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A Gramian-based Approach to Model Reduction for
Uncertain Systems

Li Li, Ian R. PetersenFellow, IEEE

Abstract—The paper considers a problem of model reduction for a
class of uncertain systems with structured norm bounded uncertainty.
The paper introduces controllability and observability Gramians in terms
of certain parameterized algebraic Riccati inequalities.Based on these
Gramians, three model reduction approaches are investigated for the
underlying uncertain systems.

Index Terms—Model Reduction, Uncertain Systems, Linear Fractional
Transformation, Linear Matrix Inequality

I. I NTRODUCTION

Model reduction is an important aspect of linear systems theory.
One commonly applied model reduction method for linear time
invariant (LTI) systems is balanced truncation [1]. By means of
balancing controllability and observability Gramians, a reduced order
model is constructed together with an a priori error bound; e.g., see
[2], [3], [4]. In [5], it was shown that generalized controllability and
observability Gramians can also be used to characterizeH∞ model
reduction problems. For unstable systems, LQG balanced truncation
was proposed in [6]; see also [7]. Being aclosed-loopbalancing
approach, LQG balanced truncation removes a stability requirement
in balanced truncation andH∞ model reduction methods.

Uncertain systems commonly arise in robust control theory;e.g.,
see [8], [9]. Model reduction methods for uncertain systemsare very
useful in the design of practical robust control systems in which the
dimension of controllers needs to be limited. In discrete-time cases,
balanced truncation for uncertain systems can be traced back to [10],
[11] within the framework of linear fractional transformations (LFTs).
In [12], [13], balanced model reduction was extended to linear time-
varying (LTV) systems. In continuous-time cases, model reduction
for linear parameter-varying (LPV) systems was proposed in[14],
[15]. Closely related problems, such as approximation, truncation and
simplification of uncertain systems were presented in [16],[17].

In [18], [19], problems of controllability and unobservability were
investigated for a class of structured uncertain systems inwhich the
uncertainty is described by Integral Quadratic Constraints (IQCs).
These results motivate the question as to whether model reduction
methods, based on controllability and observability Gramians, can
be obtained for uncertain systems. In this paper, we study model
reduction problems for continuous-time uncertain systemsmodeled
by an LFT representation, as a counterpart to correspondingresults
for discrete-time uncertain systems [10], [11]. We consider uncer-
tain systems with norm bounded uncertainty rather than the IQC
uncertainty description considered in [20], [18], [19]. This enables
us to construct generalized Gramians and develop a series ofmodel
reduction methods for uncertain systems. These methods arebalanced
truncation andH∞ model reduction for robustly stable uncertain
systems, and LQG balanced truncation for uncertain systemswhich
are not robustly stable.
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The main contribution of this paper is to characterize generalized
observability and controllability Gramians for continuous-time un-
certain systems with structured norm bounded uncertainty by means
of parameterized Riccati inequalities, and to develop a systematic
general framework for reducing the dimension of uncertain systems.
We present a balanced truncation model reduction method forthe
underlying uncertain systems and derive its error bounds. These
results extend existing results for LTI systems [1], [2], [3], [4] and
discrete-time uncertain systems [11], [21] to this class ofsystems.
The results also verify those in [16] in the context of IQCs when a
norm bounded uncertainty setting is adopted. In particular, the second
error bound developed considers different uncertainties in the original
and the reduced uncertain system, and provides a Hausdorff distance
between the two uncertain systems.H∞ model reduction for uncertain
systems is also investigated. Analogous to [5], a sufficientcondition
for the existence of a reduced order model is provided which involves
the underlying Gramians together with a rank constraint. Itturns
out that our method, compared to the related results in [15],is less
computationally demanding since [15] solves 2ν−2 (ν is the number
of vertices of the underlying polytope) more matrix inequalities.
LQG balanced truncation is proposed for uncertain systems which
are not robustly stable, as a counterpart to the results in [6]. Similarly,
a coprime factorization technique was used in [22] for discrete-
time unstable systems. However, the results in [22] rely on an
assumption that one of the system matrices is of full column rank.
Our results overcome this restriction and provide a more general
solution to constructing reduced-order uncertain systems. It is worth
noting that the same framework has been further developed in[23]
to construct contractive coprime factorizations for continuous-time
uncertain systems and to derive a corresponding model reduction
algorithm, without the full rank assumption.

