UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

CHEST X-RAY IMAGE CLASSIFICATION WITH DEEP LEARNING

by

Qingji Guan

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Qingji Guan, declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed Signature: prior to publication.

Date: 1 Sep 2021

ABSTRACT

CHEST X-RAY IMAGE CLASSIFICATION WITH DEEP LEARNING

by

Qingji Guan

Computer-aided diagnosis (CAD) systems have been successfully helped to clinical diagnosis. This dissertation considers one essential task in CAD, the chest X-ray (CXR) image classification problem, with the deep learning technologies from the following three aspects.

First, considering most diseases existing in CXRs usually happen in small localized areas, we propose to localize the local discriminative regions and integrate the global and local cues into an attention guided convolution neural network (AG-CNN) to identify thorax diseases. AG-CNN consists of three branches (global, local, and fusion branches). The global branch learns the global features for classification. The local branch localizes the discriminative regions, which avoids noise and improves misalignment in the global branch. AG-CNN fuses the global and local features for diagnosis in a fusion branch.

Second, due to the common and complex relationships of multiple diseases in CXRs, it is worth exploiting their correlations to help the diagnosis. This thesis will present a category-wise residual attention learning method to concentrate on learning the correlations of multiple diseases. It is expected to suppress the obstacles of irrelevant categories and strengthen the relevant features at the same time.

Last, a robust and stable CXR image analysis system should be able to: 1) automatically focus on the disease-critical regions, which usually are of small sizes; 2) adaptively capture the intrinsic relationships among different disease features and utilize them to boost the multi-label disease recognition rates jointly. We introduce a discriminative feature learning framework, ConsultNet, to achieve those two purposes simultaneously. ConsultNet consists of a variational selective information bottleneck branch and a spatialand-channel encoding branch. These two branches learn discriminative features collaboratively.

In addition, each of the proposed methods is comprehensively verified and analyzed by conducting various experiments.

Dissertation directed by Professor Yi Yang Australian Artificial Intelligence Institute (AAII), School of Computer Science

Acknowledgements

I would like to dedicate this dissertation to those who have offered assistance and support while pursuing the Ph.D. degree.

First and foremost, I would like to thank my supervisor, Prof. Yi Yang, for his guidance, encouragement, and most of all, his support during my preparation for the thesis. Prof. Yang taught me to insist on being myself and always do the right things in research work. He has also given me many valuable suggestions in lifetime. He has my deepest gratitude.

Besides, I would like to thank my co-supervisor, Dr. Liang Zheng, who has given me valuable suggestions and guidance in my research. His profound thinking and painstaking inspire and encourage me to do my best to do perfect work.

Thanks to all my colleagues in the ReLER Lab at the University of Technology Sydney. Thanks to Qianyu Feng, Peike Li, Pingbo Pan, Zhedong Zheng, Fan Ma, Xiaohan Wang, Yu Wu, Yutian Lin, Hehe Fan, Yanbin Liu, Jiaxu Miao, Hu Zhang, Guang Li, Xiaolin Zhang, Ruoyu Liu, Yang He, Zongxin Yang. Special thanks to Zhun Zhong, Yawei Luo and Ping Liu, who have many discussions with my research together. I am grateful and delighted to meet these lovely, passionate people.

I would like to thank my parents Fengxian Sheng and Chengwen Guan, my brother Qingli Guan for their love over the years.

Finally and most importantly, I would like to thank my husband, Liming Yang, for his selfless love. Without his tremendous support, I could not complete my study. I thank my son, Yichen Yang, who always cheers me up.

Qingji Guan March 2021 at Beijing.

List of Publications

Journal Papers

- J-1. Q. Guan, Y. Huang, Y. Luo, P. Liu, M. Xu and Y. Yang, "Discrimative feature learning for thorax disease classification in chest X-ray images," *IEEE Transactions on Image Processing*, vol. 30, 2021.
- J-2. Q. Guan, Y. Huang, Z. Zhong, Z. Zheng, L. Zheng and Y. Yang. "Thorax disease classification with attention guided convolutional neural network," *Pattern Recognition Letters*, vol. 131, 38-45, 2020.
- J-3. Q. Guan and Y. Huang. "Multi-label chest X-ray image classification via categorywise residual attention learning," *Pattern Recognition Letters*, vol. 130, 259-266, 2020.

