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Abstract— Particle Swarm Optimization (PSO) algorithm is a 
member of the swarm computational family and widely used 
for solving nonlinear optimization problems. But, it tends to 
suffer from premature stagnation, trapped in the local 
minimum and loses exploration capability as the iteration 
progresses. On the contrary, Gravitational Search Algorithm 
(GSA) is proficient for searching global optimum, however, 
its drawback is its slow searching speed in the final phase. To 
overcome these problems in this paper a novel Hybrid 
Gravitational Search Particle Swarm Optimization 
Algorithm (HGSPSO) is presented. The key concept behind 
the proposed method is to merge the local search ability of 
GSA with the capability for social thinking (gbest) of PSO. To 
examine the effectiveness of these methods in solving the 
abovementioned issues of slow convergence rate and trapping 
in local minima five standard and some modern CEC 
benchmark functions are used to ensure the efficacy of the 
presented method. Additionally, a DNA sequence problem is 
also solved to confirm the proficiency of the proposed method. 
Different parameters such as Hairpin, Continuity, H-
measure, and Similarity are employed as objective functions. 
A hierarchal approach was used to solve this multi-objective 
problem where a single objective function is first obtained 
through a weighted sum method and the results were then 
empirically validated. The proposed algorithm has 
demonstrated an extraordinary performance per solution 
stability and convergence.  
 
Keywords—PSO; GSA; Hybrid; DNA Computation. 

I. INTRODUCTION 

During the last few years, many new and modified 
versions of the existing algorithms have been the topic of 
interest in the evolutionary computational research 
community. These algorithms include Particle Swarm 
Optimization Algorithm, Genetic Algorithm, Ant Colony, 
Gravitational Search Algorithm to name a few. The 
primary focus of all these algorithms is to trace the best 
solution and to evade trapping in the local minima. The 
algorithm that is used for obtaining the optimized solution 
must contain the main two characteristics these are 
exploration during global searching and exploitation 
during the local search.  

To obtain a good heuristic optimization method there 
must be a steadiness between exploitation and exploration. 
Exploitation is the convergence proficiency of the algorithm 
to the best solution whereas exploration is defined as the 
competency to search the entire area of the problem space. 
The primary objective of the optimization algorithms is to 
 
 

maintain a trade-off between exploitation and exploration 
effectively to obtain the global optimum. However, it is 
challenging to keep a balance between exploration and 
exploitation as one ability often overlaps the others [1]. 
Therefore, due to this problem, the current optimization 
algorithms are only proficient in solving a limited number 
of problems. Until now, no optimizing algorithm is capable 
of solving all the problems. The amalgamation of the 
different optimization algorithms is one of the other 
approaches to maintain a steadiness between exploitation 
and exploration capability. PSO is a nonlinear smart 
computational technique that is undeterred by the problem 
size, and effectively utilized to obtain an optimal solution 
compared to other conventional techniques [2]. Therefore, 
it can be used proficiently with numerous optimization 
problems.  Previously many other optimizing algorithms are 
combined with PSO to minimize the trapping probability in 
the local minimum. Lately, a unique optimization technique 
based on the force of gravity is been presented known as 
GSA. Therefore, in this paper, a combination of both these 
techniques has been used. 

A. Standard Particle Swarm Optimization Algorithm 
(SPSO): 

Eberhart and Kennedy in 1995 [3], proposed the PSO 
algorithm that depends on the concepts of the social 
behavior of the birds. In the same way as the flock of birds, 
the algorithm comprises the number of particles to form a 
swarm. Within the searching area, each agent is finding the 
best solution.  
At the initial stage, a swarm is formed by allocating random 
velocity and positions to all the particles. The assessment of 
each agent (particle) fitness is completed by a set test 
benchmark function. The velocity and the position after 
every iteration is calculated by using (1) and (2). 
Accordingly, if the position found out is improved than the 
last best position is stored in the memory. Vmax is set to limit 
the redundant mobility of the agents outside the search zone. 
If the velocity goes above vmax it is set to zero.  Every 
particle travel in the search space for calculating the best 
solution. The position of each particle is calculated as    

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) =  𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡)                                                          (1) 

The information of every particle is based upon its 
knowledge and the surrounding particle’s experience. 
These fundamentals have identical significance and might 
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be altered based on the choice of the particle so the velocity 
equation will be  

𝑣𝑣𝑖𝑖 = 𝜒𝜒. �𝑤𝑤. 𝑣𝑣𝑖𝑖 + 𝐶𝐶1𝑅𝑅1(𝑃𝑃𝑖𝑖 − 𝑥𝑥𝑖𝑖) + 𝐶𝐶2𝑅𝑅2�𝑃𝑃𝑔𝑔 − 𝑥𝑥𝑖𝑖��          (2) 

where 

𝑃𝑃 = [𝑃𝑃1, 𝑃𝑃2 ,𝑃𝑃3, 𝑃𝑃𝐷𝐷] 

𝑃𝑃𝑔𝑔 = [𝑃𝑃𝑃𝑃1 ,𝑃𝑃𝑃𝑃2 ,𝑃𝑃𝑃𝑃3, 𝑃𝑃𝑃𝑃𝐷𝐷] 

i=1, 2,… D. 

Pg is the global best position, the vi = {v1, v2... vn} is the 
velocity of the particles, R is the random number [0-1], D is 
the dimension of the search space D ∈ {1, 2, 3….D}, Pi is 
the local best, and xi is the current position. Each particle is 
assessed by a given fitness function. The primary purpose 
of the PSO is to decrease the cost values of the particles 
iteratively for the given benchmark function. 

B. Standard Gravitational Search Algorithm (SGSA): 

Rashedi et.al proposed a novel method known as 
Gravitation search optimization (GSA) in 2009 [4]. The 
concept behind this algorithm was dependent on Newton’s 
law of motion and gravity. Every agent has its mass in GSA, 
and the heavier mass agent gives a better force of attraction. 
Therefore, all the agents travel near to the heaviest agent as 
the iteration progresses. 

The position of the agents is initialized as follows: 

𝑋𝑋𝑖𝑖 = � 𝑋𝑋𝑖𝑖
1,𝑋𝑋𝑖𝑖

2, … … … … …𝑋𝑋𝑖𝑖
𝑑𝑑 ,𝑋𝑋𝑖𝑖

𝐷𝐷� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = (1,2, . .𝐷𝐷)    (3)    

In the Dth dimension, xd denotes the position of an ith object, 
and D denotes the dimension of the search area. 

At time “t” the force of attraction by mass “i” from mass 
“j” is defined as: 

𝐹𝐹𝑖𝑖𝑖𝑖
𝑑𝑑(𝑡𝑡) = 𝐺𝐺(𝑡𝑡)

𝑀𝑀𝑝𝑝𝑝𝑝 (𝑡𝑡) ∗  𝑀𝑀𝑎𝑎𝑎𝑎(𝑡𝑡)

𝑅𝑅𝑝𝑝𝑎𝑎(𝑡𝑡)+ 𝜖𝜖
  (𝑋𝑋𝑖𝑖

𝑑𝑑(𝑡𝑡)− 𝑋𝑋𝑖𝑖
𝑑𝑑(𝑡𝑡))                  (4)   

𝐺𝐺(𝑡𝑡) = 𝐺𝐺(𝑡𝑡0) ∗ �𝑡𝑡0
𝑡𝑡
�
𝛽𝛽  

,𝛽𝛽 < 1                                              (5)                                                

where Mpi is the passive gravitational mass related to object 
i, Rij(t) is the distance between two agents i and j, ε is a 
small constant, G(t) is a gravitational constant at time t, and 
Maj is an active gravitational mass of object j.  

In dimension “D” the overall force experienced on agent 
i is a random weighted sum of all the other parts of the 
forces exerted on the other agents, (4) can be modified by 
the following equation. 

𝐹𝐹𝑖𝑖
𝑑𝑑(𝑡𝑡) =  ∑ 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖  𝐹𝐹𝑖𝑖𝑖𝑖

𝑑𝑑𝑁𝑁
𝑖𝑖=1,𝑖𝑖 ≠i (t)                                            (6) 

According to the law of motion, the acceleration of the 
agent can be defined as: 

𝑟𝑟𝑖𝑖
𝑑𝑑(𝑡𝑡) = 𝐹𝐹𝑝𝑝

𝑑𝑑(𝑡𝑡)
𝑀𝑀𝑝𝑝𝑝𝑝  (𝑡𝑡)

                                                                     (7)                                                                          

Where Mii denotes the inertial mass.  

