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Abstract  Electric load forecasting is essential to improve the reliability of the AC 

power line data network and provide optimal load scheduling in an intelligent home 

system.  In this paper, a short-term load forecasting realized by a neural fuzzy network 

(NFN) and a modified genetic algorithm (GA) is proposed.  It can forecast the hourly 

load accurately with respect to different day types and weather information.  By 

introducing new genetic operators, the modified GA performs better than the 

traditional GA under some benchmark test functions.  The optimal network structure 

can be found by the modified GA when switches in the links of the network are 

introduced.  The membership functions and the number of rules of the NFN can be 

obtained automatically.  Results for a short-term load forecasting will be given. 

Index Terms- Home networking, load forecasting, genetic algorithm, neural fuzzy 

network. 

I.  INTRODUCTION 

Nowadays, homes should have smart features to ensure a high degree of security, 

entertainment and comfort.  To realize these features, reliable channels for the 

communication among electrical appliances and users should be present. Moreover, with a 

home network, electrical appliances can be used in an efficient way and the wastage of 

energy can be reduced.  This paper is based on an intelligent home system [15].  In this 

system, the AC power line network is used not only for supplying electrical power, but also 

serving as the data communication channel for electrical appliances.  Once an electrical 
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appliance is plugged into a power socket, digital data can be transferred through the socket.  

With this AC power line data network, a short-term load forecasting can be realized.  An 

accurate load forecasting can bring the following benefits to the intelligent home. 

1) Increasing the reliability of the AC power line data network - On using the AC 

power line as the networking medium, we may suffer from the possible low 

impedance of the power line in the operating bandwidth [16-17] for data 

transmission.  When this occurs, the maximum transmission rate, the reliability 

and the throughput of the AC power line data network will decrease.  The 

attenuation of the data signal in an AC power line is proportional to the load 

connected to it.  The reliability of the power line data network can be enhanced if 

the load is kept at an optimal level through forecasting and power backup.  We 

can also adaptively set a suitable data transmission rate based on the forecasted 

load condition in order to reduce the overhead of data retransmission. 

2) Optimal load scheduling - At present, the peak demand of electricity is met by 

operating costly auxiliary generators, or by purchasing power from other utility 

companies.  The cost for supplying peak power is therefore much higher than that 

for supplying the average power. A reduction in the peak value of electricity 

demand can be achieved if we can realize load forecasting, and schedule the 

demands on the utility company accordingly.  This has to be supported by 

batteries installed in the intelligent home to share the load demand.  

Computational intelligence techniques have been applied in daily load forecasting.  

Neural networks have been considered as a very promising tool to short-term load 

forecasting [18-25], but its slow convergence time and poor ability of processing linguistic 

information may cause some problems.  In recent year, fuzzy logic has been used to deal 

with variable linguistic information in load forecasting [26-27].  By processing fuzzy 

information, reasoning with respect to a linguistic knowledge base can be done.  In [18-25], 
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gradient-descent (GD) algorithm was used to train the neural network parameters.  However, 

the common problems of convergence to local minima and sensitivity to initial values 

persist.  Global search technique such as Genetic Algorithm (GA) may solve these problems.  

GA is a powerful searching algorithm to handle optimization problems [1-2, 5].  It is 

particularly useful for complex optimization problems with a large number of tuned 

parameters.  GA has been widely applied in different areas such as fuzzy control [7-9, 13], 

path planning [10], greenhouse climate control [11], modeling and classification [12] etc.  

In this paper, we develop a neural fuzzy system with a modified GA for short-term 

load forecasting in an intelligent home.  New genetic operators are introduced in the 

modified GA.  It will be shown that the modified GA performs better than the traditional GA 

[1-2, 5] based on some benchmark test functions [3-4, 6, 14].  The modified GA needs only 

one user-input parameter (population size), instead of three, for its implementation.  This 

makes the modified GA simple and easy to use, especially for those users who do not have 

too much knowledge on tuning.  A neural fuzzy network (NFN) with rule switches is 

proposed.  For a common NFN, the number of possible rules may be too high.  This makes 

the network complex while some rules may be unnecessary.  Thus, the rule switches are 

proposed to facilitate the tuning for the optimal number of rules using the modified GA.  

This implies that the cost of implementing the proposed NFN can be reduced.   

 This paper is organized as follows.  The modified GA will be introduced in Section II.  

The performance of the modified GA with respect to some test functions will be discussed in 

Section III.  The proposed NFN is presented in Section IV.  A short-term load forecasting 

realized by the proposed NFN tuned by the modified GA will be presented in Section V.  

