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Abstract As robotic systems transition from tradi-

tional setups to collaborative workspaces, the preva-

lence of physical Human Robot Interaction has risen in

both industrial and domestic environments. A popular

representation for robot behavior is movement primi-

tives which learn, imitate, and generalize from expert

demonstrations. While there are existing works in context-

aware movement primitives, they are usually limited to

contact-free human robot interactions.

This paper presents physical Human Robot Inter-

action Primitives (pHRIP), which utilize only the in-

teraction forces between the human user and robot to

estimate user intent and generate the appropriate robot

response during physical human robot interactions.

The efficacy of pHRIP is evaluated through multi-

ple experiments based on target-directed reaching and
obstacle avoidance tasks using a real seven degree of

freedom robot arm. The results are validated against

traditional movement primitives using observations of

robotic trajectories, with discussions of future pHRI ap-

plications utilizing pHRIP.
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1 Introduction

Traditional robots rely on their accuracy, reliability,

and strength to perform tasks. However, the variety of

tasks performed with a single robot is generally con-

strained due to financial and time costs to adapt or re-

place its current program. The same costs exist for con-

trol methods that achieve safe Human Robot Interac-

tion (HRI) using industrial robots with fine parameter

tuning and heavily pre-determined environments [14].

Recent advances in collaborative robots have paved

the way for current research in collaborative interac-

tions between humans and robots due to their inherent

safety and improvements in productivity [5]. The in-

creasing adoption of collaborative robots has also boosted

the prevalence of HRI applications in both industrial
and domestic environments. Physical Human-Robot In-

teractions (pHRI) is a sub-field of research which in-

cludes interactions with direct physical contact or an

exchange of forces with a robotic system. Applications

with pHRI aim to augment the dexterity of human op-

erators with the precision and repeatability of robotic

systems to achieve various tasks, with common appli-

cations in haptic feedback [9], disturbance categoriza-

tion [19], and system stabilization [15].

To improve the robustness of robots in collaborative

workspaces, the ability to learn, generalize, and adapt

to different tasks is crucial. Two umbrella terms for

frameworks which employ expert-learner techniques to

generalize robotic motions to different tasks are Pro-

gramming by Demonstration (PbD) [4] and Learning

from Demonstration (LfD) [1]. Task-oriented measures

are regularly used to tackle variability exhibited by hu-

man users during pHRI applications [8,20,31]. However,

for non-expert users, these measures may degrade the
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Fig. 1 Overview of Learning from Demonstration using Movement Primitives in the Bayesian context.

interactions since the user may have no prior knowledge

on the dynamics of the system.

Intuitively, humans exert forces to indicate their in-

tention during physical interactions in everyday situa-

tions such as target-reaching tasks. Thus, the integra-

tion of interaction forces in MPs may improve the esti-

mation of user intent when generating the appropriate

robotic response. More importantly, a correct intent es-

timate in pHRI applications contributes towards the

efficacy of the robotic response. Furthermore, proba-

bilistic models of the interaction artifacts can capture

system noise and user variability simultaneously.

This article introduces physical Human Robot Inter-

action Primitives (pHRIP), utilizing interaction forces

in a probabilistic distribution over Dynamic Movement

Primitive parameters. Robotic motion parameters are
inferred, conditioning upon partial observations of in-

teraction forces representing the user’s intention. The

proposed method is validated through: (a) a target-

directed reaching experiments; and (b) a planar and

3 Degree of Freedom (DoF) obstacle avoidance task.

This article is organized as follows: Section 2 con-

sists of a review of related works, followed by the method-

ology for pHRIP in Section 3. The setup for the valida-

tion experiments are presented in Section 4, with their

respective results discussed in Section 5. Finally, Sec-

tion 6 discusses future work before conclude the article.

