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ABSTRACT

CHEST X-RAY IMAGE CLASSIFICATION WITH DEEP LEARNING

by

Qingji Guan

Computer-aided diagnosis (CAD) systems have been successfully helped to clinical

diagnosis. This dissertation considers one essential task in CAD, the chest X-ray (CXR)

image classification problem, with the deep learning technologies from the following

three aspects.

First, considering most diseases existing in CXRs usually happen in small localized

areas, we propose to localize the local discriminative regions and integrate the global

and local cues into an attention guided convolution neural network (AG-CNN) to identify

thorax diseases. AG-CNN consists of three branches (global, local, and fusion branches).

The global branch learns the global features for classification. The local branch localizes

the discriminative regions, which avoids noise and improves misalignment in the global

branch. AG-CNN fuses the global and local features for diagnosis in a fusion branch.

Second, due to the common and complex relationships of multiple diseases in CXRs,

it is worth exploiting their correlations to help the diagnosis. This thesis will present a

category-wise residual attention learning method to concentrate on learning the correla-

tions of multiple diseases. It is expected to suppress the obstacles of irrelevant categories

and strengthen the relevant features at the same time.

Last, a robust and stable CXR image analysis system should be able to: 1) automat-

ically focus on the disease-critical regions, which usually are of small sizes; 2) adap-

tively capture the intrinsic relationships among different disease features and utilize them

to boost the multi-label disease recognition rates jointly. We introduce a discriminative

feature learning framework, ConsultNet, to achieve those two purposes simultaneously.

ConsultNet consists of a variational selective information bottleneck branch and a spatial-



and-channel encoding branch. These two branches learn discriminative features collabo-

ratively.

In addition, each of the proposed methods is comprehensively verified and analyzed

by conducting various experiments.

Dissertation directed by Professor Yi Yang

Australian Artificial Intelligence Institute (AAII), School of Computer Science
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