Simulation results will be given.  A conclusion will be drawn in Section VI. 
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II.  MODIFIED GENETIC ALGORITHM 

 The traditional GA process [1-2, 5] is shown in Fig. 1.  First, a population of 

chromosomes is created.  Second, the chromosomes are evaluated by a defined fitness 

function.  Third, some of the chromosomes are selected for performing genetic operations.  

Forth, genetic operations of crossover and mutation are performed.  The produced offspring 

replace their parents in the initial population.  This GA process repeats until a user-defined 

criterion is reached.  In this paper, the traditional GA is modified and new genetic operations 

are introduced to improve the performance.  Such a modified GA process is shown in Fig. 2.  

Its details are given as follows. 

A.  Initial Population 

 The initial population is a potential solution set P.  The first set of population is 

usually generated randomly. 

 sizepopP _21  , , , ppp   (1) 

 
varsnoj iiiii pppp

_21
p , i = 1, 2, …, pop_size; j = 1, 2, …, no_vars (2) 

j

i

j parappara
j maxmin   i = 1, 2, …, pop_size; j = 1, 2, …, no_vars (3) 

where pop_size denotes the population size; no_vars denotes the number of variables to be 

tuned;  
jip , i = 1, 2, …, pop_size; j = 1, 2, …, no_vars, are the parameters to be tuned; 

jparamin  and jparamax  are the minimum and maximum values of the parameter 
jip .  It can be 

seen from (1) to (3) that the potential solution set P contains some candidate solutions ip  

(chromosomes).  The chromosome ip  contains some variables 
jip  (genes). 

B.  Evaluation 

 Each chromosome in the population will be evaluated by a defined fitness function.  

The better chromosomes will return higher values in this process.  The fitness function to 

evaluate a chromosome in the population can be written as, 
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)( iffitness p  (4) 

The form of the fitness function depends on the application. 

C.  Selection 

 Two chromosomes in the population will be selected to undergo genetic operations 

for reproduction.  It is believed that the high potential parents will produce better offspring 

(survival of the best ones).  The chromosome having a higher fitness value should therefore 

have a higher chance to be selected.  The selection is done by first assigning a probability iq  

to the chromosome ip : 
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The cumulative probability iq̂  for the chromosome ip  is defined as, 





i

j
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ˆ , i = 1, 2, …, pop_size (6) 

Based on a randomly generated nonzero floating-point number,  10d , for each 

chromosome, the chromosome ip  is selected if ii qdq ˆˆ
1  , i = 1, 2, …, pop_size, and 

0ˆ
0 q .  Thus, a chromosome having a larger f( ip ) will have a higher chance to be selected.  

Consequently, the best chromosomes will get more copies, the average will stay and the 

worst will die off.  In the selection process, two chromosomes will be selected to undergo the 

genetic operations. 

D.  Genetic Operations 

 The genetic operations are to generate some new chromosomes (offspring) from their 

parents after the selection process.  They include the averaging and the mutation operations.  

The averaging operation is mainly for exchanging information from the two parents obtained 

in the selection process.  The operation is realized by taking the average of the parents.  For 
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instance, if the two selected chromosomes are p1 and p2, the offspring generated by the 

averaging process is given by, 

 
2

21
var_21

pp
os


 snoososos   (7) 

 This offspring (7) will then undergo the mutation operation that changes the genes of 

the chromosomes.  Consequently, the features of the chromosomes inherited from their 

parents can be changed.  Three new offspring will be generated by the mutation operation as 

defined by, 

   snosno

j

sno

jj

j nosbnosbnosbososos var_var_2211var_21   nos , j = 1, 2, 3

 (8) 

where ib , i = 1, 2, …, no_vars, can only take the value of 0 or 1, inos , i = 1, 2, …, 

no_vars, are randomly generated floating numbers such that 

i

i

j

i

i paranosospara maxmin  .  The first new offspring (j = 1) is obtained according to 

(8) with that only one ib  (i being randomly generated within the range) is allowed to be 1 

and all the others are 0.  The second new offspring is obtained according to (8) with that 

some ib  chosen randomly are set to be 1 and others are zeros.  The third new offspring is 

obtained according to (8) with all ib  = 1.  These three new offspring will then be evaluated 

using the fitness function of (4).  The one with the largest fitness value lf  will replace the 

chromosome with the smallest fitness value sf  in the population if sl ff  . 