2 Review of Related Works

Movement Primitives (MP) are a family of elemen-

tary operations to represent robotic trajectories for mo-

tion planning. Inspired by human locomotion [23], MPs

are compact representations of complex locomotion in

multi-degree of freedom (DoF) systems, forming the ba-

sis for various robotic capabilities: e.g. learning, imita-

tion, and generalization of trajectories.

One popular MP used in the robotics community is

Dynamic Movement Primitives (DMP), which capture

acceleration-based dynamics using low dimensional ba-

sis functions. DMP leverages expert demonstrations to

model the motion using a few parameters, with favor-

able properties such as trajectory dilation, rotational

invariance, and temporal scaling [26].

Adaptation of the original formulation to overcome

limitations [21] have made DMPs suitable for many do-

mestic and industrial applications: e.g. obstacle avoid-

ance [18], industrial assembly [27], surface wiping [17],

collaborative object transfer [42, 47], and co-operative

sawing [41]. While there are adaptations or new for-

mulations of MP such as Kernelized Movement Primi-

tives [25] (for further compression of trajectory repre-

sentation), Interactive DMPs [29] (for reaching equilib-

rium trajectories based on interaction forces), and Cou-

pling Movement Primitives [16] (for achieving equal in-

teraction forces), traditional DMPs remain popular due

to their versatility and track record.

Given that there is inherent variability in human lo-

comotion [48], applications for HRI and pHRI require

some form of generalization which capture system noise

and covariances across the different DoFs. This is espe-

cially crucial in multi-DoF systems for both the hu-

man and the robot, leading to applications with prob-

abilistic models over DMP parameters, e.g. generating

movement in a musculoskeletal system [44], table tennis

swinging [34], and stiffness sensitive tasks [13,36].

Due to the robustness of probabilistic models, there

is a significant amount of interest in probabilistic ap-

proaches to LfD and PbD, allowing for context-driven
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responses based on MPs [10,33,37]. Probabilistic model-

ing also paved the way for multi-model and multi-modal

applications with a single model such as dust sweep-

ing [40], teleoperation [39, 50], domestic feeding [6], in-

dustrial assembly [30], and ball throwing [51].

A probabilistic approach to trajectory generation

and user intent estimation are popular due to proba-

bilistic properties of the model, with notable applica-

tions for HRI utilizing Interaction Primitives (IP) and

its extensions: e.g. human robot gestures [3], collabo-

rative object covering [11], and hand shaking [7]. The

probabilistic model embeds the user intent in their out-

puts, making it suitable to utilize probabilistic opera-

tors to adapt the model for goal and trajectory adap-

tation [2, 28, 28], sequential intent estimation [35], and

stiffness adaptation [43].

While MP-based frameworks such as Coupled Co-

operative Primitives [24] have been applied to exoskele-

tons to minimize interaction forces between the user

and exoskeleton, tightly coupled systems remain a chal-

lenge for MPs in pHRI applications. Rather than the

robot system initiating the task process, Compliant Para-

metric Dynamic Movement Primitives [49] actively in-

corporate user input by adapting stiffness based on the

variance of the trajectory at that phase. However, such

reliance on the human user to take over control might

not be suitable for certain applications such as post-

injury assistive robotics.

Applications of MPs in pHRI have generally relied

on the modification of DMP formulations to embed in-

teraction forces when motion planning for the robot

arm. Despite the appeal for bespoke MP formulations,

probabilistic approaches for MPs (without any modifi-

cations) provide robust solutions for a larger range of

pHRI applications. Probabilistic operators also provide

flexibility for concatenation and pruning of different ob-

jectives and observations. In the context of this work,

the integration of interaction forces leverages proba-

bilistic operators when building the model.

3 Methodology

3.1 Dynamic Movement Primitives

Dynamic Movement Primitives (DMP) generate glob-

ally stable trajectories by treating the trajectory as a

spring-damper system with an attractor system to en-

code non-linear dynamics [45]. The attractor landscape

is represented by a linear system of basis functions

across time or phase.