Contents

	Certificate	ii	
Abstract			
Acknowledgments			
List of Publications			
	List of Figures		
1	Introduction	1	
	1.1 Background	1	
	1.1.1 Combining the global and local cues	2	
	1.1.2 Exploiting the correlations of multiple diseases	2	
	1.1.3 Learning discriminative features for CXR classification	3	
	1.2 Thesis Organization	3	
2	Literature Review	5	
	2.1 Chest X-ray image classification with deep learning	5	
	2.1.1 Lesion areas related methods	6	
	2.1.2 Multi-label learning	8	
3	Attention Guided Convolution Neural network	11	
	3.1 Motivation	11	
	3.2 Method	14	
	3.2.1 Structure of AG-CNN	14	

		3.2.2	Attention Guided Mask Inference	16
		3.2.3	Training Strategy of AG-CNN	18
	3.3	Experin	nent	19
		3.3.1	Experimental details	19
		3.3.2	Evaluation	20
		3.3.3	Parameter Analysis	31
	3.4	Conclus	sion	33
4	Ca	tegory	wise Residual Attenion Learning	34
	4.1	Introdu	ction	34
	4.2	The pro	posed method	36
		4.2.1	Architecture of CRAL	36
		4.2.2	Feature Embedding	36
		4.2.3	Category-wise Residual Attention Learning	38
		4.2.4	Optimization	42
	4.3	Experin	nent	42
		4.3.1	Dataset and Evaluation Metric	43
		4.3.2	Experimental Settings	44
		4.3.3	Evaluation	44
		4.3.4	Ablation Study	49
		4.3.5	Qualitative results	49
	4.4	Conclus	sion	52
5	Dis	scrimin	ative Feature Learning	53
	5.1	Introdu	ction	53
	5.2	Method	ology	57

5.2.1	Problem Settings and Motivation	57
5.2.2	Variational Selective Information Bottleneck	59
5.2.3	Spatial-and-Channel Encoding	62
5.2.4	Optimization with Pairwise Confusion	65
5.3 Experi	ment	67
5.3.1	Datasets	67
5.3.2	Implementation Details	68
5.3.3	Comparative Studies	71
5.3.4	Effectiveness of <i>ConsultNet</i>	78
5.4 Conclu	usion	82
6 Conclusi	ons and Futura Wark	83
o Conclusi		03
6.1 Summ	ary of Contributions	83
6.2 Future	Directions	84
Bibliography		

List of Figures

Two images from the ChestX-ray14 dataset. (a) The global images. (b) heatmaps extracted from a specific convolutional layer. (c) The cropped	
images from (a) guided by (b)	12
Overall framework of the attention guided convolutional neural network	
(AG-CNN, showing ResNet-50 as backbone). "BCE" represents binary	
cross entropy loss. The spatial resolution of heatmap generated from the	
last convolutional layer of the global branch is 7×7 . Then we resize the	
heatmap to 224×224 by bilinear interpolation. The input image is	
added to the heatmap for visualization	15
The process of lesion area generation. (Top:) global CXR images of	
various thorax diseases for the global branch. Note that we do not use the	
bounding boxes for training or testing. (Middle:) corresponding visual	
examples of the output of the mask inference process. Higher/lower	
response is denoted with red/blue. (Bottom:) cropped and resized	
images from the green bounding boxes which are fed to the local branch.	17
The localization accuracy of different threshold of τ . Each sub-figure is	
the accuracy for different τ . And in each sub-figure, different color	
represents the threshold of IoU (T(IoU)) when measuring the accuracy of	
the predicted bounding box. Better view as zoomed	23
Examples of heatmaps for "no finding" images. The cropped regions are	
denoted by green bounding boxes.	25
	heatmaps extracted from a specific convolutional layer. (c) The cropped images from (a) guided by (b)

3.6	ROC curves of the global, local and fusion branches (DenseNet-121 as	
	backbone) over the 14 pathologies. The corresponding AUC values are	
	given in Table. 3.1. We observe that fusing global and local information	
	yields clear improvement.	26
3.7	The visualized cropped regions and the lesion areas. The red bounding	
	boxes are the ground truths of lesion areas, and the green bounding	
	boxes are the cropped regions in AG-CNN	27
3.8	ROC curves of AG-CNN on the 14 diseases (ResNet-50 and	
	DenseNet-121 as backbones, respectively).	29
3.9	Average AUCs for different settings of τ on the test set (ResNet-50 as	
	backbone). Note that the results from global branch are our baseline	31
3.10	Average AUC scores of AG-CNN with different settings of τ on the	
	validation set (ResNet-50 as backbone)	32