 After the operation of selection, averaging, and mutation, a new population is 

generated.  This new population will repeat the same process.  Such an iterative process can 

be terminated when the result reaches a defined condition, e.g. the change of the fitness 

values between the current and the previous iteration is less than 0.001, or a defined number 

of iteration has been reached.  For the traditional GA process depicted in Fig. 2, the offspring 

generated may not be better than their parents.  This implies that the searched target is not 
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necessarily approached monotonically after each iteration.  Under the proposed modified GA 

process, however, if sl ff  , the previous population is used again in the next genetic cycle.  

A more efficient search may then be obtained. 

 

III. BENCHMARK TEST FUNCTIONS 

 De Jong’s Test Functions [3-4, 6, 17] are used as the test functions to examine the 

applicability and efficiency of the modified GA   A brief description of each function and the 

problem it represents are given as follows.  1f  is a sphere function, which is probably the 

most widely used test function.  It is smooth, unimodal and symmetric.  The performance on 

this function is a measure of the general efficiency of an algorithm.  2f  is a Rosenbrock 

function of which the optimum is located in a very narrow ridge.  The tip of the ridge is very 

sharp, and it runs around a parabola.  Algorithms that cannot discover good directions will 

perform poorly in this problem.  3f  is a step function, which is a representative of flat 

surfaces.  Flat surfaces are obstacles for optimisation algorithms because they do not give 

any information about the search direction.  Unless the algorithm has a variable step size, it 

can be stuck in one of the flat surfaces.  4f  is a quartic function, which is a simple unimodal 

function padded with noise.  The Gaussian noise causes the algorithm never getting the same 

value at the same point.  Algorithms that do not do well in this function will perform poorly 

on noisy data.  5f  is a foxholes function that has many local minima (25 in this case).  Many 

standard algorithms can be stuck in the first maximum they find. 

 The test functions are denoted by )(xif , i = 1, 2, 3, 4, 5, where 

 xnoxxx _11 x .  no_x is an integer denoting the dimension of the vector x. 
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where n = 3 and the minimum point is at f1(0, 0, 0) = 0 
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where n = 2 and the minimum point is at f2(1, 1) = 0. 
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where n = 5 and the minimum point is at f3(0, …, 0) = 0.  The value of the floor function, 

floor(), is obtained by rounding down the argument to the nearest smaller integer. 
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where n = 30 and the minimum point is at f4(0, …, 0) = 0.  Gauss(0, 1) is obtained by 

randomly generating a floating-point number between 0 and 1. 
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k = 500 and the minimum point is at f5(32, 32) ≈ 1. 

 It should be noted that the minimum values of all functions in the defined domain are 

zero except for )(5 xf .  The fitness function for 1f  to 4f  is defined as, 

)(1

1

xif
fitness


 , i = 1, 2, 3, 4. (14) 

and the fitness function for 5f  is defined as, 

)(

1

5 xf
fitness   (15) 

 The modified GA goes through these 5 test functions.  The results are compared with 

those obtained by the traditional GA [5].  For each test function, the population size is 20.  
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Each parameter of the traditional GA is encoded into a 40-bit number in the chromosome, 

and the probabilities of crossover and mutation are 0.25 and 0.03 respectively.  The initial 

values of x in the population for a test function are set to be the same.  For tests 1 to 5, the 

initial value are  111 ,  5.05.0 ,  11  ,  5.05.0   and  1010  respectively.  

The results of the average fitness values over 30 times of simulations of the modified and 

traditional GAs are shown in Fig. 3 and tabulated in Table I.  It can be seen from Fig. 3 that 

the performance of the modified GA is better than that of the traditional GA.   

 

IV.  TUNING OF NFN USING THE MODIFIED GA 

 In this section, tuning of the membership functions and the number of rules of a 

neural fuzzy network (NFN) using the modified GA will be presented.  The optimal number 

of rules can be found by introducing switches in some links of the NFN. 