While the original DMP formulation produced sta-

ble trajectories, a modified formulation overcame sev-

eral undesired artifacts during edge case reproductions

such as trajectory “mirroring” and accelerations that

are beyond the capabilities of existing robots [38]. Each

degree of freedom in the system is modeled as

τ v̇ = K(g − x)−Dv − sK(g − x0) + sKf(s),

τ ẋ = v.
(1)

The phase of the trajectory, s is modeled as a first-

order system with parameter α for temporal scaling

τ ṡ = −αs. The attractor landscape, represented by the

forcing function, f , is encoded using the weighted sum

of Gaussian basis functions with centers, c and is spread

evenly across the phase of the trajectory

f(s) =

∑M
i=1 ψi(s)ωis∑M
i=1 ψi(s)

= φ(s)Tω,

ψi(s) = exp(−(s− ci)2/h),

(2)

producing a M × 1 vector of weights, ω for each DoF

of the trajectory. While the Gaussian kernel has been

used in DMPs, any smooth functions or mollifiers could

alternatively be used.

Representing the forcing function (from T observa-

tions) as a linear system allows the weights to be ob-

tained using linear least squares regression

f =


f(s1)

f(s2)
...

f(sT )

 =


φ1(s1) . . . φM (s1)

φ1(s2) . . . φM (s2)
...

. . .
...

φ1(sT ) . . . φM (sT )



ω1

ω2

...

ωM

 , (3)

ω = (φTφ)−1φTf . (4)

3.2 Physical Human Robot Interaction Primitives

Similar to most probabilistic approaches to general-

ize MPs, physical Human Robot Interaction Primitives

(pHRIP) builds a distribution, p(θ), of both DMP pa-

rameters, capturing the demonstrated trajectories, and

interaction forces. A predictive distribution is then ob-

tained using partial observations of interaction forces

between the user and robot, χ∗.

Similar to DMPs, the velocities of the interaction

forces are decoupled using a monotonic function phase

variable z = [1, 2, . . . , 100]T . The observations of a sin-

gle dimension interaction force gives a T × 1 matrix

F1:T = [F1, F2, . . . , FT ]T . The interaction forces are re-

sampled into a 100× 1 matrix, F ∗ correlating with the

z where F ∗1 = F (z1), . . . , F ∗100 = F (z100).

For a n-DoF robotic system and d-DoF interaction

forces, the pHRIP parameter set for a single trajectory

is defined as

θ = [F ∗1
T , . . . ,F ∗d

T ,ω1
T , . . . ,ωn

T ], (5)
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and the distribution of the pHRIP parameters p(θ) for

K trajectories follows as

p(θ) = N (θ|µθ, Σθ), (6)

µθ =

∑K
j=1 θj

K
, (7)

Σθ =

∑K
j=1(θj − µθ)T (θj − µθ)

K
. (8)

The partial observations of interaction forces is phase-

aligned using a multi-dimensional Dynamic Time Warp-

ing (DTW) algorithm [46]. Given one set of t partial ob-

servations, χ∗1:t = [x∗1, x
∗
2, . . . , x

∗
t ], DTW measures the

similarity between the partial observations to a refer-

ence trajectory, χ1:T = [x1, x2, . . . , xT ]. The resultant

integer phase indices, ρ = [ρ1, ρ2, . . . , ρt] for the partial

observations reflect the frame in the reference move-

ment which produces a minimum distance between the

two time series,

i.e.D = [min(χ∗1, χρ1),min(χ∗2, χρ2), . . . ,min(χ∗t , χρt)].

The predictive distribution of the parameters is ob-

tained using partial observations, χ∗, between the user

and the robot and applying Bayes rule:

e.g. p(θ|χ∗) ∝ p(χ∗|θ)p(θ).
The partial observations consists of the interaction

forces, χ∗ = [F ∗∗, τr], where the unavailable trajectories

of the robot, τr, are set to 0.