In this paper, we also present a tutorial overview of model
reduction methods for uncertain systems and aim to provide insight
into these methods from a Gramian-based point of view. Note that the
proposed balanced truncation andH∞ model reduction approaches
face some computational and scalability difficulties. However, the
problem of overcoming these difficulties is beyond the scopeof this
paper, and may be a topic for future research.
Notation Let Lm

2 = Lm
2 [0,∞) be the space of square integrable

functions inRm, andL (Lm
2 ) denote the space of all linear bounded

operators mapping fromLm
2 to Lm

2 . The gain of an operator∆ in

L (Lm
2 ) is given by∥∆∥= sup

z∈Lm
2 [0,∞),z ∕=0

∥∆z∥
∥z∥ , and the adjoint operator

of ∆ is denoted as∆∗ if ∆ is linear. If ∆ = ∆∗, ∆ < 0 means that
x∗∆x < 0 for any x ∕= 0 in Rm. We also useM∗ to denote the
complex conjugate transpose of a complex matrixM. For z∈ Rm

and a nonnegative matrixΛ ∈ Rm×m, ∣z∣2Λ = z∗Λz, andΛ is omitted
when it is an identity matrix. The state-space realization of a transfer

matrix is denoted byG(s) =

[

A B
C D

]

:=C(sI−A)−1B+D.

II. PROBLEM FORMULATION

We consider the uncertainty structure

∆c∆c∆c = {diag(∆1, ⋅ ⋅ ⋅ ,∆k) : ∆i ∈ L (Lhi
2 ),∆i causal,∥∆i∥ ≤ 1},

and the following uncertain system:

G∆ :

⎧









⎨









⎩

ẋ= Ax+Eξ+Bu,

z= Kx+Gu,

y=Cx+Dξ,

ξ = ∆z, ∆ ∈∆c∆c∆c,

(1)



wherex(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, z(t) ∈
Rh is the uncertainty output, y(t) ∈ Rl is the measured outputand
ξ(t) ∈ Rh is the uncertainty input; hereh= h1+ ⋅ ⋅ ⋅+hk. Note that
it is assumed in (1) thatξ does not appear inz. This assumption is
made only for notational simplification purposes, and the results in
the paper can be readily extended to more general cases.

Let the nominal system be denoted by

M =

[

M11 M12
M21 M22

]

=

⎡

⎣

A E B
K 0h G
C D 0l×m

⎤

⎦ .

Then, the uncertain system (1) is defined by an LFT representation
asFu(M,∆) := M22+M21∆(I −M11∆)−1M12, wheneverI −M11∆ is
non-singular. Define operators

[

A∆ B∆
C∆ D∆

]

=

[

A+E∆K B+E∆G
C+D∆K D∆G

]

.

Definition 1 (Robust Stability [24]):The uncertain system (1) is
robustly stableif (I −M11∆)−1 exists inL (Lh

2) and is causal, for all
∆ ∈∆c∆c∆c.

Definition 2: The uncertain system (1) is said to berobustly
stabilizable if there exists a static state feedback lawu = Fx such
that the corresponding closed-loop uncertain system is robustly stable.
Also, robust detectabilitycan be defined similarly.

The following lemma states a necessary and sufficient condition
for robust stability. This lemma is given in terms of the positive
commutant set corresponding to∆c∆c∆c defined as

PΘPΘPΘ = {diag(θ1Ih1, ⋅ ⋅ ⋅ ,θkIhk
) : θi > 0}. (2)

Lemma 3: (see [24]) The uncertain system (1) is robustly stable
if and only if there existΘ ∈PΘPΘPΘ andX > 0, such that

A∗X+XA+K∗ΘK +XEΘ−1E∗X < 0. (3)

III. C ONTROLLABILITY AND OBSERVABILITY GRAMIANS

As is well known, the controllability and observability Gramians
play very important roles in LTI balanced truncation approaches to
model reduction; see [1]. In this section, we introduce generalized
Gramians for the uncertain system (1), as defined below.

