful implementation. This has been proposed in the 

following stages:  

• Establish Port Melbourne Industrial Ecology working group 

• Further review of costs, technologies and funding with utility and stakeholders 

• Option and technology selection for detailed assessment 

• Broader stakeholder consultation 

• Pilot testing of water qualities 

• In-principle commitment (MOU) from companies 

• Regulatory approvals 

• Detailed design 
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• Liaise with companies regarding contracts 

• Acquire land and capital for development 

• Facility Construction 

• Company interconnections and pipe work 

• Commissioning  

• Operation 

• Monitoring and evaluation. 

 

6 CONCLUSIONS AND FUTURE RECOMMENDATIONS 

The results of this study demonstrated that there are at least five possible synergy re-

use options that are technically feasible, however further pilot testing of input water 

quality would be required for receiving plants. All options require a financial subsidy 

to be viable and there is the potential to secure such assistance from the government 

and utilities. The use of a cost effectiveness framework to evaluate options shows 

that the $/kL increases with smaller plant size and also with the use of Reverse 

Osmosis technology (in addition to MBR technology). The pilot trials of whether the 

output quality from MBR options is sufficient for use directly as a process input would 

shape the final choice. The cost effectiveness metric also allows a broader 

comparison with other options open to the utility to realise water savings. It shows 

reuse at Port Melbourne to be more costly than water efficiency and large scale 

desalination. In addition to describing options, the authors have emphasised the 

process by which the options are developed. Successful implementation of regional 

synergies from Kwinana has shown the central role of establishing trust amongst 

participating stakeholders and for this reason the participating companies in Port 

Melbourne agreed to meet independently following the facilitated scoping study 

project as an Industrial Ecology Group and have begun to explore further 

opportunities for synergies beyond water. Work is currently focussing on the energy 

implications of water reuse synergies and exploration of co-generation opportunities.  

The range of barriers and opportunities identified and compared between Kwinana 

and Port Melbourne will be of interest to others seeking to implement reuse synergies 

and underlines the need to asses local context as several barriers differ markedly.  

 

Further research is required within the industrial ecology community to ascertain 

when and at what scale reuse synergies should be pursued and when and at what 
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scale efficiency should be prioritised, and how this varies for water, energy and other 

materials.  

 

Given the benefits of contrasting Kwinana and Port Melbourne experiences, further 

efforts could usefully be undertaken to establish a network of regional industry 

councils (e.g. Gladstone Area Industry Network, Kwinana Industries Council, 

Geelong Manufacturing Council, Port Melbourne Industrial Ecology Group) for 

sharing lessons and implementation strategies.  
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