The velocity of the masses is dependent on their current 
velocity and acceleration. The velocity and position of the 
agent is updated by (8) and (9)  

𝑋𝑋𝑖𝑖
𝑑𝑑(𝑡𝑡 + 1) = 𝑋𝑋𝑖𝑖

𝑑𝑑 +  𝑣𝑣𝑖𝑖
𝑑𝑑(𝑡𝑡 + 1)                                            (8) 

𝑉𝑉𝑖𝑖
𝑑𝑑(𝑡𝑡 + 1) = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑣𝑣𝑖𝑖

𝑑𝑑(𝑡𝑡) + 𝑟𝑟𝑖𝑖
𝑑𝑑(𝑡𝑡)                                 (9) 

where “t” is the present iteration. Let’s suppose that the 
gravitational and inertial masses are equal then masses will 
be calculated as follows: 

𝑀𝑀𝑎𝑎𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑝𝑝𝑖𝑖 = 𝑀𝑀𝑖𝑖              𝑖𝑖 = 1,2,3, … … …𝑁𝑁         (10) 

𝑚𝑚𝑖𝑖(𝑡𝑡) = 𝑓𝑓𝑖𝑖𝑡𝑡𝑝𝑝(𝑡𝑡)−𝑋𝑋𝑤𝑤  (𝑡𝑡)
𝑋𝑋𝑏𝑏  (𝑡𝑡)−𝑋𝑋𝑤𝑤(𝑡𝑡)

                                                          (11) 

𝑀𝑀𝑖𝑖(𝑡𝑡) = 𝑚𝑚𝑝𝑝(𝑡𝑡)
∑ 𝑚𝑚𝑎𝑎(𝑡𝑡)𝑁𝑁
𝑎𝑎=1

                                                               (12) 

Where fiti (t) is the optimal value of the agent and Xw (t) is 
the worst and Xb (t) is the best value for this function in 
case of the minimization problem it can be calculated as:  

𝑋𝑋𝑏𝑏(𝑡𝑡) = 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖 𝜖𝜖 {1,…𝑁𝑁} 𝑓𝑓𝑖𝑖𝑡𝑡𝑖𝑖(t)                                               (13) 

𝑋𝑋𝑤𝑤(𝑡𝑡) = 𝑚𝑚𝑟𝑟𝑥𝑥𝑖𝑖𝜖𝜖 {1,…𝑁𝑁} 𝑓𝑓𝑖𝑖𝑡𝑡𝑖𝑖(t)                                               (14) 

To maintain a trade-off between exploitation and 
exploration of the algorithm over the iteration the number 
of the agents is reducing so that the agents with heavier 
masses acting force to one another are evaluated. “Kbest” are 
the best agents having heavier masses. Therefore, the value 
of the Kbest is reducing slowly until a single agent is exerting 
force to the remaining agents. Consequently, (4) is 
modified as: 

𝐹𝐹𝑖𝑖
𝑑𝑑(𝑡𝑡) =  ∑   𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 𝑖𝑖 𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,𝑖𝑖≠i 𝐹𝐹𝑖𝑖𝑖𝑖

𝑑𝑑  (𝑡𝑡)                                      (15) 

C. Amendments and Contributions in this work: 

Although the proficiency has been enhanced by these 
several versions of PSO and GSA most of these variants do 
not have a strong learning approach for the particles that 
perform well during the searching phase. On the other 
hand, those particles that have not improved their fitness 
over the iterations and may have suffered from stagnation, 
and no technique is used to solve this condition as well. 
These concerns may limit the ability of the PSO and GSA 
algorithms for solving highly complex global optimization 
problems.  

Since both the algorithms have some points in common and 
a few differences, so it is worth mentioning it before 
proposing the hybrid version. These are highlighted as 
under:  

 Both the algorithm come under the population-based 
category. 

 PSO depends on the social behaviour of the birds 
and flocks of fishes whereas the GSA depends on the 
laws of physics. 
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 The optimization is achieved in both the algorithms 

by the agents’ mobility in the search area, though the 
mobility scheme is dissimilar.  

 The total force of attraction acted by all other agents 
assesses the direction of the agents in GSA, whereas, 
the direction of the particles is obtained by global 
best and local best positions in PSO. 

 In GSA, the updating process is carried out by 
considering the force of attraction experienced by 
agents that is proportional to the fitness value, 
therefore, the agents look into the search area around 
them under the effect of force. On the contrary, in 
PSO, updating evaluation is achieved lacking the 
quality of the solutions, and considering the fitness 
values as insignificant in the updating process. 

 GSA is a memoryless algorithm and only the present 
position is important in the updating process, but for 
updating the velocity in PSO, it utilizes a kind of 
memory.  

 The distance between the particles is not important 
in PSO for updating. On the other hand, the force is 
inversely proportional to the distance between the 
agents in GSA.  

In this paper, the following modifications and 
contributions have been presented: 

• A new method is implemented for the velocity 
clamping by adding a new velocity term in the velocity 
update equation so that the particles can move faster 
towards the optimal solution. Since the particle velocity 
is a presumptive parameter, so, it forms an uncurbed path 
permitting the particles to create wider cycles in the 
search area.  To circumvent these oscillations, the limits 
for the velocity are implemented in terms of upper and 
lower bounds in the HGSPSO. One other primary factor 
for amending the velocity update equation is that during 
exploration, the particles trapped in the local minima and 
cannot leave which resulted in a premature convergence. 
The concept of increasing the velocity of the particles helps 
to reach the optimal position swiftly and ameliorate the 
convergence.  

• Adaptive time-varying acceleration constants 
presented for changing the constants as the iteration 
progresses. 

• Inertial weight is also introduced in this paper that 
makes a balance between the exploration and exploitation of 
the HGSPSO. 

• The proposed method is applied to real-world DNA 
problem to demonstrate the performance of the HGSPSO. 

So, in this paper, a fusion of the GSA and PSO is presented 
that uses the exploitation capability of the PSO and exploration 
proficiency of the GSA. The efficiency of the HGSPSO is then 
compared with the standard versions of both GSA and PSO by 
using five standard test benchmark functions, CEC benchmark 
functions, and solving a DNA problem. The layout of the 
remaining paper is as follows. Section II contains the hybrid 

gravitational search particle swarm optimization algorithm 
discussion. Section III shows the application of the proposed 
method on the benchmark functions, Section IV contains the 
fundamental concepts of the DNA; and the comparison of the 
presented technique is made with the contemporary algorithms 
for DNA computation. The paper is culminated by presenting 
the key conclusions in section V. 

II.  HYBRID GRAVITATIONAL SEARCH PARTICLE 
SWARM OPTIMIZATION ALGORITHM (HGSPSO) 

Many hybrid algorithms are available in the literature that 
use the properties of two or more algorithms to improve the 
capability of the hybrid version. Different approaches are used 
to combine the two algorithms that are at the low level and high 
level in a homogenous and heterogeneous way. In this paper, 
GSA is combined with PSO, and the properties of both the 
algorithms are utilized i.e. both the algorithms were executed 
at the same time and the hybrid algorithm i.e. HGSPSO is 
utilized for obtaining the results.  The key rationale for the 
proposed fusion is to benefit from the exploitation capability of 
the PSO and exploration proficiency of the GSA. 

In HGSPSO, the parameters of both these algorithms are 
used. The inertial weight and acceleration constants are the two 
important parameters in PSO. Therefore, in HGSPSO inertial 
weight “w” are modified in such a way that either it is not used 
as a linear reducing or not it is set as a constant value, however, 
it is used as a function of the fitness function values of the 
global and the local best. Similarly, the acceleration constants 
are used in this paper are also adaptively changes as the 
iteration progresses. These two parameters are defined as 
follows: 
𝑤𝑤𝑖𝑖 = 1 − �𝑃𝑃𝑔𝑔

𝑃𝑃𝑝𝑝
�                                                                     (16)  

𝐶𝐶1 = (𝐶𝐶3 − 𝐶𝐶4) ∗ (1 − 𝑡𝑡
𝑇𝑇

) + 𝐶𝐶4                                            (17) 

𝐶𝐶2 = (𝐶𝐶5 − 𝐶𝐶6) ∗ (1 − 𝑡𝑡
𝑇𝑇

) + 𝐶𝐶6                                                  (18)  

 where C3 C4, C5, and C6 are constants values, “T” is the 
maximum iteration, and “t” is the current iteration. The values 
for C1 are reducing adaptively and C2 is increasing over the 
iteration, as a result, the masses move closer to the best 
solution as the proposed method moves in the exploitation 
stage. The reason for adjusting the acceleration coefficients 
adaptively as there is no specific boundary in the evolutionary 
computation for the transiting between these two stages.  
Moreover, this adaptive method helps the exploration in the 
beginning and exploitation in the later stage. The best results 
of the HGSPSO are obtained when changing the C1 from 2.5 
to 0.5, C2 from 0.5 to 2.5, Pg is the global best, and Pi is the 
local best. 

In HGSPSO, every agent is considered as a potential 
solution. The gravitational constant, resultant forces and 
gravitational force are measured among other agents through 
(19), (20), and (21). (22) calculates the acceleration of the 
agents. 

At time “t” the force of attraction by agent (mass) “i” from an 
agent (mass) “j” is defined as: 

𝐹𝐹𝑖𝑖𝑖𝑖𝑑𝑑(𝑡𝑡) = 𝐺𝐺(𝑡𝑡)𝑀𝑀𝑝𝑝𝑝𝑝 (𝑡𝑡) ∗  𝑀𝑀𝑎𝑎𝑎𝑎(𝑡𝑡)

𝑅𝑅𝑝𝑝𝑎𝑎(𝑡𝑡)+ 𝜀𝜀 
  (𝑋𝑋𝑖𝑖𝑑𝑑(𝑡𝑡)− 𝑋𝑋𝑖𝑖𝑑𝑑(𝑡𝑡))               (19)  
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where Mpi is the passive gravitational mass associated to 
object i, ε is a small constant, Rij(t) is the distance between two 
agents i and j, Maj is an active gravitational mass of agent j, 
and G(t) is a gravitational constant at time t.  

To signify the importance of the exploration in the initial 
phase of the algorithm and exploitation in the later phase, G 
has been used adaptively so its value rises as the iteration 
increases. The main objective for designing the G adaptively 
is to motivate the agents to move with bigger steps in the early 
stage of the algorithm, however, agents are bound to travel 
gradually at the end of the iterations. 𝐺𝐺(𝑡𝑡) is modified as 
follows: 

𝐺𝐺(𝑡𝑡) = 𝐺𝐺𝑜𝑜 × 𝑒𝑒−𝛾𝛾 ×(𝑇𝑇−𝑏𝑏𝑇𝑇 )                                                       (20)              

where G0 is the initial gravitational constant and 𝛾𝛾 is the 
coefficient of decrease. 