Definition 4: The matricesS> 0,P> 0 are said to be generalized
controllability or observability Gramian1, respectively, for the uncer-
tain system (1) if the following inequalities hold,

A∆S+SA ∗∆ +B∆B
∗
∆ < 0 ∀∆ ∈∆c∆c∆c, (4)

A ∗∆P+PA∆ +C
∗
∆C∆ < 0 ∀∆ ∈∆c∆c∆c. (5)

In [19], [18], issues of robust controllability and unobservability for
uncertain linear systems with structured uncertainty werediscussed
in the framework of IQCs. In these references, LTV systems with
nonlinear uncertainties were studied, and parameterized Riccati dif-
ferential equations were derived to characterize robust controllability
and unobservability of uncertain systems. In this section,we will
apply the ideas in [19], [18] to the uncertain system (1).

Consider the following algebraic Riccati inequalities (ARIs):

AS+SA∗+(SK∗+BG∗)(Λ−1
c −GG∗)−1(KS+GB∗)

+EΛ−1
c E∗+BB∗ < 0, (6)

A∗P+PA+(PE+C∗D)(Λo−D∗D)−1(E∗P+D∗C)

+K∗ΛoK +C∗C< 0, (7)

1Here generalized Gramians are defined in the sense that they satisfy un-
derlying Lyapunov inequalities rather than equations [24]. Note that the same
notion also refers to structured Gramians in the literaturewhen uncertainty
structures are involved; e.g., [11], [25].

whereS> 0,P> 0, andΛc ∈PΘPΘPΘ,Λo ∈PΘPΘPΘ are such thatΛ−1
c −GG∗ >

0,Λo−D∗D > 0. Alternatively, (6) and (7) can be rewritten as

AS+SA∗+SK∗ΛcKS+EΛ−1
c E∗

+(B+SK∗ΛcG)(Im−G∗ΛcG)−1(B∗+G∗ΛcKS)< 0, (8)

A∗P+PA+PEΛ−1
o E∗P+K∗ΛoK

+(C∗+PEΛ−1
o D∗)(Il −DΛ−1

o D∗)−1(C+DΛ−1
o E∗P)< 0. (9)

The following example shows thatS in (6) or (8) is analogous to
the LTI controllability Gramians. A similar result also holds for P in
(7) or (9).

Observation 5:(Controllability Gramian ) Consider the uncertain
system (1) on the interval(−∞,0] with x(−∞) = 0, and assume that
ARI (8) admits a solutionS> 0 for someΛc ∈ PΘPΘPΘ such thatIm−
G∗ΛcG > 0. Using x∗(t)S−1x(t) as a candidate Lyapunov function,
we have∫ 0

−∞
∣u∣2dt

≥ x∗0S−1x0+
∫ 0

−∞
(
∣

∣z
∣

∣

2
Λc

−
∣

∣ξ
∣

∣

2
Λc
)dt+

∫ 0

−∞

∣

∣

∣
ξ−Λ−1

c E∗S−1x
∣

∣

∣

2

Λc

dt

+
∫ 0

−∞

∣

∣

∣
u− (Im−G∗ΛcG)−1(B∗S−1+G∗ΛcK)x

∣

∣

∣

2

(Im−G∗ΛcG)
dt

≥ x∗0S−1x0.

Therefore, minu,ξ
∫ 0
−∞ ∣u∣2dt ≥ x∗0S−1x0. Recall that equality is

achieved for LTI cases (without uncertainty); while for theuncertain
system (1),x∗0S−1x0 provides a lower bound on the minimum control
energy required to drive the state fromx(−∞) = 0 to x(0) = x0.

Solutions to (6-7) or (8-9) are closely related to generalized
Gramians for the uncertain system (1). Before showing this,it is
necessary to address the feasibility of the inequalities (6-7).

Theorem 6:The following statements are equivalent:
(i) The uncertain system (1) is robustly stable.

(ii) The Riccati inequality (6) admits a solutionS> 0 for some
Λc ∈PΘPΘPΘ.

(iii) The Riccati inequality (7) admits a solutionP > 0 for some
Λo ∈PΘPΘPΘ.
Proof: We only prove the equivalence between(i) and (ii).