 

A. Neural Fuzzy Network with Rule Switches 

 We use a fuzzy associative memory (FAM) [28] type of rule base for the NFN.  An 

FAM is formed by partitioning the universe of discourse of each fuzzy variable according to 

the level of fuzzy resolution chosen for the antecedents, thereby generating a grid of FAM 

elements.  The entry at each grid element in the FAM corresponds to a fuzzy premise.  An 

FAM may, then be interpreted as a geometric or tabular representation of a fuzzy logic rule 

base.  For an NFN, the number of possible rules may be too large.  This makes the network 

complex while some rules may be not necessary.  The implementation cost is also 

unnecessarily high. Thus, a multiple-input-single-output NFN (Fig. 4) is proposed which can 

have an optimal number of rules and membership functions.  The main difference between 

the proposed network and the traditional network is that a unit step function is introduced to 

some links of the NFN.  The unit step functions is defined as, 
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0 if 1

0 if 0
 (16) 

This is equivalent to adding a switch to each rule in the NFN.  Referring to Fig. 4, we define 

the input and output variables as ix  and y respectively; where i = 1, 2, …, n and n is the 

number of input variables.  The behaviour of the NFN is governed by p fuzzy rules in the 

following format; 

Rg: IF )(1 tx  is ))(( 11 1
txA g  AND )(2 tx  is ))(( 22 2

txA g  AND … AND )(txn  is ))(( txA nngn
 

 THEN y(t) is gw , t = 1, 2, …, u (17) 

where u denotes the number of input-output data pairs; g = 1, 2, …, p, is the rule number; 

gw is the output singleton of rule g.  From Fig. 4, it can be seen that  





n

i

imp
1

 (18) 

where im  is the number of membership functions of input variable ix  and 

  nimg ii ,...,1,,,1   . 

In this network, the membership function is a bell-shaped function as given by, 
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where parameter 
iigx  and 

iig are the mean value and the standard deviation of the 

membership function respectively.  The grade of the membership of each rule is defined as, 

))(())(())(()( 2211 21
txAtxAtxAt nngggg n

   (20) 

The output of the neural fuzzy network y(t) is defined as, 
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where g  denotes the rule switch parameter of the g-th rule. 
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B. Tuning  

 The proposed NFN can be employed to learn a input-output relationship of an 

application using the modified GA.  The desired input-output relationship is described by, 

    tty dd xq , t = 1, 2, …, u (22) 

where  ty d  is the desired output,         txtxtxt d

n

ddd 21x  is the desired input 

vector and  q  is an unknown non-linear function.  The fitness function is defined as, 

fitness=
err1

1
 (23) 

where 
   

 





u

t
d

d

ty

tyty

u
err

1

1
 (24) 

The objective is to minimize the mean absolute percentage error (MAPE) of (24) using the 

modified GA by setting the chromosome to be [
iigx

iig g ] for all i, gi, g.  The range of 

fitness in (23) is [0, 1].  A larger value of fitness indicates a smaller err.  By using the 

proposed neural fuzzy network and the modified GA, an optimal neural fuzzy network in 

terms of the number of rules and the membership functions can be obtained. 

 

V.  SHORT-TERM LOAD FORECASTING SYSTEM 

It is desired to forecast the load demand in a home with respect to the week’s day 

number and the hour number.  The load forecasting system involves 168 multi-input-single-

output NFNs, one for a given week’s day number and an hour number ( 168247  ).  The 

most important task in the short-term load-forecasting problem is to select the input 

variables.  The forecasting result is affected by two main kinds of information.  One is the 

historical load data and the other is the uncertain information such as the average 

temperature and rainfall index (weather condition) [21, 29-30].   

Historical load data – the hourly load values for yesterday were used as historical load 
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inputs.  These historical hourly loads provides the shape and magnitude reference for the 

forecasted load.   They reflect the habit of the family on power consumption.  

Temperature – the average temperature at the previous day and the present day are used as 

inputs in this forecasting system.  The value of the average temperature of the present day is 

got from the temperature forecast of the weather observatory. 

Rainfall index – the average rainfall indexes of the previous day and the present day are used 

as two inputs in this forecasting system.  The range of the rainfall index is from 0 and 1.  0 

represents no rain and 1 represents heavy rain. 

One of the 168 proposed NFNs for daily load forecasting is shown in Fig. 5.  It is a 7-

input-1-output network with rule switches.  The inputs, zi, of the proposed NFN are: 

 1,11  hdLz d  which represents the load value at the previous hour of the previous day, 

 hdLz d ,12   which represents the load value at the forecasting hour of the previous day, 

 1,13  hdLz d  which represents the load value at the next hour of the previous day, 4z  

= average temperature at the previous day, 5z  = average temperature at the present day, 6z  = 

average rainfall index at the previous day, 7z = average rainfall index at the present day.  The 

output   ),( hdLty  , where d = 1, 2, …, 7 is the week’s day number (e.g. d = 1 for Monday, 

d = 7 for Sunday),   h = 1, 2, …, 24 is the hour number.  One should note the special case 

that if d = 1, (d1) should be 7.  ),( hdL  is the forecasted load for day-d, hour-h. 