Assume that in dimension “D” the overall force experienced 
on agent i is a random weighted sum of all the other parts of 
the forces exerted on the other agents, (19) can be modified by 
the following equation. 

𝐹𝐹𝑖𝑖𝑑𝑑(𝑡𝑡) = ∑ 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 𝐹𝐹𝑖𝑖𝑖𝑖𝑑𝑑𝑁𝑁
𝑖𝑖=1,𝑖𝑖 ≠i (t)                                            (21) 

Similarly, acceleration can be calculated as: 

𝑟𝑟𝑖𝑖𝑑𝑑(𝑡𝑡) = 𝐹𝐹𝑝𝑝
𝑑𝑑(𝑡𝑡)

𝑀𝑀𝑝𝑝𝑝𝑝 (𝑡𝑡)
                                                                     (22)   

The gravitational masses, inertial mass for the minimization 
problem can be calculated in the same way as defined from 
(10)-(14).  

As discussed earlier, that the GSA is a memoryless algorithm 
therefore the best solution might not be saved as the best mass 
is attracted away by other less fitted masses. To overcome 
This limitation is mitigated through proposing a novel strategy 
in the velocity update procedure. The new equation for the 
velocity update is defined as: 

𝑉𝑉𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤 × 𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝐶𝐶1 × 𝑟𝑟𝑖𝑖(𝑡𝑡) +  �𝐶𝐶1
𝐶𝐶2
� × �𝑝𝑝𝑔𝑔 − 𝑃𝑃𝑖𝑖  �    (23)  

Where C1 and C2 are the acceleration constants, w is the 
inertial weight, a is the acceleration, pg is the global best (gbest), 
Pi is the local best position vi is the velocity of the agent. The 
third term in (23) is somewhat analogous to the social term of 
the PSO velocity equation. A higher value of C1 biases towards 
GSA behavior, whereas a higher value of C2 encourages the 
social factor of PSO in the execution of the search procedure. 
The adaptive technique permits GSA to examine the search 
area more effectively and a PSO alike exploitation of the best 
solution. 

Finally, the position of agents is updated as follow: 

𝑋𝑋𝑖𝑖𝑑𝑑(𝑡𝑡+ 1) = 𝑤𝑤 ∗𝑋𝑋𝑖𝑖𝑑𝑑 + 𝑣𝑣𝑖𝑖𝑑𝑑(𝑡𝑡+ 1)                                    (24)                                     

In the presented algorithm, all agents are initialized randomly. 
The gravitational force, gravitational constant and resulting 
forces between them are obtained using (19), (20) and (21), 
correspondingly. Later, the acceleration of particles is 
measured using (22). At each iteration, the best solution 
attained up to now should be updated. Then, the velocities of 
all agents are computed using (23), and lastly, (24) update the 

positions of agents. The procedure ends after reaching the 
desired stopping criteria.  

A few advantages and remarks on the proposed method are 
highlighted as under: 
 
 The presented algorithm used memory for storing the 

best solution achieved, in the updating process the 
quality of the agent’s solutions is also considered. The 
particles that are closer to the potential solutions 
attempted to allure the other particles that are exploring 
the search space. In the process of exploring the search 
area, the particles that are, closer to the potential 
solution started to move slowly toward the optimal 
point. The effectiveness of the global best searching 
topology criteria helps the particles to explore the 
global best. Since HGSPSO utilizes a memory-based 
global best topology to save the potential solution 
available so the best solution will not be missing and 
will be easily available at any point in time. 

 
 Each particle will explore the best solution and travel in 

the direction of it, so masses are providing with a kind 
of social intelligence. 

 
 The computational cost of this algorithm is very low. 

 
 The influence of Pg is noticeable in the exploitation 

stage by using adaptive C1 and C2. 
 
 The impact of Pg on agents is free of their masses and 

it will be considered as an exterior force not depending 
on gravitational rules. This efficiently stops particles 
from get-together and having very slow movement. 

 
Due to these modifications in the presented algorithm, it 
delivers better results than the standard GSA and PSO. 

III. HGSPSO FOR FUNCTIONS OPTIMIZATION 

Five test benchmark functions [5] are used to confirm the 
efficiency of the proposed method. 

A. Standard Benchmark Functions 

The strength, efficacy, and ability tests of different 
optimization approaches are demonstrated by utilizing 
numerous standards and benchmark functions. Thus, the 
solution quality, convergence, and stability are measured. To 
assess the proposed algorithm proficiency few standard test 
benchmark functions are used. 

i) Sphere: 

It is a unimodal function with single minima. The main 
objective of using a sphere benchmark is to test the 
convergence rate of the algorithm.  

𝑓𝑓1(𝑥𝑥) =  ∑ 𝑥𝑥𝑖𝑖2𝐷𝐷
𝑖𝑖=1                                                                  (25) 

ii) Rastrigin: 

It’s a multi-modal function comprising many local minima.  

𝑓𝑓2(𝑥𝑥) = ∑ [𝑥𝑥𝑖𝑖2 − 10cos (2𝜋𝜋𝑥𝑥𝑖𝑖)𝐷𝐷
𝑖𝑖=1 + 10]                                     (26) 

iii) Rosenbrock: 
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It is a unimodal function with a single minimum.  

𝑓𝑓3(𝑥𝑥) = ∑ [100(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖2)2 + (1 − 𝑥𝑥𝑖𝑖)2]𝐷𝐷−1
𝑖𝑖=1                   (27) 

iv) Griewank 

It is a multi-modal function with many local minima as a 
result; it tends to convergence in the wrong direction.  

𝑓𝑓4(𝑥𝑥) = 1
4000

∑ 𝑥𝑥𝑖𝑖2 −  ∏ cos(𝑥𝑥𝑝𝑝
√𝑖𝑖

𝐷𝐷
𝑖𝑖=1 ) + 1 𝐷𝐷

𝑖𝑖=1                                (28) 

v) Ackley: 

Ackley is a multi-modal function with many local minima. 

𝑓𝑓5(𝑥𝑥) = −20𝑒𝑒𝑥𝑥𝑝𝑝 �−0.2�1
𝐷𝐷
∑ 𝑥𝑥𝑖𝑖

2𝐷𝐷
𝑖𝑖=1 � −

exp �1
𝐷𝐷
∑ cos(2𝜋𝜋𝑥𝑥𝑖𝑖)𝐷𝐷
𝑖𝑖=1 � + 20 + 𝑒𝑒                                             (29)                                                         

1)  Comparison with the state-of-the-art algorithms: 

The comparison is made with the standard PSO, GSA, and 
the following techniques. 

a) Improved Hybrid Gravitational Search 
Algorithm (IHGSA) [6]: 

In IHGSA, a new parameter that is known as the learning 
factor is introduced. It helps to maintain a balance between 
exploitation and exploration of this method. 

b) Mean Gbest Particle Swarm Optimization 
Gravitational Search Algorithm (MGBPSO-
GSA) [7]: 

MGBPSO-GSA is a hybrid version of the Mean Gbest Particle 
swarm optimization algorithm and the gravitational search 
algorithm.  

c) Self-learning Particle Swarm Optimizer 
(SLPSO)[8]: 

Li et.al introduced a new four different learning approaches 
where every particle adaptively adopts one according to the 
local fitness landscape.  

d) Dynamic Neighborhood learning-based 
GSA(DNLGSA)[9]: 

Aizhu et. Al presented a dynamic neighborhood learning 
(DNL) strategy to replace the Kbest model to maintain a 
balance between exploration and exploitation in GSA.  

e) Dynamic multi swarm particle swarm 
optimization and gravitational search algorithm 
(GSADMSPSO)[10]: 

In this method, the main population of masses is divided into 
smaller sub-swarms and also stabilizing them by presenting a 
new neighborhood strategy. 

f) Hybrid Gravitational Search Algorithm [11]: 

 A local search technique (LST) is combined with the 
optimization procedure of the GSA. Every agent in GSA has 
a probability (p), and LST with probability (1 – p). Fuzzy logic 
is used to get the probability p. 

 

2) Results and analysis. 

Termination criteria are that the global optimum is found or the 
number of iterations is reached. Experiments are run in 
MATLAB on a PC with the 64-bit win10 professional 
operating system, 16 GB RAM, and 2.90GHz processor. The 
values of the parameters of the compared algorithms are taken 
from their respective literature as shown in table I. The 
simulation conditions used for the algorithm are: 

 Dimension D=30; G0 = 1 
 No. of agents= 30 

Table I Parameters of the compared algorithms 
Algorithms Parameters 

IHGSA Swarm size= 30, G0 = 1, α = 20, learning factors S1 and S2 of 
IHGSA are in the range of [0.618, 1.236]. 

MGBPSO-GSA Go=1; Swarm Size=30; C1=0.5; D=30, and C2=1.5. 

SLPSO Swarm Size= 30, P=1, γ=0.01 

DNLGSA Go=100, β=20, k=10, gm=5, 𝐶𝐶1 = 0.5 − 0 .5𝑡𝑡0.166

𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚
0.166 , 𝐶𝐶2 =

1.5 𝑡𝑡0 .166

𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚
0.166 , D=30 

GSADMSPSO Swarm size=30, C1 = 0.5, C2 = 1.5, w is decreased linearly 
from 0.9 to 0.2, G0 = 1, α = 20, R=5. 