(ii)⇒ (i) : (3) holds withX = S−1,Θ = Λc by using (8). Then(i)
follows using Lemma 3.
(i)⇒ (ii) : Using Lemma 3, it follows that (3) holds. Then we can

chooseε > 0 sufficiently small, such thatε−1Im−G∗ΘG> 0 and

A∗X+XA+K∗ΘK +XEΘ−1E∗X

+(XB+K∗ΘG)(ε−1Im−G∗ΘG)−1(B∗X+G∗ΘK)< 0. (10)

Let X = (εS)−1,Θ = ε−1Λc, and substitute these values into (10).
From this, it is not difficult to derive (8), and thus (6) holds.

The following theorem relates (6) and (7) to the generalized
controllability and observability Gramians for the uncertain system
(1), as defined in Definition 4.

Theorem 7:If there exist S > 0, P > 0, Λc ∈ PΘPΘPΘ, Λo ∈ PΘPΘPΘ
solving ARIs (6), (7), thenS, P are generalized controllability and
observability Gramians for the uncertain system (1).

Proof: We only prove the controllability part.

A∆S+SA ∗∆ +B∆B
∗
∆

= (A+E∆K)S+S(A+E∆K)∗+(B+E∆G)(B+E∆G)∗

= AS+SA∗+E∆Λ−1
c ∆∗E∗+BB∗

+(SK∗+BG∗)(Λ−1
c −GG∗)−1(KS+GB∗)

− [SK∗+BG∗−E∆(Λ−1
c −GG∗)](Λ−1

c −GG∗)−1

× [SK∗+BG∗−E∆(Λ−1
c −GG∗)]∗.



Then (4) holds fromE∆Λ−1
c ∆∗E∗ = EΛ−1/2

c ∆∆∗Λ−1/2
c E∗ ≤EΛ−1

c E∗

and Λ−1
c −GG∗ > 0.

IV. BALANCED TRUNCATION

It is shown that solutions to ARIs (6-7) are generalized Gramians
for G∆ in (1). Consequently, traditional balanced truncation technique
for model reduction can be applied. Firstly, we present a method to
solve ARIs (6-7). By using the Schur complement twice and letting
Λc = Λ−1

c , (6-7) can be transformed into Linear Matrix Inequalities
(LMIs), as in the following propositions.

Proposition 8: If there exist matricesS> 0 andΛc ∈ PΘPΘPΘ solving
the following LMI

⎡

⎣

SA∗+AS+EΛcE∗ SK∗ B
★ −Λc G
★ ★ −Im

⎤

⎦< 0, (11)

then S is a generalized controllability Gramian for the uncertain
system (1).

Proposition 9: If there exist matricesP> 0 andΛo ∈PΘPΘPΘ solving
the following LMI

⎡

⎣

A∗P+PA+K∗ΛoK PE C∗

★ −Λo D∗

★ ★ −Il

⎤

⎦< 0, (12)

thenP is a generalized observability Gramian for the uncertain system
(1).

Note that solutions to LMIs (11) and (12) are not unique. A possi-
ble heuristic is, taking (11) for example, to solve the following Semi-
Definite Programming (SDP) problem: minimizetrace(S), subject
to (11); see e.g. [24]. Here the objective function is chosensuch
that, in the absence of uncertainty, the solution leads to the standard
controllability Gramian.

Definition 10: An uncertain system of the form (1) is said to
be balanced if it has generalized observability and controllability
Gramians which are identical diagonal matrices. The diagonal entries
are then referred to as generalized Hankel singular values for the
uncertain system.

We summarize the proposed model reduction algorithm as follows.
Procedure 11 (Balanced Truncation):

1) Solve LMIs (11) and (12), or the associated SDP problems, to
obtain generalized GramiansS> 0,P> 0.

2) BalanceS,P by constructing a state transformation matrixT [2]
such that

TST∗ = (T−1)∗PT−1 = Σ = diag(Σ1,Σ2) = diag(γ1, ...,γn),
(13)

whereγ1 ≥ ...≥ γd > γd+1 ≥ ...≥ γn > 0, Σ1 = diag(γ1, ...,γd),
Σ2 = diag(γd+1, ...,γn).

3) Write the transformed nominal system of (1) asM =
⎡

⎢

⎣

A E B

K 0h G
C D 0l×m

⎤

⎥

⎦
, where A = TAT−1; E = TE; B =

TB; C=CT−1; K = KT−1. The sub-matrices of this balanced
realization of M corresponding to the matrixΣ2 in (13) are
truncated to obtain a reduced order uncertain system defined

by Mr =

⎡

⎢

⎣

Ar Er Br

Kr 0h G
Cr D 0l×m

⎤

⎥

⎦
with orderd.