Data of 12 weeks (week 1 to week 12) for learning and data of 2 weeks (week 13 to 

week 14) for testing are prepared.  The number of membership function for each input 

variables is 2 (i.e. 2im , i = 1, 2 ,…, 7) such that the number of rules is p = 2
7
 = 128.  

Referring to (21), the proposed NFN used for the load forecasting of a particular hour is 

governed by, 
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The fitness function for training is defined as follows, 

err
fitness
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 (26) 
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(25) is one of the 168 NFNs in the proposed load forecaster. 

The modified GA is employed to tune the parameters and structure of the NFNs.  The 

population size is 10.  The bounds of parameters are set at 10 
iigx , 4.00 

iig  and 

11  g .  The chromosomes used for the modified GA are [
iigx

iig g ], 

.128,,1;2,1;7,,1   ggi i  Initial values of 
iigx ,

iig , g  of 0.5, 0.2 and 1 respectively 

are used.  The number of the iterations to train the NFN is 2000.  For comparison, another 

proposed NFN trained by the traditional GA, and a 7-inputs-1-output NFN without rule 

switches trained by the modified GA and traditional GA, are also applied for the load 

forecasting.  The common network parameters are kept unchanged.  In addition, a bit length 

of 9 is used for each parameter coding.  The probabilities of crossover and mutation for the 

traditional GA are 0.65 and 0.05 respectively.   

The load forecasting results are tabulated in Table II to Table V.  Table II shows the 

load forecasting results for Wednesday using the proposed NFNs trained by the modified 

GA and traditional GA respectively. Table III shows the load forecasting results for 

Wednesday using traditional NFNs without rule switches trained by the modified GA and 

traditional GA respectively.  Table IV shows the load forecasting results for Sunday using 

the proposed NFNs trained by the modified GA and traditional GA respectively.  Table V 

shows the load forecasting results for Sunday using traditional NFNs without rule switches 
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trained by the modified GA and traditional GA respectively.  From these four tables, we 

observe that the proposed NFN provides better results than the traditional NFN in term of the 

fitness value and number of rules.  Besides, the proposed GA also produces better results 

than the traditional GA.  The average numbers of rules of the proposed NFNs trained by the 

modified GA for load forecasting on Wednesday and Sunday are 67.3 and 69.6 respectively.  

These imply a 47.4% and 45.64% reduction of the number of rules after learning. 

Table VI to Table X show the average training error (MAPE) based on data of week 

1 to week 12 and the average forecasting error (MAPE) based on data of week 13 to week 14 

for Wednesday and Sunday respectively.  From these tables, we can see that the proposed 

NFN trained by the modified GA gives the best results.  Fig. 6 and Fig. 7 show the 

forecasted daily load curve on Wednesday and Sunday of Week 13 respectively.  We can 

conclude that the proposed NFN offers a satisfactory performance in load forecasting. 

 

VI.  CONCLUSION 

 In this paper, a modified GA with new genetic operations has been proposed.  Based 

on the benchmark De Jong’s test functions, it has been shown that the modified GA 

performs better than the traditional GA.  A neural fuzzy network has been proposed in which 

a switch is introduced in each fuzzy rule.  Thus, the number of rules can be optimized by 

applying the modified GA.  The cost of implementing the NFN can be reduced.  A short-

term load forecasting in an intelligent home has been realized using the proposed network.  

The optimal number of rules and the network parameters are tuned by the modified genetic 

algorithm.  The performance of the proposed network is satisfactory as the average errors are 

lower than 2%.   
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Fig. 1.  Traditional GA. 
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Fig. 2.  Modified GA. 
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(a).  The average fitness value of the test function )(1 xf  obtained by the modified (solid line) and traditional 

(dotted line) GAs. 
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(b).  The average fitness value of the test function )(2 xf  obtained by the modified (solid line) and traditional 

(dotted line) GAs. 
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(c).  The average fitness value of the test function )(3 xf  obtained by the modified (solid line) and traditional 

(dotted line) GAs. 
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(d).  The average fitness value of the test function )(4 xf  obtained by the modified (solid line) and traditional 

(dotted line) GAs. 
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(e).  The average fitness value of the test function )(5 xf  obtained by the modified (solid line) and traditional 

(dotted line) GAs. 