HGSA Go=100, α = 20, θ= (0.5) D, γ=0.2 

a) Statistical Analysis: 

HGSPSO results are equated with the SGSA, SPSO, 
different variants of the modified PSO, and improved GSA 
algorithms. Mean and standard deviation are used as the 
evaluating criteria as shown in table II. 

i) T-Test:  

T-Test value is one of the main testing criteria to compare the 
two algorithms. Mean “α”, ξ value of the degree of freedom, 
and standard deviation “σ” values of the comparing methods 
are utilized to find out the t-test value. The negative values of 
the test show the inferior performance of the first approach 
than the second method or vice versa. The t-value can be 
calculated as: 

𝑡𝑡 =  α1−α2

�� σ1
2

ξ+1
�+�

σ2
2

ξ+1
�

                                                            (30) 

Larger values of the t-test than 1.645 implies enhanced 
performance of the first algorithm as compared to the second. 
The t-values for the proposed method compare with the 
SGSA, SPSO, and other algorithms are summarized in Table 
II. 

ii) Wilcoxon Signed-Rank Test: 

The standard deviation and mean values of every method in 
the assumed function evaluations are used to assess the final 
solution’s quality. Furthermore, the Wilcoxon signed-rank test 
at a 0.05 significance level (α) is used to analyze the 
dissimilarity between the two methods. Table III illustrates the 
results attained by the Wilcoxon signed-rank test that depends 
on the results of tables II. Where win, tie, and lose show that 
HGSPSO, successes on w functions, draws on t functions, and 
fails on l functions than the other methods
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TABLE II.  The standard deviation, t-test and mean values evaluation between HGSPSO and other approaches 
(All Results Are Averaged (Rank: 1—Best, 9—Worst) 

 
 

 TABLE III results of Wilcoxon signed-rank test between HGSPSO and other methods on 30-D benchmark functions 

 

Functions 
 HGSPSO 

SPSO SGSA IHGSA MGBPS
O-GSA 

SLPSO DNLGSA GSADM
SPSO 

 

HGSA c1= [2.5,0.5] 
c2= [0.5,2.5] 

 
 
 

f1(x) 

Mean 6.256e−52 1.821e-8 1.71e-06 2.38e-19 2.58e+ 03 2.78e-50 1.53e-27 1.50e-26 0.0000 

Std. 
Dev 

9.293e−53 2.664e-8 7.2e-07 5.58e-20 159.203 8.09e-49 5.11e-26 5.73e-25 0.0000 

t-test - 4.8335 16.793 30.1598 114.59 0.2375 0.2117 0.1851 0.000 

Rank 1 6 7 5 8 2 3 4 1 
 
 
 

f2(x) 

Mean 1.095e-8 20.392 1.94e+2 3.38e1 41.5262 0.000 0.000 8.19 0.000 

Std. 
Dev 

0.25302 5.389 1.08e+2 1.05e1 10.4930 0.000 0.000 6.11 0.000 

t-test - 26.72 12.70 22.75 27.98 0.000 0.000 9.4701 0.000 

Rank 1 2 6 5 4 1 1 3 1 
 
 
 
 

f3(x) 

Mean 1.341e−08 3.3426e1 1.70e+2 2.28e+1 9.164e 6 2.06 2.33e1 2.38e1 23.7073 

Std. 
Dev 

6.508e −09 2.1794 2.12 1.29 3.46e5 12.3 3.24e1 3.56e0 0.3860 

t-test - 108.39 567.01 124.97 187.28 1.184 5.085 47.272 4.3415 

Rank 1 7 8 3 9 2 4 6 5 
 
 
 
 

f4(x) 

Mean 3.884e−24 9.44e-2 2.4589e-3 1.55e-16 18.1456 0.0227 0.000 7.40e-3 0.0000 

Std. 
Dev 

7.128e −24 1.025e-1 2.53e-3 

 

1.02e-16 1.1171 0.144 0.000 2.31e-2 0.0000 

t-test  6.512 6.845 10.74 114.58 1.1146 0.000 2.265 0.000 

Rank 1 6 4 2 7 5 1 3 1 
 
 
 
 

f5(x) 

Mean 2.339e −42 4.5989e-3 1.54e-06 6.58e-10 1.4094 3.47e-14 6.8e-14 1.84e-14 8.881e-16 

Std. 
Dev 

9.426e−42 3.2724e-3 6.78e-07 5.22e-11 0.2447 4.45e-14 5.46e-14 4.80e-13 2.742e-30 

t-test - 9.938 16.061 89.133 40.72 5.5138 8.8064 0.2710 2.2902e15 

Rank 1 8 7 6 9 4 5 3 2 

Overall Ranking 

(Average 
Ranking 
Number) 

 1  
(1.0) 

6 
(5.8) 

7 
(6.4) 

5 
(4.2) 

8 
(7.4) 

3 
(2.8) 

3 
(2.8) 

4 
(3.8) 

2 
(2.0) 

HGSPSO 
v.s. 

SPSO SGSA IHGSA MGBPSO-
GSA 

SLPSO DNLGSA GSADMSPSO 
 

HGSA 

w (+) 5 5 5 5 4 3 5 2 

t (=) 0 0 0 0 1 2 0 3 

l (-) 0 0 0 0 0 0 0 0 
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b) Parameters analysis of HGSPSO: 

To evaluate the performance of the proposed method testing 
is done on the different values of the design variables. The 
tuning of the parameters of the proposed method such as the 
acceleration constants are examined on the several ranges of 
C1 and C2. The values of the C1 and C2 are chosen in such a 
way that it will fulfill the HGSPSO convergence condition 
C1+C2 ≤ 4 [12]. Another parameter that influences the 
performance of the HGSPSO is the inertial weight. Shi et al. 
[13]used different constant values for inertial weight and 
highlight that larger values of the inertial weight i.e. w > 1.2, 
tends the PSO to performs a weak exploration, on the other 
hand, smaller values of inertial weight, i.e. w < 0.8, make the 
PSO to traps in local optima. They concluded that the constant 
values of the inertial weight must be within the bounds of [0.8, 
1.2]. Therefore, in this paper for making a comparison of the 
proposed adaptive inertial weight strategy and the constant 
inertial weight, the value of the inertial weight is set to w=0.9. 
A test is conducted on some unimodal and multimodal 
function by using different ranges of the C1 and C2, a constant 
inertial weight value, and adaptive inertial weight approach by 
using (16). Table IV shows the study of acceleration constants 
at different values for unimodal and multimodal functions and 
by applying a constant value of “w” and adaptive approach. 
The best results of the HGSPSO are obtained when changing 
the C1 from 2.5 to 0.5 and C2 from 0.5 to 2.5 and having 
adaptive inertial weight. So, these values are used for the rest 
of the work. 

Table IV Analysis of acceleration constants variations and inertial 
weight at different values for D=30 

 

 

 

c) Graphical analysis: 

Figures 1-5 show a comparison between the standard GSA, 
PSO, and HGSPSO algorithm. The HGSPSO algorithm 
demonstrates better convergence than the standard version of 
both algorithms.

HGSPSO c1= [2.5,0.5] 

c2= [0.5,2.5] 

c1= [2.0,0.0] 

c2= [0.0,2.0] 

c1= [2.0,0.25] 

c2= [0.25,2.0] 

f1(x) 

w= using 
(16) 

Mean= 6.256e−52 

SD= 9.293e−53 

Mean= 1.804e−10 

SD= 5.308e−10 

Mean= 7.442e−28 

SD= 2.175e−28 

f1(x) 

w= 1.0 

Mean= 9.386e−22 

SD= 3.458e−22 

Mean= 3.418e-2 

SD= 1.994e-2 

Mean= 6.463e−-14 

SD= 5.335e−14 

f3(x) 

w= using 
(16) 

Mean=1.341e−08 

SD=6.508e −09 

Mean=9.04e1 

SD= 8.22e1 

Mean=4.422e-2 

SD=7.093e-2 

f3(x) 

w= 1.0 

Mean=4.39e1 

SD=1.802e1 

Mean=8.20e2 

SD= 2.653e2 

Mean=9.53e1 

SD=8.339e1 

f5(x) 

w= using 
(16) 

Mean=2.339e−42 

SD=9.426e−42 

Mean=1.866e −10 

SD=3.790e −10 

Mean=5.003e −28 

SD=4.370e −27 

f5(x) 

w= 1.0 

Mean=8.551e-28 

SD=6.951e-28 

Mean=2.0024e −05 

SD=5.849e −04 

Mean=7.452e −16 

SD=9.942e −16 

f13(x) 

w= using 
(16) 

Mean=0.0000 

SD=0.0000 

Mean=6.046e−-19 

SD=4.70e−18 

Mean=3.114e-32 

SD=1.990e−32 

f13(x) 

w= 1.0 

Mean=5.318e−15 

SD=8.927e−15 

Mean=9.884e−4 

SD=4.994e−4 

Mean=7.6042e--8 

SD=2.947e−8 

Figure 1 Comparison between HGSPSO and other standard 
versions of GSA and PSO algorithm for Sphere Function. 

Figure 3 Comparison between HGSPSO and other standard 
versions of GSA and PSO algorithm for Rosenbrock Function. 

Figure 4 Comparison between HGSPSO and other standard 
versions of GSA and PSO algorithm for Griewank’s Function. 

Figure 2 Comparison between HGSPSO and other standard 
versions of GSA and PSO algorithm for Rastrigin Function. 
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B. Modern Benchmark Functions: 

    In addition to five standard benchmark functions, the 
performance of the HGSPSO is also tested on some modern 
benchmark functions, which are taken from CEC 2017 [14]. 
The performance of the HGSPSO is compared with the 
following algorithms. These functions are defined in Table V. 