Modeling the likelihood distribution, p(χ∗|θ) is done

using a Gaussian distribution over the phase indices

from the partial observations of the interaction forces

p(χ∗|θ) ∼ N (χ∗|Ωθ, σ2I), (9)

Ωθ =



φ1 0 . . . . . . 0

0
. . .

. . .
. . .

...
...

. . . φd
. . .

...
...

. . .
. . .

. . .
...

0 . . . . . . . . . 0





z1
...

zd
ω1

...

ωn


. (10)

where σ2 is the observation variance. φ relates the inter-

action forces to the phase indices from DTW of partial

observations with t samples. With φ11 referring to the

matrix element in row 1 and column 1, φ is a t × 100

matrix with elements defined as

φxy =

{
1 for y = ρx

0 for y 6= ρx
, where

x ∈ (1, 2, . . . , t),

y ∈ (1, 2, . . . , 100).

(11)

Given the likelihood p(χ∗|θ), the joint distribution

is defined as

p(χ∗, θ) = N
([
χ∗

θ

] ∣∣∣∣ [ωθµθ
]
,

[
A ΣθΩ

T

ΩΣθ Σθ

])
, (12)

where A = σ2I +ΩΣθΩ
T , and the mean and variance

of conditional distribution, p(θ|χ∗) is derived as

µθ|χ∗ = µθ +ΣθΩ
TA−1(χ∗ −Ωµθ),

Σθ|χ∗ = Σθ −ΣθΩTA−1ΩΣθ.
(13)

A new set of pHRIP parameters, θ is then sampled

from this conditional distribution and the robot is op-

erated with the new DMP weights and the estimated

phase of the final observation, ρt.

4 Implementation and Evaluation

A series of validation experiments and trials were con-

ducted to validate pHRIP in a coupled system, an ar-

rangement commonly seen in pHRI applications. The

setup of the coupled system is shown in Figure 2 and

consists of a 7 DoF Sawyer robotic manipulator (HAHN

Robotics, Germany) with a 6-axis Axia80 force-torque

sensor (ATI Industrial Automation, USA) affixed be-

tween the end effector and a bespoke handle. Robotic

data from the Sawyer robotic manipulator are recorded

at 100Hz while wrench data from the force-torque sen-

sor is recorded at 125Hz.

In all experiments and trials, the robotic arm utilizes

Rethink Robotics’ proprietary software, Intera SDK,

and an end effector velocity threshold of 2.5cms−1 is

used to determine the start and end of the demon-

stration. In all experiments, generated trajectories were

Fig. 2 The experimental setup with a Sawyer robot arm, an
ATI Axia80 force-torque (F/T) sensor, and a bespoke handle.
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sent to the robot’s native motion controller interface to

be performed in an open-loop fashion. While it is pos-

sible to integrate low-level robotic feedback controllers

with pHRIP, this article focuses on the trajectory gen-

eration process which reflects the user’s intention.

4.1 Human Target Reaching Experiments

An experiment based on target-directed movements was

conducted to validate pHRIP’s robustness to different

users. Four participants (3 male and 1 female) took

part in the experiment. During user interactions, the

robotic arm was setup to enter an orientation-locked

zero-g mode.

Participants were instructed to move the handle from

a defined starting position to one of two target surfaces

(Figure 2) in a “natural manner”. Each trial consists

of a reference and a test trajectory, with participants

instructed to perform both trajectories “consistently”.

A total of 90 training demonstrations were recorded

(45 for each target surface) using kinesthetic teaching

via the bespoke handle for participants. During the test

trajectory, participants were instructed to release the

handle after 0.5-1.0 seconds while the new trajectory is

generated and performed by the robot arm.

Partial observations for DMP consist of Cartesian

trajectory while pHRIP utilized Cartesian interaction

forces only. Partial observations of both interaction forces

and trajectory were used to perform further compar-

isons. Prior to the start of the experiment, participants

were given a 5-minute window to interact with the robotic

manipulator to familiarize themselves with the setup.