 

Fig. 3.  Simulation results of the modified and traditional GAs. 
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Fig. 4.  Proposed neural fuzzy network. 
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Fig. 5. Proposed neural fuzzy network for load forecasting 
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Fig.6. Actual load (solid line) and forecast results for Wednesday (Week13) from the proposed forecasting 

system (dashed line) and the traditional forecasting system. 
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Fig.7. Actual load (solid line) and forecast results for Sunday (Week13) from the proposed forecasting system 

(dashed line) and the traditional forecasting system. 

 
 Modified GA Traditional GA 

Test Functions Fitness Value Fitness Value 

)(1 xf  0.999955 0.999382 

)(2 xf  0.984039 0.810813 

)(3 xf  0.583333 0.520833 

)(4 xf  0.737526 0.14211 

)(5 xf  0.995509 0.982912 

Table I.  Simulation results of the modified and the traditional GAs based on the De Jong’s test functions. 
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 Trained with modified GA Trained with traditional GA 

Hour Fitness value No. of rules Fitness value No. of rules 

1 0.988313 66 0.987183 61 

2 0.991696 68 0.990321 67 

3 0.994460 63 0.992122 58 

4 0.988092 67 0.987987 69 

5 0.991691 74 0.990212 71 

6 0.991463 67 0.989102 63 

7 0.992417 75 0.990124 70 

8 0.981700 71 0.977821 68 

9 0.986421 57 0.982099 62 

10 0.983249 74 0.978106 73 

11 0.988425 66 0.984239 65 

12 0.987979 63 0.982205 63 

13 0.982555 69 0.978265 70 

14 0.984378 70 0.980639 68 

15 0.984158 74 0.980243 77 

16 0.981027 63 0.975093 69 

17 0.983318 67 0.979036 65 

18 0.987679 70 0.985643 66 

19 0.979401 57 0.977232 62 

20 0.982569 66 0.979023 65 

21 0.984503 68 0.982637 63 

22 0.988063 70 0.985302 64 

23 0.978526 67 0.974009 70 

24 0.980531 64 0.977875 68 

Average: 0.985942 67.3 0.982772 66.5 

Table II.  Load forecasting results for Wednesday using the proposed NFN with modified and traditional GAs 

after learning.  

 
 Trained with modified GA Trained with traditional GA 

Hour Fitness value No. of rules Fitness value No. of rules 

1 0.985742 128 0.979566 128 

2 0.989217 128 0.987982 128 

3 0.982123 128 0.981278 128 

4 0.977821 128 0.973886 128 

5 0.984974 128 0.982847 128 

6 0.984820 128 0.982845 128 

7 0.980012 128 0.978329 128 

8 0.984933 128 0.989166 128 

9 0.977932 128 0.977387 128 

10 0.980231 128 0.979038 128 

11 0.988219 128 0.986572 128 

12 0.979236 128 0.977390 128 

13 0.975237 128 0.972502 128 

14 0.982367 128 0.984302 128 

15 0.974743 128 0.976310 128 

16 0.973432 128 0.970608 128 

17 0.980023 128 0.976288 128 

18 0.981623 128 0.980906 128 

19 0.977834 128 0.975917 128 

20 0.980323 128 0.977832 128 

21 0.983234 128 0.986197 128 

22 0.988346 128 0.988051 128 

23 0.984437 128 0.986947 128 

24 0.977732 128 0.977180 128 

Average: 0.981441 128 0.980389 128 

Table III.  Load forecasting results for Wednesday using the traditional NFN with modified and traditional GAs 

after learning. 
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 Trained with modified GA Trained with traditional GA 

Hour Fitness value No. of rules Fitness value No. of rules 

1 0.993858 64 0.992123 66 

2 0.989306 64 0.988364 63 

3 0.987975 80 0.983323 77 

4 0.994966 80 0.992310 79 

5 0.991833 74 0.987832 79 

6 0.989173 67 0.985623 65 

7 0.989657 66 0.987345 69 

8 0.981039 76 0.977438 70 

9 0.987334 75 0.985434 76 

10 0.980280 70 0.977435 74 

11 0.982896 66 0.983484 68 

12 0.987385 60 0.985435 65 

13 0.978656 80 0.976546 75 

14 0.976452 68 0.974504 74 

15 0.983945 75 0.985645 79 

16 0.978974 69 0.979450 64 

17 0.975966 74 0.974771 69 

18 0.982075 56 0.983054 60 

19 0.977009 68 0.976859 64 

20 0.983535 62 0.984095 67 

21 0.989151 70 0.986780 65 

22 0.986421 64 0.982067 68 

23 0.978060 68 0.978103 63 

24 0.985058 74 0.983088 75 

Average: 0.984625 69.6 0.982963 69.7 

Table IV.  Load forecasting results for Sunday using the proposed NFN with modified and traditional GAs after 

learning.  