1) Comparison with State-of-the-Art New Methods: 

HGSPSO is compared with the following newly developed 
and modified versions of the existing methods are available 
in the literature. These algorithms are briefly described 
below. 

a) LSHADE-RSP: Eugene et al. proposed a modified 
version of the L-SHADE algorithm based on a rank-based 
selective pressure strategy called LSHADE-RSP [15]. The 
primary changes in this variant are the modification in the 
mutation and crossover operators using selective pressure.  

b) Hybrid Prey-Predator PSO (PP-PSO): A hybrid prey-
predator PSO (PP-PSO) algorithm, based on the bio-
inspired prey-predator relationship is proposed that used 
the three new approaches of breeding, escape and catch 
[16]. The inactive particles are changed or removed so the 
active particles will speed up the convergence. 

c) jSO: Janez et al. introduced a modified version of the iL-
SHADE algorithm that is called as jSO [17] in which the 
weighted version of the mutation strategy is improved. This 
algorithm stands at the second position in IEEE Congress 
on Evolutionary Computation (CEC) conference 
competition.  

d) Teaching Learning Based Optimization with focused 
learning (TLBO-FL): Remya et al presented a modified 
version of the TLBO algorithm by introducing the student 
focus learning approach [18].  

e) Improved Cuckoo Search (ICS)Algorithm: Rohit et al. 
proposed an improved variant of the Cuckoo search 
algorithm  [19]. Three modifications have been made in 
this paper. Firstly, by reducing switch probability for 
maintaining a balance between global and local search. 
Introducing new equations for global and local searching 
are the second and third amendments.

  Table V Modern Benchmark Functions  

Category No Functions Fi*=Fi =(x*) 

 
Unimodal 

f6(x) Shifted and Rotated Bent Cigar Function 100 
f7(x) Shifted and Rotated Sum of Different Power Function 200 

f8(x) Shifted and Rotated  Zakharov Function 300 

 
 

Multi-
modal 

functions 

f9(x) Shifted and Rotated Rosenbrock’s Function 400 
f10(x) Shifted and Rotated Rastrigin’s Function 500 
f11(x) Shifted and Rotated Expanded Scaffer’s F6 Function 600 
f12(x) Shifted and Rotated Lunacek Bi_Rastrigin Function 700 

f13(x) Shifted and Rotated Levy Function 900 
f14(x) Shifted and Rotated Schwefel’s Function 1000 

 
Hybrid 

functions 

f15(x) Hybrid Function 1 (N=3) 1100 

f16(x) Hybrid Function 5 (N=4) 1500 
f17(x) Hybrid Function 6 (N=5) 1700 
f18(x) Hybrid Function 6 (N=6) 2000 

 
Composite 
functions 

f19(x) Composition Function 1 (N=3) 2100 

f20(x) Composition Function 3 (N=4) 2300 
f21(x) Composition Function 5 (N=5) 2500 

f22(x) Composition Function 7 (N=6) 2700 

Figure 5 Comparison between HGSPSO and other standard 
versions of GSA and PSO algorithm for Ackley Function. 

Figure 5 Comparison between HGSPSO and other standard 
versions of GSA and PSO algorithm for Ackley Function. 
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2) Statistical Analysis  

 The parameters values of the compared techniques in table VII 
have been taken from the literature as sown in table VI.  

Table VI Parameters of the compared algorithms 

All these algorithms are compared with the HGSPSO in terms of 
t-test value, standard deviation, and mean. The results of the 
HGSPSO on these new benchmark test functions are compared 
with the algorithms and it clear from table VII that the HGSPSO 
gives an improved performance as compared to the other 
algorithms.  

i) T-Test:  

t-test criteria are the same as defined in section III-A. 

 

 
TABLE VII.  The standard deviation, mean and t-test value evaluation between HGSPSO and other algorithms for Modern Benchmark Functions for D= 30 

 (All Results Are Averaged (Rank: 1—Best, 6—Worst) 

Functions  HGSPSO LSHADE-RSP PP-PSO jSO TLBO-FL ICS 

c1=2.5-0.5 
c2=0.5-2.5 

 
 

f6(x) 

Mean 0.0000 0.0000 167 0.0000 3.5e+3 1.00e+10 
Std. Dev 0.0000 0.0000 1.40e+02 0.0000 3.6e+3 0.0000 

t-test - - 8.4348 - 6.8746 - 
Rank 1 1 2 1 3 4 

 
 

f7(x) 

Mean 0.0000 0.0000 4.88e+07 0.0000 8.5e+16 1.00e+10 
Std. Dev 0.0000 0.0000 9.18e+07 0.0000 5.8e+17 0.0000 

t-test - - 3.7589 - 1.0363 - 
Rank 1 1 2 1 4 3 

 
f8(x) 

Mean 0.0000 0.0000 300 0.0000 3.0e+03 1.39e+02 
Std. Dev 0.0000 0.0000 1.173e-03 0.0000 1.1e+03 9.30e+01 

t-test - - 1.8085e+06 - 19.2847 10.5686 
Rank 1 1 3 1 4 2 

 
 

f9(x) 

Mean 1.185e+1 5.8779e+01 411 5.8670e+01 9.0e+01 1.43e+01 
Std. Dev 2.868e −2 1.0784 1.19e+01 7.7797e–01 2.4e+01 2.18e+01 

t-test - 307.6046 237.1772 425.3022 230.2352 7.9462 
Rank 1 4 6 3 5 2 

 
f10(x) 

Mean 7.3692 7.5953 605 8.5568 4.0e+01 1.10e+02 
Std. Dev 2.4225 2.0252 2.35e+01 2.0980 2.1e+01 2.51e+01 

t-test - 0.5063 178.8771 2.6204 10.9150 28.7790 
Rank 1 2 6 3 4 5 

 
f11(x) 

 

Mean 4.0892e−10 2.6838e-09 611 6.0385e–09 4.9e-01 1.96e+01 
Std. Dev 9.5029e −10 1.8977e-08 3.56 2.7122e–08 4.2e-01 7.90 

t-test - 0.8466 1.2136e+03 1.4668 8.2496 17.5434 
Rank 1 2 6 3 4 5 

 
f12(x) 

 

Mean 2.2803e+01 3.7959e+01 856 3.8927e+1 1.4e+02 1.15e+02  
Std. Dev 1.4394 1.7138 3.23e+01 1.4594 4.7e+01 2.06e+01 

t-test - 47.8845 182.2214 55.6217 17.6238 31.5702 
Rank 1 2 6 3 5 4 

 
f13(x) 

 

Mean 0.0000 0.0000 1404 0.0000 3.4e+01 1.95e+03 
Std. Dev 0.0000 0.0000 2.32e+02 0.0000 2.7e+01 1.04e+03 

t-test - - 42.7922 - 8.9043 13.2583 
Rank 1 1 3 1 2 4 

 
f14(x) 

 

Mean 1.1791e+03 1.4688e+03 4448 1.5277e+03 6.7e+03 3.31e+03 

Std. Dev 2.6792e+02 3.0108e+02 5.66e+02 2.7716e+02 2.8e+02 2.68e+02 
t-test - 5.0695 36.9120 6.3945 100.7366 39.7615 
Rank 1 2 5 3 6 4 

 
f15(x) 

 

Mean 3.0347 3.0526 1249 3.0375 8.2e+01 4.20e+01 
Std. Dev 4.4853 8.5462 5.16e+01 2.6464 4.1e+01 1.68e+01 

t-test - 0.0131 170.1009 0.0038 13.5380 15.8454 

Algorithms Parameters 

LSHADE-RSP μFr = 0.3, μCrr = 0.8, H = 5, k=3, and Nmax = 75·D (2/3) 

PP-PSO Population size=200, K1 = 0.5, K2 = 0.3 

jSO pmax = 0.25; pmin= pmax/2, H = 5, MF=0.3 

TLBO-FL Population size=100, TF=1,  

ICS Initial population=50, pmax = 0.25; pmin=0.8 
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Rank 1 3 6 2 5 4 
 

f16(x) 
 

Mean 1.0621 7.2992e-01 1679 1.0879 2.2e+04 3.41e+01 
Std. Dev 9.493e-01 5.3154e-01 1.03e+02 6.9133e–01 2.3e+04 8.39 

t-test - -2.1589 115.1875 0.1553 6.7633 27.6677 
Rank 2 1 5 3 6 4 

 
f17(x) 

 

Mean 2.1502e+01 3.1535e+01 1961 3.2925e+01 1.4e+02 1.93e+02 
Std. Dev 6.5818 6.8728 1. 37e+02 8.0767 6.6e+01 7.33e+01 

t-test - 7.4552 99.9892 7.7525 12.6329 16.4777 
Rank 1 2 6 3 4 5 

 
f18(x) 

 

Mean 2.3701e+01 2.8843e+01 2269 2.9368e+01 2.2e+02 2.83e+02 
Std. Dev 3.9628 6.8284 1.03e+02 5.8548 1.2e+02 8.51e+01 

t-test - 4.6054 154.0284    5.6680 11.5607 21.5222 
Rank 1 2 6 3 4 5 

 
f19(x) 

 

Mean 2.02639e+02 2.0758e+02 2388 2.0929e+02 2.3e+02 2.50e+02 
Std. Dev 1.3727 1.6596 2.70e+01 1.9554 1.2e+01 9.93e+01 

t-test - 16.2221 571.5890 19.6849 16.0182 3.3722 
Rank 1 2 6 3 4 5 

 
f20(x) 

 

Mean 3.1978e+02 3.5038e+02 2787 3.5075e+02 4.0e+02 4.34e+02 
Std. Dev 3.1269 3.3514 3.27e+01 3.2992 1.6e+01 5.30e+01 

t-test - 47.2063 531.0905 48.1783 34.7943 15.2124 
Rank 1 2 6 3 4 5 

 
f21(x) 

 

Mean 3.8171e+02 3.8670e+02 2878 3.8670e+02 4.0e+02 3.83e+02 
Std. Dev 4.6180e-04 5.5921e-03 4.07 7.6811e–03 1.8e+01 8.20e-01 

t-test - 6.2883e+03 4.3370e+03 4.5854e+03 7.1850 11.1240 
Rank 1 3 6 4 5 2 

 
f22(x) 

 

Mean 4.51964e+02 4.9504e+02 3187 4.9739e+02 5.3e+02 5.12e+02 
Std. Dev 6.1792 6.9738 2.38e+01 7.0017 2.1e+01 9.32 

t-test - 32.6903 786.5130 34.3966 25.2075 37.9633 
Rank 1 2 6 3 5 4 

Overall 
Ranking 
(Average 
Ranking 
Number) 

  
1 (1.05) 

 
2 (1.82) 

 
6 (4.76) 

 
 3 (2.52) 

 
5 (4.35) 

 
4 (3.94) 

ii) Wilcoxon Signed-Rank Test: 
The mean and standard deviation values of every method 

within the given function evaluations are used to assess the final 
solution’s quality. Furthermore, the Wilcoxon signed-rank test at 
a 0.05 significance level (β) is used to analyze the dissimilarity 
between the two methods. Table VIII shows the results achieved 
by the Wilcoxon signed-rank test, which is based on the results 
of Table VII. Where win, tie, and lose show that HGSPSO, 
successes on w functions, draws on t functions, and fails on l 
functions than the other methods. 