4) Write the reduced dimension uncertain system asG r∆ =
Fu(Mr ,∆),∆ ∈∆c∆c∆c.

Theorem 12:Consider a robustly stable uncertain system (1) and
suppose that the reduced dimension uncertain systemG r∆ is obtained

as described in Procedure 11. ThenG r∆ is also balanced and robustly
stable. Furthermore,

sup
∆∈∆∆∆c

∥G∆(s)−G r∆(s)∥∞ ≤ 2(γt
1+ ⋅ ⋅ ⋅+ γt

q), (14)

where γt
i denote the distinct generalized Hankel singular values of

γd+1, . . . ,γn.
Proof: It is easy to show thatG r∆ satisfies (6) and (7) with

balanced GramianΣ1. Therefore,G r∆ is balanced from Theorem 7,
and robustly stable from Theorem 6. As for the bound in (14), the
proof is analogous to that of Theorem 13, and thus omitted here.

In the above theorem, we assume that the original system and the
reduced system have identical uncertainties. If differentuncertainties
are allowed, the error bound will require an additional termθ
determined byΛc,Λo, as to be shown below.

Theorem 13:Consider a robustly stable uncertain system (1) and
suppose that the reduced dimension uncertain systemG r∆ is obtained
as described in Procedure 11. Then

sup
∆̃,∆∈∆c∆c∆c

∥G ∆̃(s)−G r∆(s)∥∞ ≤ 2(γt
1+ ⋅ ⋅ ⋅+ γt

q+θ), (15)

where θ = ∑k
i=1

√

θoiθci, θoi,θci are the repeated entries ofΛo,Λc

respectively, as defined in (2).
Proof: We will utilize [16, Theorem 1] to prove the above result.

For any∆̃,∆ ∈∆c∆c∆c, define

∆ = diag(s−1Id,s
−1In−d, ∆̃), ∆̂ = diag(s−1Id,0n−d,∆),

M11 =

[

A E
K 0

]

, M12 =

[

B
G

]

, M21 =
[

C D
]

, M22 = 0,

M =

[

M11 M12
M21 M22

]

,Π1 =

[

0 Σ−1
1

Σ−1
1 0

]

, Π2 =

[

0 Σ−1
2

Σ−1
2 0

]

,

Π3 =

[

Λ−1
c 0

0 −Λ−1
c

]

,Σ = diag
(

Σ1,Σ2,(ΛoΛc)
1
2

)

,

where A,E,B,K,G,Σ1,Σ2,Λc,Λo are obtained from Procedure 11.
It is easy to check thatG ∆̃ = Fu(M,∆), G r∆ = Fu(M, ∆̂), and
Π1,Π2,Π3 are corresponding IQC multipliers for the uncertainty
blocks in ∆, ∆̂. Then ∆, ∆̂ satisfy the IQCs defined byΠ =
[

Π(1,1) Π(1,2)
Π(2,1) Π(2,2)

]

, Π(i, j) = diag(Π1(i, j), ⋅ ⋅ ⋅ ,Π3(i, j)), i, j = 1,2, where

Πi =

[

Πi(1,1) Πi(1,2)
Πi(2,1) Πi(2,2)

]

. Note that (11) and (12) are equivalent to the

following two matrix inequalities respectively,
[

M11 M12
I 0

]∗
Π
[

M11 M12
I 0

]

<

[

0 0
0 I

]

,

[

M11
I

]∗[Σ2
0

0 Σ2

]

Π
[

M11
I

]

+M∗
21M21 < 0.

Therefore, the error bound (15) holds by invoking [16, Theorem 1].

Definition 14: The Hausdorff distancedH(F ,H ) between the sets
F andH is defined as

dH (F ,H ) : = max(d⃗(F ,H ), d⃗(H ,F )),

d⃗(F ,H ) : = sup
f (s)∈F

inf
h(s)∈H

∥ f (s)−h(s)∥∞ .

If we denoteG∆∆∆ := {G∆ : ∆ ∈ ∆c∆c∆c} and G r∆∆∆ := {G r∆ : ∆ ∈ ∆c∆c∆c},
the above result provides an upper bound on the Hausdorff distance
between these two sets:dH (G∆∆∆,G r∆∆∆)≤ 2(γt

1+ ⋅ ⋅ ⋅+ γt
q+θ).



