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VirtualButcher: Coarse-to-fine Annotation Transfer of Cutting Lines
on Noisy Point Cloud Reconstruction
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Abstract—Robotics and automation are rapidly becoming part
of meat processing operations. Current automation of breaking
down a carcass into primals relies on guidance from X-ray, inter-
connected with robotised band-saws. While yielding very accurate
cutting lines, the use of vision systems for guidance would be
significantly more affordable. This work proposes a novel method
that solves the annotation transfer between a 3D noise-free cut-
ting line annotated on a CT acquired canonical model and a noisy
target in the form of a point cloud acquired by RGB-D cameras.
The proposed coarse-to-fine method initially aligns the posture
of each body using a non-rigid deformation algorithm and then
performs a local search to solve the surface correspondence which
is later used to morph the template non-rigidly. We quantitatively
assess the approach by benchmarking with multiple state-of-the-
art algorithms on a public available human pose dataset. We also
present a proof of concept evaluation on lamb carcasses.

Keywords: annotation transfer, skeletonization, non-rigid de-
formation, cutting lines, RGB-D cameras.

I. INTRODUCTION

Abattoirs are moving the processing of lamb carcasses
towards automation, which allows for faster, precise, and effi-
cient processing [1]. While improving the carcass value, this
also reduced human contact with carcasses. In particular, in the
context of the cutting of the carcasses, the automation allows
eliminating potentials hazards to meat process workers [2].

The current automation of cutting carcass primals relies on
technology such as X-ray or DEXA [1] to guide the blades
which perform the cuts. While providing a very accurate
guideline for the process automation, these systems are ex-
pensive to set up and require heavy infrastructures to protect
the workers from radiations.

This paper argues that an affordable and non-invasive sys-
tem using off-the-shelf 3D sensors can be built as a good
alternative to such systems. Our proposed algorithm consider
the 3D reconstruction from RGB-D cameras [3] of a lamb
carcass as an input and can predict the cutting lines that should
be followed by a rotary band-saw. The integration of such a
system in an industrial process would then require minimal
modifications to a production line.

The automation of finding where to cut a carcass can
be obtained by solving the annotation transfer between an
annotated template and the 3D reconstruction of a carcass that
needs to be cut. This paper proposes a robust coarse-to-fine
systematic approach for morphing a template into a target (and
subsequently solving the annotation transfer). We show that,
if possible, decomposing the morphing as a two-step process
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Fig. 1: Overview of the proposed approach: the template and
target skeletonization are used for a coarse alignment. The
annotation transfer is then solved by morphing the template
into the target.

by firstly aligning the posture of the template with the target
and then tackling the surface alignment as a local search gives
better performance than more general state-of-the-art methods
of surface correspondence. The algorithmic contributions of
this paper are an improved deformation method that builds
upon embedded deformation (ED) [4] and a correspondences
filtering method inspired by as-rigid-as-possible (ARAP) de-
formation [5]. An overview of the proposed approach is shown
in Fig. 1.

II. METHOD

Let us assume a noise-free mesh as a template S1 and a
noisy point cloud or a mesh, acquired by RGB-D cameras and
a 3D reconstruction algorithm [3], as a target S2. To simplify
the complexity of the problem, we decompose our approach
in two parts: A) a robust prior is first obtained by aligning the
posture of both shapes, and B) surfaces are then aligned by
performing a local search between both surfaces.

A. Coarse posture alignment

The aim of this first part is to find a good prior for the
surface matching by aligning the posture of both shapes. In
this section, a skeleton-like is extracted from both shapes S1
and S2. Several features nodes from the skeletons are then
selected and associated. These associations are then finally
used to align both shapes using a non-rigid deformation.

1) Skeleton extraction: The skeleton of a 3D surface is a 1D
curvilinear structure that describes its essential topology. The
skeletonisation method used here follows [6] for the template
(mesh skeletonisation), and [7] for the targets (pointcloud



Fig. 2: Skeleton extraction and matching between the template
and a target (with the template on the left, and the noisy target
on the right). The two skeletons are matched using Eq. (3).

skeletonisation). The mean curvature flow (MCF) skeletoniza-
tion gets as input the mesh Si and produces a skeleton Qi
which is defined as a set of nodes and a set of edges that
connect nodes together. As shown in Fig. 2, the MCF skeleton
has a close correspondence with the biological skeleton (which
was obtained using computerized axial tomography (CT)).