 
TABLE VIII results of Wilcoxon signed-rank test between HGSPSO and 

other methods on 30-D benchmark functions 
 

 
 

HGSPSO 
v.s. 

 
 

LSHADE-RSP 

 
 

PP-
PSO 

 
 

jSO 

 
 

TLBO-FL 

 
 

ICS 

w (+)  
16 

 
17 

 
17 

 
17 

 
17 

t (=)  
0 

 
0 

 
0 

 
0 

 
0 

l (-)  
1 

 
0 

 
0 

 
0 

 
0 

 

The HGSPSO results on the CEC 2017 benchmark functions 
are compared with its competitors. The CEC functions are 
more complex and difficult than the standard benchmark 

functions. These results are summarized in terms of mean, 
standard deviation, and t-test value in table V. 
Simulations are performed to compare HGSPSO with other 
algorithms with D= 30 dimensions. Table VII shows that 
HGSPSO is the most successful method for solving the CEC 
functions in terms of the mean and standard deviation values. 
Also, the HGSPSO algorithm is most effective in searching better 
global optimal solutions particularly for finding out the 
theoretical global optimal at four functions (f06, f07, f08, and f13) 
except for solving f16 function. HGPSO achieved superior 
accuracy in all functions. LSHADE-RSP algorithm stands at the 
second position for achieving better values followed by jSO, 
which is the third most effective algorithm, achieving improved 
solutions. The t-test value of the HGSPSO indicates that it has 
95% superior performance than the rest of the methods 

IV. DNA PROBLEM 
In 1994, Adleman firstly introduced DNA computation. 
Deoxyribonucleic acid (DNA) is a nucleic acid that comprises 
the genetic instructions used in the growth and working of every 
living creatures and viruses [20]. 
Computation of the DNA depends mainly on the biochemical 
reactions of the DNA molecules which may cause an 
inappropriate result due to the poor quality of the DNA sequences 
[21]. DNA sequences used in DNA computation must fulfill 
different constraints that emphasis on the design of the DNA 
sequences that limit the probability of unwanted reactions [22]. 
Some of the previous work related to DNA computation done 
by various authors is briefly summarized in Table IX. 
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Table IX shows the previous work done in the literature on various 
objective functions and constraints 

 
Objective  
Function 

Objective functions used in the literature previously  
[23] [24] [25] [26] [27] [28] [29] [30] 

Similarity 
(with Shift) 

X - - X X - X X 

Similarity 
(without Shift) 

X - - X  X  X 

H-measure 
(with Shift) 

X - - X X - X X 

H-measure 
(without Shift) 

X - - X X - X X 

Hairpin X - - X X - X - 
GC-content X - - X X X X X 
Free energy - X X - - - - - 

Melting 
temperature 

X - X X X - X X 

the occurrence 
of specific 

subsequences 

 
- 

 
- 

 
- 

 
- 

 
- 

 
X 

 
- 

 
X 

Constraints on 
DNA bases 

X - - - - - - - 

Secondary 
structure 

X - X - - X - - 

Bio Lab 
Methods 

- X - - - - - - 

Continuity X - - X X - X - 
Reverse 

complement 
Hamming 

 
- 

 
- 

 
- 

 
- 

 
- 

 
X 

 
- 

 
- 

3’ end H 
measure 

X - - - - X - - 

 
A. Elementary Concepts and descriptions  

In this section, some of the elementary representations and 
relations are explained. 𝛬𝛬 =  {𝐴𝐴,𝐶𝐶 ,𝐺𝐺 ,𝑇𝑇,−} is the representation 
of the nucleotide and a gap, each nucleotide is denoted by a single 
alphabet and gaps as “−”. Similarly, if the gap is removed then 
nucleotide without a gap is denoted as 𝛬𝛬𝑟𝑟𝑛𝑛 =  {𝐴𝐴,𝐶𝐶 ,𝐺𝐺,𝑇𝑇}. For 
all the DNA sequences sets it is denoted by 𝛬𝛬∗ =  𝛬𝛬 and 𝛬𝛬𝑛𝑛𝑏𝑏. 
Suppose 𝑟𝑟, 𝑛𝑛 ∈ 𝛬𝛬 𝑟𝑟, 𝑛𝑛 =  {𝐴𝐴,𝐶𝐶,𝐺𝐺,𝑇𝑇,−} and 𝑥𝑥,𝑦𝑦 ∈ 𝛬𝛬∗ 𝑥𝑥,𝑦𝑦 =
 {𝐴𝐴,𝐶𝐶 ,𝐺𝐺,𝑇𝑇} and {𝐴𝐴,𝐶𝐶,𝐺𝐺,𝑇𝑇,−}.  DNA sequence length is 
represented as |𝑥𝑥| where 𝑥𝑥𝑖𝑖 = (1 ≤ 𝑖𝑖 ≤ |𝑥𝑥|) that means ith 
nucleotide from 𝟓𝟓′ − 𝑒𝑒𝑟𝑟𝑟𝑟 of sequence x. A set of “𝑟𝑟” number of 
sequences and length “𝑙𝑙” is denoted by  “𝛴𝛴”. similarly, for the ith 
member, it is defined as 𝛴𝛴𝑖𝑖 . Base “𝑟𝑟” complementary is defined 
by ā. A few basic conditions and notations are defined as under. 
[31] 

𝑇𝑇(𝑖𝑖, 𝑗𝑗) = �  𝑖𝑖,                𝑖𝑖 > 𝑗𝑗
0,      𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒    �                                                    (31) 

𝑒𝑒𝑒𝑒(𝑟𝑟, 𝑛𝑛) = �  1,                     𝑟𝑟 = 𝑛𝑛      
0,             𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒   �                                         (32) 

𝑛𝑛𝑝𝑝(𝑟𝑟, 𝑛𝑛) = �1,                 𝑟𝑟 = 𝑛𝑛`
0,         𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒     �                                              (33) 

In a given sequence the number of nonblank nucleotides 𝑥𝑥 ∈
 𝛬𝛬∗ is defined as: 

𝑙𝑙𝑒𝑒𝑟𝑟𝑃𝑃ℎ𝑡𝑡 𝑛𝑛𝑏𝑏(𝑥𝑥) = ∑ 𝑟𝑟𝑛𝑛(𝑥𝑥𝑖𝑖)
|𝑥𝑥|
𝑖𝑖=1                                                              (34) 

𝑤𝑤ℎ𝑒𝑒𝑓𝑓𝑒𝑒  𝑟𝑟𝑛𝑛 =  𝑟𝑟𝑛𝑛(𝑟𝑟) = �1,                 𝑟𝑟 ∈  𝛬𝛬𝑟𝑟𝑛𝑛      
0,             𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒      �                 (35) 

A shift of the sequence x by i bases is represented as  

𝑒𝑒ℎ𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥, 𝑦𝑦) = �
(−)𝑖𝑖𝑥𝑥1… 𝑥𝑥𝑙𝑙−𝑖𝑖   , 𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖+1… . 𝑥𝑥𝑙𝑙(−)𝑖𝑖,   𝑖𝑖 < 0

�                           (36) 

i) Continuity (f1): 

For calculating the recurrence of the same bases in a DNA 
sequence continuity is used. The DNA sequence might have 
an unexpected structure if the same bases are occurring 
repetitively. 