4.1 Overview of the framework. There are two different attention mechanisms investigated in Section 4.2. Here, we take the first one att1 as an example to illustrate the proposed framework. CRAL consists of two main modules. The feature embedding module is a CNN network which can be replaced by any network. In our experiment, we use ResNet-50 or Densenet-121 as the backbone. The normalized attention scores are obtained from the attention module. Attention scores contain C channels, and each channel corresponds to one category (highlighted with blue or red). By combining the channel-wise Hadamard product and element-wise sum operations, the high-level features and the attention scores are integrated into a residual attention block to classify the input image. Each class/disease is classified by a binary classifier in our model. "Pooling" represents a global average pooling layer. "FC" and "BCE" represent the fully connected layer and the binary cross 37 entropy loss function, respectively.

4.2	Architecture of residual attention module (with att1 and att2). att1	
	consists of two 3 \times 3 convolutional layers followed by ReLU, one 1 \times 1	
	convolutional layer and one non-linear activation layer (Sigmoid). For	
	att2, the input CNN features F are fed into the "hourglass" attention	
	branch and a convolutional branch, respectively. Through the	
	channel-wise Hadamard product and element-wise sum operations, a	
	residual feature is formed by the learned features $ ilde{F}$ and its weighted	
	version $A \odot \tilde{F}$.	39
4.3	Example images and the corresponding labels in the ChestX-ray14	
	dataset. Each image is labeled with one or more pathologies	43
4.4	ROC curves of four combinations of CNN backbones and attention	
	mechanisms (ResNet-50-att1, ResNet-50-att2, DenseNet-121-att1, and	
	DenseNet-121-att2) over the 14 pathologies. The corresponding AUC	
	scores are given in Table. 4.1.	45
4.5	Examples of heatmaps generated from the learned features (from	
	ResNet-50). The ground truth bounding boxes provided by (Wang et al.,	
	2017b) are annotated on the original images. Note that the heatmaps are	
	zoomed to the same size as the input images, and the heatmaps may be a	
	few difference due to the usage of random cropping in testing	51
4.6	Examples of classification results. We present the top-8 predicted	
	categories and the corresponding probability scores. The ground truth	
	labels are highlighted in red or blue.	51

5.1 Examples of lesion areas on the ChestX-ray14 dataset. The first row presents some chest X-ray images with lesion areas, which are small compared to the global ones. The second row shows multiple pathologies existing in an image, which means the corresponding patient suffers from various diseases in a period. The disease existing in each bounding box corresponds to the pathology name with same color in the middle row. 54

5.2	Overview of the proposed ConsultNet. The ConsultNet consists of an	
	Encoder, a Feature Selector, a Feature Integrator, and a Decoder. Given	
	an image, we first feed it into the Encoder and obtain a mid-level feature	
	representation. Then we learn the disease-specific and disease-correlated	
	features by a VSIB based Feature Selector and an SCE based Feature	
	Integrator, respectively. At last, both of them are concentrated together	
	to classify the input image. Note that the "Conv", "VIB",	
	"VSIB", "SCE", "GMP" and "FC" represent the convolutional layer,	
	variational information bottleneck, spatial-channel encoding, global max	
	pooling layer and fully connected layer respectively	58
5.3	The architectures of <i>S_module</i> . (a) and (b) represent the S_s and S_c	
	submodules, respectively.	61
5.4	Visualized heatmaps generated by VIB and VSIB. (a) is the input image	
	with the lesion area bounding box annotated by (Wang et al., 2017b). (b)	
	and (c) are the heatmaps generated by the VIB and VSIB constraint,	
	respectively. The large/small response trends to be red/blue in the	
	heatmaps. The larger responses that locate at the position of the	
	corresponding bounding box would be expected.	63
5.5	Examples in the ChestX-ray14 dataset. The second row shows some	
	cases captured with abnormal conditions, which introduce noises at the	
	edges of images	67