∆p 0
0 ∆

A E B
K 0 G
C D 0

y u

(a) Continuous-time system.

∆n 0
0 ∆

Ã Ẽ B̃
K̃ G̃1 G̃
C̃ D̃ D̃1

y u

(b) Discrete-time system.

Fig. 1. Bilinear transformation.

A. Connection to Discrete-time Cases

Following [11], [16], we include a passive integral operator ∆p =
s−1I and a norm-bounded shift operator∆n = λI , as seen in Fig. 1, in
the upper uncertainty blocks; the lower blocks are constantmatrices.
A bilinear transformation∆n = (∆p− I)(∆p+ I)−1 can be applied to
convert the continuous-time system in Fig. 1(a) to the discrete-time
system in Fig. 1(b) as follows,

Ã= (I −A)−1(I +A),

[Ẽ B̃] =
√

2(I −A)−1[E B],

[

K̃
C̃

]

=
√

2

[

K
C

]

(I −A)−1,

[

G̃1 G̃
D̃ D̃1

]

=

[

K
C

]

(I −A)−1[E B]+

[

0 G
D 0

]

.

(16)

Using the discrete-time results in [10], [11], the Lyapunovinequal-
ity associated with generalized controllability Gramian for discrete-
time systems in Fig. 1(b) is

[

Ã Ẽ
K̃ G̃1

][

S 0
0 Λ−1

c

][

Ã Ẽ
K̃ G̃1

]∗

−
[

S 0
0 Λ−1

c

]

+

[

B̃
G̃

][

B̃
G̃

]∗
< 0, (17)

whereS> 0, andΛc ∈PΘPΘPΘ. By using the Schur complement, (17) is
equivalent to

⎡

⎢

⎢

⎣

ÃSÃ∗−S ÃSK̃∗ Ẽ B̃
★ K̃SK̃∗−Λ−1

c G̃1 G̃
★ ★ −Λc 0
★ ★ ★ −I

⎤

⎥

⎥

⎦

< 0. (18)

Left and right multiplying (18) by diag

([√
2

2 (I −A) 0

−
√

2
2 K I

]

, I , I

)

and

its transpose and using (16), the continuous-time ARI (6) can be
derived. Note that ARI (6) is related to generalized controllability
Gramians for our continuous uncertain systems. This derivation
illustrates the connection between our continuous-time results and
those in [11] for discrete-time systems, and provides a different
perspective on our balanced truncation approach.

V. H∞ MODEL REDUCTION

As shown in [24, Theorem 4.20], for a nominal system without
uncertainties, generalized Gramians can be used to characterize H∞
model reduction problems; see also the original paper [5]. This is also
true for our uncertain system (1), as stated in the followingtheorem.

Theorem 15:Given a robustly stable uncertain system (1), there
exists a reduced dimension uncertain system defined byMr =
⎡

⎣

Ar Er Br

Kr Dr11 Dr12
Cr Dr21 Dr22

⎤

⎦ of order d such that sup
∆∈∆∆∆c

∥Fu(M,∆) −

∆

∆

M̃

Mr

(a) Original configuration.

∆

∆

M̃

Mr

(b) Equivalent configuration.

Fig. 2. LFT configuration.

Fu(Mr ,∆)∥∞ < ε, if there existS> 0,P> 0,Λc ∈PΘPΘPΘ,Λo ∈PΘPΘPΘ solving
Riccati inequalities (6), (7) and satisfying

Λo ≥ ε2Λc, λmin(SP) = ε2, rank(SP− ε2In)≤ d. (19)

Proof: Let Mr =

[

Mr11 Mr12
Mr21 Mr22

]

and define

M̃ =

⎡

⎣

M11 M12 0
M21 M22 −I

0 I 0

⎤

⎦=

⎡

⎢

⎢

⎣

A E B 0
K 0 G 0
C D 0 −I
0 0 I 0

⎤

⎥

⎥

⎦

.

Then the configuration of the error systemFu(M,∆)−Fu(Mr ,∆) is
shown in Fig. 2(a), which is equivalent to the one shown in Fig.