𝑓𝑓𝑐𝑐𝑜𝑜𝑛𝑛𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛𝑖𝑖𝑡𝑡𝑐𝑐(Σ) = ∑ 𝐶𝐶𝑓𝑓𝑟𝑟𝑡𝑡𝑖𝑖𝐶𝐶𝑟𝑟𝑖𝑖𝑡𝑡𝑦𝑦 (Σ𝑖𝑖  )𝑛𝑛
𝑖𝑖=1                                       (37) 

𝐶𝐶𝑓𝑓𝑟𝑟𝑡𝑡𝑖𝑖𝐶𝐶𝑟𝑟𝑖𝑖𝑡𝑡𝑦𝑦(𝑥𝑥) = 𝑚𝑚𝑟𝑟𝑥𝑥1≤𝑖𝑖≤𝑙𝑙(∑ 𝑐𝑐(𝑟𝑟, 𝑖𝑖))𝑎𝑎∈𝛬𝛬𝑟𝑟𝑛𝑛                               (38) 

𝑐𝑐(𝑟𝑟 , 𝑖𝑖) = �
𝑟𝑟 𝑖𝑖𝑓𝑓∋𝑟𝑟, 𝑒𝑒. 𝑡𝑡. 𝑒𝑒𝑒𝑒�𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑖𝑖+𝑖𝑖� = 1,𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 < 𝑟𝑟

𝑒𝑒𝑒𝑒(𝑟𝑟𝑖𝑖 ,𝑟𝑟𝑖𝑖+𝑛𝑛) = 0,
0    𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑤𝑤𝑒𝑒𝑖𝑖𝑒𝑒

�          (39) 

ii) Hairpin (f2): 

Hairpin is used to calculate the likelihood to form a 
secondary structure. It is defined as under: 

𝑓𝑓𝐻𝐻𝑎𝑎𝑖𝑖𝐻𝐻𝑝𝑝𝑖𝑖𝑛𝑛(Σ) = ∑ 𝐻𝐻𝑟𝑟𝑖𝑖𝑓𝑓𝑝𝑝𝑖𝑖𝑟𝑟 (Σ𝑖𝑖  )𝑛𝑛
𝑖𝑖=1                                                (40) 

𝐻𝐻𝑟𝑟𝑖𝑖𝑓𝑓𝑝𝑝𝑖𝑖𝑟𝑟 =
∑ ∑ 𝑇𝑇𝑙𝑙−𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚−𝐻𝐻

𝑝𝑝=𝑃𝑃𝑚𝑚𝑝𝑝𝑚𝑚

𝑙𝑙−2×𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚
𝐻𝐻=𝑅𝑅𝑚𝑚𝑝𝑝𝑚𝑚

�∑ 𝑛𝑛𝑝𝑝(𝑥𝑥𝑃𝑃+1−𝑖𝑖
𝑝𝑝𝑖𝑖𝑛𝑛𝑙𝑙𝑝𝑝𝑛𝑛(𝑝𝑝,𝐻𝐻)
𝑖𝑖=1 , 𝑥𝑥𝑝𝑝+𝐻𝐻+𝑖𝑖�,𝑝𝑝𝑖𝑖𝑛𝑛𝑙𝑙𝑝𝑝𝑛𝑛(𝑝𝑝,𝐻𝐻)

2
)        (41) 

𝑝𝑝𝑖𝑖𝑟𝑟𝑙𝑙𝑒𝑒𝑟𝑟 (𝑝𝑝, 𝑓𝑓, 𝑖𝑖) = min( 𝑝𝑝 +  𝑖𝑖, 𝑙𝑙 −  𝑓𝑓 −  𝑖𝑖 −  𝑝𝑝) 

𝑝𝑝 = 𝑓𝑓 = 6  [32]. 

iii) H-measure (f3): 

H-measure is used to stop the cross-hybridization between the 
two sequences. It is represented as  

𝑓𝑓𝐻𝐻−𝑚𝑚𝑝𝑝𝑎𝑎𝑚𝑚𝑐𝑐𝐻𝐻𝑝𝑝(Σ) = ∑ ∑ 𝐻𝐻 − 𝑚𝑚𝑒𝑒𝑟𝑟𝑒𝑒𝐶𝐶𝑓𝑓𝑒𝑒(𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 Σi, Σj)                  (42) 

where Σi and Σj are nonparallel to each other. It comprises of two 
parts. In the first term, which is known as the penalty, the term 
for the continuous complementary region, and the second part is 
called the overall complementarity. It is illustrated as under:  

𝐻𝐻 −𝑚𝑚𝑒𝑒𝑟𝑟𝑒𝑒𝐶𝐶𝑓𝑓𝑒𝑒(𝑥𝑥,𝑦𝑦) = 𝑚𝑚𝑟𝑟𝑥𝑥𝑔𝑔,𝑖𝑖(ℎ𝑑𝑑𝑖𝑖𝑚𝑚�𝑥𝑥, 𝑒𝑒ℎ𝑖𝑖𝑓𝑓𝑡𝑡(𝑦𝑦(−)𝑔𝑔𝑦𝑦, 𝑖𝑖)� +
ℎ𝑐𝑐𝑜𝑜𝑛𝑛�𝑥𝑥, 𝑒𝑒ℎ𝑖𝑖𝑓𝑓𝑡𝑡(𝑦𝑦(−)𝑔𝑔𝑦𝑦, 𝑖𝑖)�                                                         (43) 

Where 0 ≤ 𝑃𝑃 ≤ 𝑙𝑙 − 3 𝑟𝑟𝑟𝑟𝑟𝑟 |𝑖𝑖|  ≤ 𝑙𝑙 − 1; 

ℎ𝑐𝑐𝑜𝑜𝑛𝑛(𝑥𝑥,𝑦𝑦) = ∑ 𝑇𝑇(𝑐𝑐𝑛𝑛𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑖𝑖),𝐻𝐻𝑐𝑐𝑜𝑜𝑛𝑛𝑙𝑙
𝑖𝑖=1 )                                    (44) 

ℎ𝑑𝑑𝑖𝑖𝑚𝑚(𝑥𝑥,𝑦𝑦) = 𝑇𝑇(∑ 𝑛𝑛𝑝𝑝(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖),𝐻𝐻𝑑𝑑𝑖𝑖𝑚𝑚 × 𝑙𝑙𝑒𝑒𝑟𝑟𝑃𝑃ℎ𝑡𝑡𝑛𝑛𝑏𝑏(𝑦𝑦)𝑙𝑙
𝑖𝑖=1 )            (45) 

𝑐𝑐𝑛𝑛𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑖𝑖) =

⎩
⎨

⎧
𝑐𝑐  𝑖𝑖𝑓𝑓∋ 𝑐𝑐, 𝑒𝑒. 𝑡𝑡. 𝑛𝑛𝑝𝑝(𝑥𝑥𝑖𝑖 ,𝑦𝑦) = 0

𝑛𝑛𝑝𝑝�𝑥𝑥𝑖𝑖+𝑖𝑖 ,𝑦𝑦𝑖𝑖+𝑖𝑖� = 1 𝑓𝑓𝑓𝑓𝑓𝑓1 ≤ 𝑗𝑗 ≤ 𝑐𝑐,
𝑛𝑛𝑝𝑝(𝑥𝑥𝑖𝑖+𝑐𝑐+1,𝑦𝑦𝑖𝑖+𝑐𝑐+1) = 0

0     𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒 ⎭
⎬

⎫
                (46) 

iv) Similarity (f4): 

The main objective for calculating the similarity for two DNA 
sequences is to retain each of the sequence unique as possible. 

𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙𝑎𝑎𝐻𝐻𝑖𝑖𝑡𝑡𝑐𝑐 (Σ) = ∑ ∑ 𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙𝑟𝑟𝑓𝑓𝑖𝑖𝑡𝑡𝑦𝑦(𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 Σi, Σj)                             (47) 

𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙𝑟𝑟𝑓𝑓𝑖𝑖𝑡𝑡𝑦𝑦(𝑥𝑥,𝑦𝑦) = 𝑚𝑚𝑟𝑟𝑥𝑥𝑔𝑔,𝑖𝑖(𝑒𝑒𝑑𝑑𝑖𝑖𝑚𝑚�𝑥𝑥, 𝑒𝑒ℎ𝑖𝑖𝑓𝑓𝑡𝑡(𝑦𝑦(−)𝑔𝑔𝑦𝑦, 𝑖𝑖)�+
𝑒𝑒𝑐𝑐𝑜𝑜𝑛𝑛�𝑥𝑥, 𝑒𝑒ℎ𝑖𝑖𝑓𝑓𝑡𝑡(𝑦𝑦(−)𝑔𝑔𝑦𝑦, 𝑖𝑖)�                                                     (48) 

Where 0 ≤ 𝑃𝑃 ≤ 𝑙𝑙 − 3 𝑟𝑟𝑟𝑟𝑟𝑟 |𝑖𝑖|  ≤ 𝑙𝑙 − 1;  
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𝑒𝑒𝑐𝑐𝑜𝑜𝑛𝑛(𝑥𝑥, 𝑦𝑦) = ∑ 𝑇𝑇(𝑐𝑐𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑦𝑦, 𝑖𝑖),𝑆𝑆𝑐𝑐𝑜𝑜𝑛𝑛𝑙𝑙
𝑖𝑖=1 )                                       (49) 

𝑒𝑒𝑑𝑑𝑖𝑖𝑚𝑚(𝑥𝑥,𝑦𝑦) = 𝑇𝑇(∑ 𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝑆𝑆𝑑𝑑𝑖𝑖𝑚𝑚 × 𝑙𝑙𝑒𝑒𝑟𝑟𝑃𝑃ℎ𝑡𝑡𝑛𝑛𝑏𝑏(𝑦𝑦)𝑙𝑙
𝑖𝑖=1 )            (50) 

𝑐𝑐𝑒𝑒𝑒𝑒(𝑥𝑥,𝑦𝑦, 𝑖𝑖) =

⎩
⎨

⎧
𝑐𝑐  𝑖𝑖𝑓𝑓∋ 𝑐𝑐, 𝑒𝑒. 𝑡𝑡. 𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖 ,𝑦𝑦) = 0

𝑒𝑒𝑒𝑒�𝑥𝑥𝑖𝑖+𝑖𝑖,𝑦𝑦𝑖𝑖+𝑖𝑖� = 1 𝑓𝑓𝑓𝑓𝑓𝑓1 ≤ 𝑗𝑗 ≤ 𝑐𝑐,
𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖+𝑐𝑐+1,𝑦𝑦𝑖𝑖+𝑐𝑐+1) = 0

0     𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒 ⎭
⎬

⎫
                 (51) 

𝑆𝑆𝑐𝑐𝑜𝑜𝑛𝑛 is an integer between one and l and 𝑆𝑆𝑑𝑑𝑖𝑖𝑚𝑚  is a real value 
between zero and one. 𝑇𝑇 = 2; 𝑆𝑆𝑑𝑑𝑖𝑖𝑚𝑚  = 𝐻𝐻𝑑𝑑𝑖𝑖𝑚𝑚 = 0.17 𝑟𝑟𝑟𝑟𝑟𝑟 𝑆𝑆𝑐𝑐𝑜𝑜𝑛𝑛 =
 𝐻𝐻𝑐𝑐𝑜𝑜𝑛𝑛 = 6 [32]. 

v) GC-content 

GC-content is the percentage of G and C in a DNA sequence, for 
instance, if 10-mer DNA sequence GGTCCATCCA has two G’s 
and four C’s. (52) calculates GC-content as follows: 

GC-content = (XG + XC) / (XA + XT + XG + XC)                        (52) 

The GC-content of this DNA sequence is 60%. 

vi) Melting Temperature (Tm) 

For the experimental purpose, melting temperature “Tm” is 
the significant constraint to be controlled. The half of double-
stranded DNA begins to break into its single-stranded form at 
this temperature [33]. 