 
 Trained with modified GA Trained with traditional GA 

Hour Fitness value No. of rules Fitness value No. of rules 

1 0.991876 128 0.991465 128 

2 0.989032 128 0.990133 128 

3 0.982231 128 0.979135 128 

4 0.985364 128 0.981797 128 

5 0.989093 128 0.988750 128 

6 0.985749 128 0.983563 128 

7 0.988763 128 0.988964 128 

8 0.979126 128 0.978053 128 

9 0.987328 128 0.987016 128 

10 0.976432 128 0.975352 128 

11 0.982983 128 0.982571 128 

12 0.980234 128 0.975890 128 

13 0.972349 128 0.971394 128 

14 0.975095 128 0.974831 128 

15 0.981370 128 0.978184 128 

16 0.976061 128 0.972019 128 

17 0.973525 128 0.971706 128 

18 0.970192 128 0.961152 128 

19 0.975578 128 0.974105 128 

20 0.977232 128 0.976875 128 

21 0.981096 128 0.978810 128 

22 0.984092 128 0.981486 128 

23 0.984536 128 0.986915 128 

24 0.982311 128 0.981015 128 

Average: 0.981319 128 0.979633 128 

Table V.  Load forecasting results for Sunday using the traditional NFN with modified and traditional GAs 

after learning.
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 Trained with modified GA Trained with traditional GA 

Hour Ave. training error 

(Week 1-12) 

Ave. forecasting error 

(Week13-14) 

Ave. training error 

(Week 1-12) 

Ave. forecasting error 

(Week13-14) 

1 1.1826 0.7216 1.2983 0.8802 
2 0.8374 0.3664 0.9774 0.4636 
3 0.5564 0.0665 0.7941 0.0996 
4 1.2072 0.6502 1.2159 0.8007 
5 0.8379 1.5986 0.9885 1.9593 
6 0.8611 1.2652 1.1018 1.5427 
7 0.7641 0.5917 0.9975 0.7219 
8 1.8641 1.7350 2.2682 2.1156 
9 1.3765 1.6626 1.8227 2.0226 

10 1.7037 1.7857 2.2384 2.1871 
11 1.1710 2.8853 1.6013 3.5075 
12 1.2167 0.3422 1.8117 0.4246 
13 1.7755 1.6810 2.2218 2.0492 
14 1.5870 0.5044 1.9743 0.6243 
15 1.6097 1.8949 2.0155 2.3165 
16 1.9340 0.7740 2.5543 0.9512 
17 1.6965 2.5373 2.1413 3.0840 
18 1.2475 2.0180 1.4566 2.4696 
19 2.1033 1.8034 2.3298 2.2057 
20 1.7740 0.8074 2.1426 0.9876 
21 1.5741 1.6664 1.7670 2.0261 
22 1.2082 1.2375 1.4917 1.5115 
23 2.1945 1.1769 2.6685 1.4408 
24 1.9856 2.7392 2.2626 3.3325 

Average: 1.4279 1.3546 1.7559 1.6552 

Table VI.  Training error and forecasting error (in MAPE) for Wednesday under the proposed NFN trained by 

the modified and traditional GAs.  

 
 Trained with modified GA Trained with traditional GA 

Hour Ave. training error 

(Week 1-12) 

Ave. forecasting error 

(Week13-14) 

Ave. training error 

(Week 1-12) 

Ave. forecasting error 

(Week13-14) 