4.2 Planar Obstacle Avoidance

A planar obstacle avoidance experiment was conducted

to validate pHRIP and compare against DMP, with the

setup shown in Figure 3. A total of 30 training trajec-

tories and 20 testing trajectories were recorded while

the robotic arm is setup to enter an orientation-locked

zero-g mode constrained to the XY plane.

The analysis and trajectory generation for the pla-

nar obstacle avoidance experiment were conducted post-

hoc. Thus, all recorded trajectories and interaction forces

were re-sampled to 400 and 500 samples respectively. A

comparison between DMP and pHRIP is performed us-

ing partial observations of: (a) trajectory only (DMP);

and (b) interaction force only (pHRIP).

Fig. 3 A top-down view of the planar validation setup.

4.3 Cartesian Obstacle Avoidance

Further experiments were conducted to reinforce the

applicability of pHRIP to estimate user intention dur-

ing pHRI. The user is tasked with moving the end ef-

fector from the same starting position to various end

regions. A series of obstacles were set up in varying con-

figurations which simulate changing environments and

task parameters, as is common in pHRI applications.

Using a number of identical obstacle blocks, each

setup was configured such that multiple valid approaches

to reach the end region were available. For each setup,

the user recorded 10 training trajectories with identi-

cal approaches during obstacle avoidance to reach the

end region. The four workspace configurations for this

experiment are shown in Figure 4.

A series of trials were conducted in which the ob-

stacle configurations were randomly chosen. Similar to

the target reaching task, the user released the handle

after 0.5-1.0s, allowing the robot to perform the trajec-

tory generated by pHRIP. For each trial to be labeled

successful, the robot arm (including external wires from

peripheral systems) must not come in contact with any

obstacles and reach the desired end region.

One issue which arises when the number of samples

for each trajectory are different in DMP is the sum of

activation from the basis functions. A static value of

τ will affect the quality of the reproduced trajectory

based on the sample length. Assuming that the other
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(a) Setup 1 (b) Setup 2

(c) Setup 3 (d) Setup 4

Fig. 4 The four workspace configurations used for training in the Cartesian obstacle avoidance experiment.

DMP parameters are constant, an exponential model

can be used to determine the relationship between the

trajectory length (number of samples λ) and a τ value

which ensures that the sum of Gaussian basis function

activation across all samples are above 0.5. For all tri-

als in the Cartesian obstacle avoidance experiment, the

model and its coefficients used are

τ = a · exp(b ∗ λ) + c · exp(d ∗ λ)

a = 2.22 b = −0.01292

c = 0.4684 d = −0.001595

(14)

Other than the four configurations used for training

trajectories, a novel configuration (see Figure 12) was

used to test the robustness of pHRIP when generating

trajectories to infer user intent to avoid obstacles.

5 Results and Discussion

5.1 Human Target Reaching Experiment

A total of 28 trials were conducted in the experiment.

For each trial, participants demonstrated a reference

trajectory as shown in Figure 5(a). Partial observations

were then used to generate new trajectories. Trajecto-

ries were generated post-hoc using DMP and pHRIP.

Partial observations of trajectories were used for DMP

and the resultant output shown in Figure 5(b). For

pHRIP, partial observations of interaction forces were

used with the resultant outputs shown in Figure 5(c).

Visual inspection of the trajectories between DMP

and pHRIP indicates the advantage of pHRIP over DMP.

Using only interaction forces, the trajectories generated

from pHRIP followed the shape of those in the reference

trajectories. This is evident in the DTW scores in Ta-

ble 1 of the generated trajectories indicating a better

match in shape to the reference trajectory.
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(a) (b)

(c) (d)

Fig. 5 The trajectories from the human 3-DoF experiment trials. (a) Reference trajectories from participants. Trajectories
generated from: (b) trajectory observations using DMP; (c) interaction forces using pHRIP; and (d) interaction forces using
pHRIP-q in joint state space.