B. Results and Analysis 

Minimizing the objective functions is the key motive in this 
research. The fitness value of each objective function is 
calculated by applying the weighted function technique that 
transforms the multi-objective function into a single-objective 
function. 

𝑂𝑂𝑝𝑝𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑂𝑂𝑒𝑒 𝑓𝑓𝑖𝑖(𝑥𝑥)  

{ 𝑖𝑖  ∈ {ℎ 𝑚𝑚𝑝𝑝𝑎𝑎𝑚𝑚𝑐𝑐𝐻𝐻𝑝𝑝 ,𝑒𝑒𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙𝑟𝑟𝑓𝑓𝑖𝑖𝑡𝑡𝑦𝑦, ℎ𝑟𝑟𝑖𝑖𝑓𝑓𝑝𝑝𝑖𝑖𝑟𝑟, 𝑐𝑐𝑓𝑓𝑟𝑟𝑡𝑡𝑖𝑖𝑟𝑟𝐶𝐶𝑖𝑖𝑡𝑡𝑦𝑦}}   

𝑒𝑒𝐶𝐶𝑛𝑛𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑓𝑓 𝑃𝑃𝑖𝑖(𝑥𝑥)  =  0, 𝑗𝑗 ∈ {𝑇𝑇𝑚𝑚 ,  𝐺𝐺𝐶𝐶𝑐𝑐𝑜𝑜𝑛𝑛𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡}   

The fitness value is calculated as  

𝐹𝐹𝑖𝑖𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑟𝑟𝑙𝑙𝐶𝐶𝑒𝑒 =  ∑ 𝑊𝑊𝑖𝑖𝑖𝑖  𝑓𝑓𝑖𝑖  ; 𝑤𝑤ℎ𝑒𝑒𝑓𝑓𝑒𝑒 𝑊𝑊𝑖𝑖 =  1  

In the binary form A, C, G, and T are denoted as 0,1,2,3 in this 
paper. A DNA sequence entails various bases where each 
sequence represents one dimension. The DNA sequence length 
can be calculated as (4𝑙𝑙  − 1) which is equal to the boundary of 
the search area. For instance, the 20-mer sequence, the search 
area length is calculated as (420  − 1) that is from 0 to 
1.0995116e+12 in a decimal number, in the same way, the 
boundary for (43  − 1), i.e. from 0 to 63 and the sequence 
ranging from AAA to TTT. A three DNA sequence set can be 
obtained by using three dimensions. Therefore, each particle in 
the search area comprises of three DNA sequences. Since 
continuous HGSPSO is used as an alternative for the binary 
domain, therefore before converting all the decimal numbers into 
binary, the decimal numbers are rounded off to the nearest 
decimal value, then changed into binary, and then transformed 
into DNA sequences. For example, 403.810 is rounded off to 
40410 that is changed into binary form as 1100101002, and DNA 
representation is “CGCCA”. Table X highlights the sequences 
produced and the fitness values of the four objective functions.  

The comparison results of the DNA codes produced by the 

HSPSO and other algorithms are presented in Table X. DNA 
codes produced by the HGSPSO gives better results than the 
other algorithms. The sequences generated by the proposed 
algorithm have lesser H-measure and similarity values. The 
obtained results indicate a greater possibility to hybridize with 
accurate complementary sequences through the HGSPSO. 
Additionally, the zero values of continuity and hairpin point 
towards the low probability of the secondary structure.  
Figures 6-8 illustrate the pictorial representation of the mean 
values of all the DNA codes presented in table X for the three 
objective functions as the results for the continuity function is 
similar for all the methods 

Figure 6 Comparison for the H-measure Objective function results 
between mean values of HGSPSO and its competitors  
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Figure 7 Comparison for the hairpin Objective function results 
between mean values of HGSPSO and its competitors 
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Figure 8 Comparison for the Similarity Objective function results 
between mean values of HGSPSO and its competitors 
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Table X Comparison of the sequences produced by HGSPSO and other algorithms in terms of objective functions 

 
Sequences 

 
Continuity 

 
Hairpin 

 
H-measure 

 
Similarity 

GC 
Content 

(%) 
DNA Sequences produced by HGSPSO 

CCTAGTTCGTCCGTATTGTC 0 0 47 37 50 
TTTATCGGTAGCGTGGTCTT 0 0 45 39 50 

GGGTTCAATGCAGTGATCTG 0 0 44 35 50 

ACTTGACGCTAGATGCCCTA 0 0 37 38 50 

AAAGGCTGCTAGTCGATACC 9 3 41 34 50 

CTAGGTTGCGGTAATCCATG 0 0 39 33 50 

GATCATGTGATCGCAGTCCT 0 0 35 39 50 

Mean  0 0 41.14285714 30.42857143  

Standard deviation 0 0 4.413183712 1.511857892  
DNA Sequences produced by BPSON [34] 

CCTTAGAACGTCTCGAGCTT 0 0 88 78 50 

CCGTATACATGCTCGGTCTT 0 0 86 81 50 

ACTCGCGACTACCAACATCT 0 0 98 75 50 

CGTATCTGTGCTTCTCGTCA 0 0 92 84 50 

ATTGCTGGATGAGGTGCCTA 0 0 94 80 50 

TTCACTACTGAGGATCCGCA 0 0 98 76 50 

CCTTAGAACGTCTCGAGCTT 0 0 88 78 50 

Mean  0 0 92 78.85714286  

Standard deviation 0 0 4.898979486 3.078342164  
DNA Sequences produced by INSGA-II [35] 

CGTCTAGGCCGGATCAATAT 0 3 91 81 50 

GGTTGTCCTGAGTGTTGTGT 0 0 84 80 50 

AGAGTCAGCAGCGTAGAGAT 0 0 93 82 50 

TACAGTCGGTTCGGTTATGG 0 0 90 73 50 

GCGGAAGTAATCGGAAGTGA 0 0 88 81 50 

ACGCCACAGTATATCATCGC 0 3 82 78 50 

AGTCATTCTCCTGGCATTGC 0 6 90 76 50 

Mean  0 1.714285714 88.28571429 78.71428571  

Standard deviation 0 2.360387377 3.946064948 3.251373336  
DNA Sequences produced by DMEA [31] 

GCCGGAGCCTTCTTGATAAT 0 0 68 53 50 
AATCCTGCTTGTCCTCCTAC 0 0 63 50 50 
TGAGCTCTCTGTTCCAACGA 0 0 64 52 50 
ATGTAACACGCGGCCACTAA 0 0 63 50 50 
ACTCGGATTGTGTTGAACGC 0 0 71 51 50 
CGTTGTTGGCACCTACGTTA 0 0 68 54 50 
ATCCAGACTACCAAGGCCAA 0 0 61 48 50 

Mean  0 0 65.42857143 51.14285714  

Standard deviation 0 0 3.598941643 2.035400978  
DNA Sequences produced by  NACST/Seq [36] 

CTCTTCATCCACCTCTTCTC 0 0 43 58 50 
CTCTCATCTCTCCGTTCTTC 0 0 37 58 50 
TATCCTGTGGTGTCCTTCCT 0 0 45 57 50 
ATTCTGTTCCGTTGCGTGTC 0 0 52 56 50 
TCTCTTACGTTGGTTGGCTG 0 0 51 53 50 
GTATTCCAAGCGTCCGTGTT 0 0 55 49 50 
AAACCTCCACCAACACACCA 0 0 55 43 50 

Mean  0 0 48.28571429 53.42857143  

Standard deviation 0 0 6.799859943 5.623081683  
DNA Sequences produced by  IGA [37] 

GTCGAAACCTGAGGTACAGA 9 3 72 58 50 
GTGACTGTATGCACTCGAGA 0 3 74 57 50 
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Table XI shows a comparison of the results summarized in 
terms of the mean and standard deviation values of all the 
objective functions. It is clear from the table that the weighted 
sum of the HGSPSO for all the functions is lesser than the 
other compared algorithm that demonstrates the better 
performance of the proposed method. 
 
Table XI Results of the HGSPSO and its competitors in terms of mean and 

standard deviation 

 
where “µ” represents mean and “σ” represents standard 
deviation. 

V. CONCLUSIONS 

In this paper, a hybrid algorithm is proposed through the 
fusion of the strong attributes GSA, PSO, and further 
modifying the velocity and position strategies.  The primary 
concept behind this hybridization is to use the strong capacity 
of PSO in exploitation and the exploration capabilities of 
GSA. To validate the performance five standard and modern 
benchmark functions are used. The results highlight that the 
proposed method gives improved results for all the 
benchmark functions. It is also noticeable that the 
convergence of the HGSPSO is faster than PSO and GSA. 
Additionally, a DNA problem is also solved. HGSPSO 
outperformed the other algorithms in terms of the objective 
function results. It shows that the HGSPSO can translate 
DNA sequences with less probability of hybridization and 
greater precision. 
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