1 1.4464 1.3342 2.0860 1.4611 

2 1.0901 2.6273 1.2164 2.9000 

3 1.8202 1.2012 1.9079 1.3257 

4 2.2682 0.7619 2.6814 0.8206 

5 1.5255 1.6326 1.7452 1.8025 

6 1.5414 1.0802 1.7454 1.1866 

7 2.0396 0.7136 2.2151 0.7691 

8 1.5297 0.9747 1.0953 1.0584 

9 2.2566 1.5496 2.3136 1.6954 

10 2.0168 1.8352 2.1411 2.0148 

11 1.1921 4.2288 1.3611 4.6699 

12 2.1204 0.8581 2.3132 0.9426 

13 2.5392 0.5808 2.8275 0.6353 

14 1.7950 2.7824 1.5948 3.0533 

15 2.5911 3.2574 2.4265 3.5760 

16 2.7293 4.6023 3.0282 5.0777 

17 2.0384 2.4358 2.4288 2.6843 

18 1.8721 4.6344 1.9466 5.1140 

19 2.2668 2.2953 2.4677 2.5192 

20 2.0072 1.0399 2.2671 1.1266 

21 1.7052 0.9028 1.3996 0.9833 

22 1.1791 3.5312 1.2094 3.8948 

23 1.5809 0.8890 1.3226 0.9808 

24 2.2775 2.6093 2.2828 2.8691 

Average: 1.8910 2.0149 2.0010 2.2150 

Table VII.  Training error and forecasting error (in MAPE) for Wednesday under the traditional NFN trained 

by the modified and traditional GAs.  
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 Trained with modified GA Trained with traditional GA 

Hour Ave. training error 

(Week 1-12) 

Ave. forecasting 

error (Week13-14) 

Ave. training error 

(Week 1-12) 

Ave. forecasting 

error (Week13-14) 

1 0.6180 1.5162 0.7940 1.7460 
2 1.1081 1.7387 1.1773 1.9986 
3 1.2171 2.3829 1.6960 2.7326 
4 0.5060 0.5548 0.7750 0.6384 
5 0.8235 0.7548 1.2318 0.8785 
6 1.0945 2.0746 1.4587 2.3817 
7 1.0451 2.1525 1.2817 2.4751 
8 1.9327 1.4970 2.3083 1.7193 
9 1.2828 0.2303 1.4781 0.2696 

10 2.0117 0.0847 2.3086 0.1037 
11 1.7402 1.1305 1.6793 1.3086 
12 1.2776 0.4350 1.4780 0.5023 
13 2.1809 1.9984 2.4017 2.2984 
14 2.4116 1.3677 2.6163 1.5667 
15 1.6317 2.3624 1.4564 2.7121 
16 2.1478 0.5613 2.0981 0.6569 
17 2.4626 2.6652 2.5882 3.0579 
18 1.8252 1.1180 1.7238 1.2810 
19 2.3532 2.1587 2.3689 2.4838 
20 1.6741 0.6842 1.6162 0.7937 
21 1.0969 1.2435 1.3397 1.4267 
22 1.3766 2.1614 1.8260 2.4830 
23 2.0194 1.7320 2.2387 1.9944 
24 1.5169 3.4776 1.7203 3.9980 

Average: 1.5564 1.5034 1.7332 1.7294 

Table VIII.  Training error and forecasting error (in MAPE) for Sunday under the proposed NFN trained by the 

modified and traditional GAs.  

 
 Trained with modified GA Trained with traditional GA 

Hour Ave. training error 

(Week 1-12) 

Ave. forecasting 

error (Week13-14) 

Ave. training error 

(Week 1-12) 

Ave. forecasting 

error (Week13-14) 

1 0.8191 0.2025 0.8606 0.2011 

2 1.1090 2.1124 0.9965 2.2285 

3 1.8090 5.6686 2.1310 5.9949 

4 1.4853 1.3020 1.8541 1.3666 

5 1.1027 0.7114 1.1378 0.7444 

6 1.4457 4.9620 1.6711 5.2338 

7 1.1365 2.2162 1.1159 2.3351 

8 2.1319 0.3739 2.2439 0.3854 

9 1.2835 0.7060 1.3155 0.7347 

10 2.4137 1.8500 2.5271 1.9451 

11 1.7312 0.6123 1.7738 0.6324 

12 2.0165 0.1286 2.4705 0.1246 

13 2.8437 2.9658 2.9448 3.1241 

14 2.5541 1.3580 2.5819 1.4254 

15 1.8984 3.0919 2.2302 3.2611 

16 2.4526 0.4710 2.8787 0.4975 

17 2.7195 3.2347 2.9118 3.4216 

18 3.0724 1.4232 4.0418 1.4938 

19 2.5033 2.5159 2.6583 2.6583 

20 2.3298 2.6656 2.3672 2.8132 

21 1.9268 1.6891 2.1649 1.7761 

22 1.6165 2.1979 1.8863 2.3166 

23 1.5707 2.1157 1.3258 2.2288 

24 1.8008 3.3468 1.9352 3.5402 

Average: 1.9037 1.9967 2.0844 2.1035 

Table X.  Training error and forecasting error (in MAPE) for Sunday under the traditional NFN trained by the 

modified and traditional GAs. 