2(b) for Mr =

[

Mr22 Mr21
Mr12 Mr11

]

. Now the result of the theorem can

be proved by using [26, Theorem 5.1] for an equivalent LPVH∞
synthesis problem.

Remark 16:Note that (6), (7) and (19) are equivalent to (11), (12)
and the conditions below,
[

Λo εIh
★ Λc

]

≥ 0,

[

S εIn
★ P

]

≥ 0, rank

[

S εIn
★ P

]

≤ n+d. (20)

Those are referred to as rank constrained LMIs and can be solved by
LMIRank [27].

VI. LQG BALANCED TRUNCATION

The balanced truncation andH∞ model reduction techniques
introduced above require uncertain systems be robustly stable. An
LQG balanced truncation approach, taking into accountclosed-loop
control considerations, was presented in [6] to overcome the stability
requirement for LTI systems. In this section, we apply this approach
to the uncertain system (1).

Suppose that the uncertain system (1) is robustly stabilizable and
detectable. Consider the following LQG control and filter Riccati
inequalities for the uncertain system (1), for all∆ ∈∆c∆c∆c,

W(A∆ −B∆R
−1

∆ D
∗
∆C∆)+(A∆ −B∆R

−1
∆ D

∗
∆C∆)

∗W

−WB∆R
−1

∆ B
∗
∆W+C ∗∆ R̃

−1
∆ C∆ < 0, (21)

(A∆ −B∆R
−1

∆ D
∗
∆C∆)V +V(A∆ −B∆R

−1
∆ D

∗
∆C∆)

∗

−VC ∗∆ R̃
−1

∆ C∆V +B∆R
−1

∆ B
∗
∆ < 0, (22)

whereR∆ = I +D ∗
∆D∆, R̃∆ = I +D∆D

∗
∆.

It is shown that LQG control and filter algebraic Riccati equations
or inequalities are closely related to coprime factorization problems
[8], [25] and some specialH2 control problems [28], [29]. In what
follows, we will establish these connections and provide a numerical
approach to obtain solutions to Riccati inequalities (21) and (22).



Motivated by [29], [28], the filter Riccati inequality (22) is related
to an output injectionH2 problem. This problem involves finding an
observer gainL, such that∥F l (GOI∆,L)∥H 2

< γ with a givenγ > 0.

Here2 GOI∆ =

⎡

⎣

A∆ [0 B∆] I
I [0 0 ] 0
C∆ [I D∆] 0

⎤

⎦, and the state space description

is

GOI∆ :

⎧















⎨















⎩

ẋ= Ax+Eξ+Bu2+w,

z= Kx+Gu2,

y= x,

p=Cx+Dξ+u1,

ξ = ∆z, ∆ ∈∆c∆c∆c.

(23)

Now apply Proposition 8 toGOI∆ with w = Lp. That is, make the
following substitution in (11),

A+LC→ A, E+LD → E, [L B]→ B, [0 G]→ G. (24)

Defining variablesS=S−1, Λc =Λ−1
c , Y =SL, we have the following

result.
Theorem 17:If matricesS> 0, Λc ∈ PΘPΘPΘ andY ∈ Rn×l solve the

following LMI:
⎡

⎢

⎢

⎣

(1,1) SE+Y D Y SB+K∗ΛcG
★ −Λc 0h×l 0h×m
★ ★ −Il 0l×m
★ ★ ★ −Im+G∗ΛcG

⎤

⎥

⎥

⎦

< 0, (25)

where (1,1) = A∗S+SA+YC+C∗Y∗ +K∗ΛcK, then S
−1

satisfies
(22).

Proof: By Proposition 8, the solutionSto (11) satisfies Lyapunov
inequality (4). Since (25) is derived by substituting (24) into (11), the
solutionS to (25) satisfies

(A∆ +LC∆)S
−1

+S
−1

(A∆ +LC∆)
∗

+[L B∆ +LD∆][L B∆ +LD∆]
∗ < 0,

which is equivalent to

(A∆ −B∆R
−1

∆ D
∗
∆C∆)S

−1
+S

−1
(A∆ −B∆R

−1
∆ D

∗
∆C∆)

∗

−S
−1
C ∗∆ R̃

−1
∆ C∆S

−1
+B∆R

−1
∆ B

∗
∆

+(R̃∆YS
−1

+C∆S
−1

+D∆B
∗
∆)

∗R̃ −1
∆ (R̃∆YS

−1
+C∆S

−1
+D∆B

∗
∆)< 0.