The effect of the observation length between trajec-

tories generated using DMP and pHRIP can be seen in

Figure 7, indicating the DTW distances for trajectories

generated using pHRIP are much lower than those of

DMP. As observation lengths increase, errors from the

generated trajectories would approach zero, giving di-

minishing returns for pHRIP or DMP. While a longer

observation can improve the performance of HRI appli-

cations using movement primitives, this is undesirable

in pHRI applications since the goal of the robot is to

contribute meaningfully as soon as possible. Trajecto-

ries from pHRIP consistently produce better trajecto-

ries when compared against DMP, reinforcing our hy-

pothesis that using interaction forces during pHRI can

help reduce uncertainty.

5.2 Cartesian vs. Joint State Trajectory

While pHRIP has been shown to generate trajectories

that reflect the user’s intention in Cartesian space, for

most robotic arm control systems, action policies gen-

erally operate in joint space. Further analysis was con-

ducted post-hoc using the data from the human target

reaching experiment to investigate the application of

pHRIP in joint state space (pHRIP-q). The joint states

of the robot and the Cartesian interaction forces at the

end effector were used to build the weight distribution.

Table 1 A comparison of the RMSE and DTW distance between trajectories generated from DMP, pHRIP, and pHRIP-q.
The same reference trajectory was used for each trial during the analysis. The mean, µ and variance, σ2 of the two metrics
are tabulated here.

DMP
pHRIP pHRIP-q

Force Only Force & Trajectory Force Only Force & Trajectory
µ σ2 µ σ2 µ σ2 µ σ2 µ σ2

RMSE (m) 0.2657 0.0031 0.1597 0.0030 0.1737 0.0024 0.1191 0.0049 0.1191 0.0049
DTW 4.2664 0.9732 1.6874 0.3056 1.8682 0.3800 1.6271 0.5728 1.6271 0.5725
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Fig. 6 The results from the planar obstacle avoidance task. (a) This highlights the RMSE spread between pHRIP and DMP
for 20 observations across varying observation lengths; (b) displays the training trajectories recorded to avoid the obstacle;
and (c) shows the trajectories generated by pHRIP and DMP when 30% of the trajectory is observed.

Forward kinematics was performed using the generated

joint trajectories to obtain the Cartesian trajectories.

For both the original human target reaching exper-

iment and this analysis, identical parameters were used

with 20 basis functions, K = 80N/m , D = 20Ns/m ,

τ = 0.35 , h = 0.0008, and α = 1. Forward kinematics

was performed for the pHRIP-q trajectories to obtain

their Cartesian trajectories, showing similar trajectory

shapes to the reference trajectories (see Figure 5(d)).

This is supported by the mean RMSE and DTW dis-

tances as tabulated in Table 1.

Initial observations of the overall results suggest that

pHRIP-q is the better variant. However, mapping out

the vectorized difference between the reference and re-

sultant endpoint, as seen in Figure 8, suggest that the

appropriate pHRIP variant will depend on the prior-

ity of the task. For example, pick and place operations

of heavy objects will prioritise the precise endpoint of
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nc
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Phase vs. DTW Distance
DMP Traj.
pHRIP Traj.
pHRIP-q Traj.

Fig. 7 The relationship between observation lengths and
DTW distances when generating trajectories using DMP,
pHRIP, and pHRIP-q.

Fig. 8 A visualization of the discrepancy between the end-
point in the reference trajectories and those generated from
DMP, pHRIP, and pHRIP-q. Ellipsoid fitting indicating the
spread is performed using [32].

the trajectory, making pHRIP more appropriate. Con-

versely, if the task is to conform to the shape of a tra-

jectory performed by an expert, as is commonly seen

during physical rehabilitation, it may be more suitable

to use the joint variant of pHRIP.

While the results show that appropriate consider-

ation is required when choosing which variant to use,

they show promising indications for the integration of

haptic information during motor skill learning in pHRI

applications. One potential for pHRI application is in

training and development systems, where expert demon-

strations may be collected remotely via a haptic inter-

face, providing intuitive motor skill learning remotely.

Learning from the interaction forces on the haptic in-

terface is transferable across various platforms provided

kinesthetic teaching of the robotic response is performed.
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Fig. 9 The training trajectories for the Cartesian obstacle
avoidance task.

5.3 Planar Obstacle Avoidance

For the 20 test trials conducted in the planar valida-

tion, the RMSE between the generated trajectories and

their respective reference trajectories was calculated.

The pHRIP and DMP tests were conducted post-hoc

against observation lengths (as a % of the total trajec-

tory) varying from 10% to 50%.

Results shown in Figure 6(a) highlight the ability

for pHRIP to address ambiguities in the trajectories,

utilizing only interaction forces to generate the intended

path. The critical advantage of pHRIP over DMPs is

shown when there are less observations such as those

when only 10% of the trajectory is observed.

While the results may indicate that the advantage of

pHRIP diminishes as more observations are obtained,

Fig. 10 The trajectories from the experiment. Trials that
reached the intended target and did not hit any obstacles are
shown in blue while unsuccessful paths are shown in red.

the generated trajectories highlight an aspect of motor

skill learning which is not inherited through DMPs. The

task to avoid the static obstacle is redundant, mean-

ing there are multiple ways to complete the task. Dur-

ing the recording of training trajectories, two distinct

paths were taught kinesthetically by the demonstrator,

showing this phenomenon as seen in Figure 6(b). From

Figure 6(c), trajectories generated by DMP (in red) all

collide with the obstacle severely while the same only

occur to 25% of pHRIP trajectories. Observations of the

pHRIP trajectories also show decreased severity during

collisions, with only two trajectories (10%) clearly going

through the obstacle.

The results in Figure 6(c) highlight the limitation

of DMPs in multi-modal distributions which is over-

come by using the interaction forces in pHRIP. This

reinforces our belief that the integration of interaction

artifacts improve motor skill learning for pHRI systems

and provide a better inference of user intention.

Table 2 Measures of similarity against the user’s reference
trajectory indicating their intention.

DTW Distance (unitless) RMSE (m)
µ σ2 µ

Successful 2.3482 0.2704 0.1697
Unsuccessful 3.3793 0.8941 0.2202

5.4 Cartesian Obstacle Avoidance

For the 4 configuration setup, 10 training trajectories

were recorded each and are shown in Figure 9. In to-
tal, 12 trials were conducted to validate pHRIP in an
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Fig. 11 The forcing function values for the experiment trials.
Successful trajectories are shown in blue while unsuccessful
trajectories are shown in red.
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Fig. 12 Novel configuration setup for testing pHRIP’s adap-
tation capabilities.

obstacle avoidance task in Cartesian space. Successful

trials are defined as generated trajectories that reach

their intended end zone while not touching any obsta-

cles along the way. For all trials, identical sets of param-

eters were used with 30 basis functions, K = 80N/m ,

D = 20Ns/m, h = 0.0008, and α = 0.8. For each trial,

an estimate of τ parameter is performed using the ref-

erence trajectory length.

Of the 12 trials, there were 4 unsuccessful trajec-

tories which all hit obstacles towards the end of the

trajectory as seen in Figure 10. Visual observations of

the trajectories show that unsuccessful trajectories were

caused by inaccurate estimates of the τ parameter. This

phenomenon is evident in Figure 11 where the forcing

Fig. 13 The trajectory generated for the novel setup and the
reference trajectory.

function value for the unsuccessful trajectories drops to

0, causing the trajectories to deviate significantly. For

the successful trials, pHRIP was able to correctly infer

the user’s intent when generating trajectories to avoid

the obstacles.