This implies thatS
−1

satisfies (22).
The following result on the control Riccati inequality (21)can be

obtained similarly.
Theorem 18:If matricesP> 0,Λo ∈PΘPΘPΘ and X ∈ Rm×n solve the

LMI:
⎡

⎢

⎢

⎣

(1,1) PK∗+X∗G∗ X∗ PC∗+EΛoD∗

★ −Λo 0h×m 0h×l
★ ★ −Im 0m×l
★ ★ ★ −Il +DΛoD∗

⎤

⎥

⎥

⎦

< 0, (26)

where (1,1) = AP+PA∗ +BX+X∗B∗+EΛoE∗, then P−1 verifies
(21).

Note that solutions to LMIs (25) and (26) are not unique. A possi-
ble heuristic is, taking (25) for example, to solve the following SDP

problem: minimizetrace(Z), subject to (25) and

[

Z In
In S

]

> 0; see

e.g. [25]. We now summarize the proposed LQG balanced truncation
algorithm as follows.

Procedure 19 (LQG Balanced Truncation):

2This expression is a slight abuse of notation for state spacerealizations
since hereA∆, B∆, C∆, andD∆ are operators.
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(c) H∞ model reduction
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(d) LQG Balanced truncation
Fig. 3. H∞-norm of the error system.

1) ObtainSandP by solving LMIs (25) and (26) or the associated
SDP problems, and letS= S

−1
,P= P−1;

2) Follow Steps 2-4 in Procedure 11.



VII. E XAMPLE

Consider the following uncertain system of the form (1) with∆ =
δ ∈ [−1,1], and

A=

⎡

⎣

−1 0 0
1 −2 0
0 1 −3

⎤

⎦ , E =

⎡

⎣

0.1
0.1
0.1

⎤

⎦ , B=

⎡

⎣

1
1
1

⎤

⎦ ,

K =C= [1 1 1], G= 1, D = 0.1. (27)

Following the balanced truncation procedure in Section IV,the bal-
anced Gramian isΣ = diag(2.1728,0.0319,0.0017). A natural choice
in model reduction would be to truncate the last 2 states. Figure
3(a) shows the actualH∞-norm of the error system, and the dashed
line indicates the error bound given by (14) as sup

δ∈[−1,1]
∥G∆(s)−

G r∆(s)∥∞ ≤ 0.0672. If different uncertainties are allowed, letting
∆1 = δ1,δ1 ∈ [−1,1], Figure 3(b) shows the actualH∞-norm of the
error system as a function ofδ, δ1. The error bound is given by (15)
as sup

δ,δ1∈[−1,1]
∥G∆1(s)−G r∆(s)∥∞ ≤ 22.8896.

Now, we apply theH∞ model reduction algorithm in Section V
to the uncertain system (27), with comparison to the technique in
[15]. The LMIRank solver [27] is used to solve the associated
rank constrained LMI problems. Forε = 0.04, the solid line and
the dotted line in Figure 3(c) show the results by our method and
[15] respectively, and the dashed line is the upper boundε = 0.04.
The result using [15] is slightly better than ours. However,this is at
the expense of solving more matrix inequalities at all vertices of the
underlying polytope.

Finally, the LQG balanced truncation algorithm in Section VI is
applied to the uncertain system (27); see the result in Figure 3(d).
We remark here that, as introduced in Sections I and VI, LQG
balanced truncation is a model reduction method in theclosed-loop
sense. Therefore, theopen-loopresults (i.e. no controllers involved)
in Fig. 3 should not be interpreted as that LQG balanced truncation
is outperformed by the other two methods; see [6] for more details.

VIII. C ONCLUSIONS

In this paper Gramian-based approaches to model reduction for
a class of uncertain systems with norm bounded structured uncer-
tainty are presented. We introduce notions of controllability and
observability Gramians in terms of certain parameterized algebraic
Riccati inequalities. This enables us to develop a series ofmodel
reduction methods for uncertain systems, namely, balancedtruncation
and H∞ model reduction for robustly stable uncertain systems, or
LQG balanced truncation for uncertain systems which are notrobustly
stable.
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