To test the adaptability of pHRIP, a novel setup

was designed as shown in Figure 12. New weights are

conditioned over the distribution built on the same set

of training trajectories1. The trajectory generated from

pHRIP was able to match the shape of the user intent

while avoiding obstacles and end within 10cm of the

new end zone.

6 Conclusion and Future Work

This article introduces physical Human Robot Interac-

tion Primitives (pHRIP), a framework that can infer

the user’s intention to generate the appropriate robotic

response during physical human robot interactions us-

ing only the interaction forces. pHRIP extends upon

DMPs by embedding interaction forces in the distribu-

tion over the robotic response to allow for user intent

inference when generating robotic trajectories.

A series of experiments based on target-directed reach-

ing and obstacle avoidance tasks were conducted to

validate the efficacy of pHRIP, showing accurate in-

ference of user intent with a small number of obser-

vations. Comparisons of a planar obstacle avoidance

task demonstrated the advantage of utilizing interac-

tion forces in pHRIP, instead of the robot trajectory in

DMPs, during multi-modal tasks for pHRI. The adap-

tation of pHRIP to novel situations also demonstrates

its robustness, with possibilities to integrate with multi-

model probabilistic techniques in the future.

While the experiments to validate pHRIP are ap-

proached through the lense of motion planning to re-

flect user intent, developing a control system which de-

rives from pHRIP outputs will create opportunities to

improve user assistance during pHRI. Furthermore, the

utilization of interaction forces has highlighted the need

to explore the variability exhibited by humans during

pHRI to provide a personalized experience.

In the context of human biomechanics, the inter-

action forces during pHRI can be derived from exter-

nal systems decoupled from the robotic platform such

as biomechanical models [44] and physiological mea-

sures [41]. Thus, future work will explore the effects of

context-dependent observations for pHRIP, leveraging

knowledge on the non-linear behavior of human loco-

motion and force generation [12,22].

1 Video for the experiment can be found at
https://youtu.be/idKgVGCuMw0

 https://youtu.be/idKgVGCuMw0 
 https://youtu.be/idKgVGCuMw0 
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(a)*

(b)

(c)

(d)*

Fig. 14 The behavior of pHRIP for known setups. * indicates an unsuccessful trial with the red ellipse showing the collisions.
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lisions: A survey on detection, isolation, and identifica-
tion. IEEE Transactions on Robotics 33(6), 1292–1312
(2017). DOI 10.1109/TRO.2017.2723903

20. Hamaya, M., Matsubara, T., Noda, T., Teramae, T.,
Morimoto, J.: Learning assistive strategies for exoskele-
ton robots from user-robot physical interaction. Pattern
Recognition Letters 99, 67–76 (2017). DOI 10.1016/j.
patrec.2017.04.007

21. Hoffmann, H., Pastor, P., Park, D.H., Schaal, S.:
Biologically-inspired dynamical systems for movement
generation: Automatic real-time goal adaptation and ob-
stacle avoidance. In: 2009 IEEE International Conference
on Robotics and Automation, pp. 2587–2592. Institute of
Electrical and Electronics Engineers (IEEE) (2009). DOI
10.1109/robot.2009.5152423

22. Hogan, N.: The mechanics of multi-joint posture and
movement control. Biological Cybernetics 52(5), 315–
331 (1985). DOI 10.1007/BF00355754

23. Hogan, N., Sternad, D.: Dynamic primitives in the con-
trol of locomotion. Frontiers in Computational Neuro-
science 7, 71 (2013). DOI 10.3389/fncom.2013.00071

24. Huang, R., Cheng, H., Qiu, J., Zhang, J.: Learning Phys-
ical Human-Robot Interaction with Coupled Cooperative
Primitives for a Lower Exoskeleton. IEEE Transactions
on Automation Science and Engineering 16(4), 1566–
1574 (2019). DOI 10.1109/TASE.2018.2886376

25. Huang, Y., Rozo, L., Silvério, J., Caldwell, D.G.: Ker-
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