2) Skeleton feature nodes association: After the skele-
tonization step, we perform a pairwise association between
feature nodes. From all the vertices of the skeleton, the set of
feature nodes is defined by both terminal nodes and junction
nodes. The terminal nodes correspond to the extremity of the
skeleton (in red in Fig. 2) and the junction nodes correspond
to the nodes linking several branches of the skeleton (in green
in Fig. 2). The set of junction nodes Ji is defined as:

Ji = {ai,1, ...,ai,n} | ai,j ∈ Qi and κ(ai,j) ≥ 3, (1)

and the set of terminal nodes Ti as:

Ti = {ai,1, ...,ai,m} | ai,j ∈ Qi and κ(ai,j) = 1, (2)

where κ(.) is the connectivity, n is the cardinality of Ji, m
is the cardinality of Ti, ai,j ∈ R3 are vertices of the skeleton
Qi (in the following part of the paper we refer to feature
nodes Ai that are either junction nodes or terminal nodes).
Thereafter, skeletons are matched by defining a set of pairwise
associations for every node. We build the exhaustive set of
possible feature correspondences between T1 and T2 alongside
with the combinations of J1 and J2 and trim all the impossible
combinations where a node would be associated twice. After-
ward, we exhaustively search for the set of correspondences
that minimizes

argmin
R,p

n+m∑
l=1

‖(R a1,l + p)− a2,l‖2 , (3)

with R ∈ SO(3) and p ∈ R3 respectively the rotation and
the translation that minimize the distance between the set of
feature nodes {(a1,1,a2,1), ..., (a1,n+m,a2,n+m)}. The set of
pairwise associations with the smaller residuals in Eq. (3)
is then selected as the final pairwise correspondences of the
skeleton features. An example of the feature node association
is illustrated in Fig. 2.

Algorithm 1: Return N (g), the µ nearest neighbors
of g in G by exploring the mesh (V,F).
Input: V , F , G, g, µ
Output: N (g) s.t., |N (g)| = µ

1 function Search Neighbors
2 for i = 1 to |V| do
3 dist[i]← inf

4 Vvisited ← ∅, Vto visit ← ∅, N (gi)← ∅
5 current ← index of g in V
6 dist[current] ← 0
7 nodes found ← 0
8 while nodes found 6= µ do
9 foreach vj ∈ N (vcurrent) do

10 if vj /∈ (Vvisited ∪ Vto visit) then
11 Vto visit ← Vto visit ∪ vj

12 d← ‖vj − vcurrent‖2
13 if dist[j] > dist[current]+d then
14 dist[j]← dist[current]+d

15 Vvisited ← Vvisited ∪ vcurrent
16 if vcurrent ∈ G then
17 nodes found ← nodes found +1
18 N (g)← N (g) ∪ vcurrent

19 current← argmin(dist(Vto visit))
20 Vto visit ← Vto visit \ vcurrent

21 return N (g)

3) Non-rigid deformation: Once the skeleton feature nodes
have been associated, the template S1 is deformed to match
the posture of the target S2 using a modified version of ED [4]
algorithm. In brief, ED performs the non-rigid deformation by
optimizing a deformation graph (G, E) which is defined as an
undirected graph with nodes set G = {g1, . . . , gν} (the nodes
are sampled from v1) and edge set E ⊆ G × G. The mesh
vertices are then updated w.r.t. the nodes of the deformation
graph in their neighborhood.

Our approach differs from the method proposed by Sumner
et al. [4] in the building process of the deformation graph.
In [4], the set E is built by searching the µ closest point of each
node using a K-NN search. However, the use of the Euclidean
distance can lead to ill-connected deformation graph (e.g., ,
the legs of an animal could be constrained in the deformation
if the feet are too close). In our case, as the template is defined
as a mesh, we can build the edges of the graph by using the
geodesic distance. To do so, we search the neighbors of each
node in a Dijkstra-style fashion by using the original mesh as
the space to explore1.

The formal definition of our proposed search method is
given in Algorithm 1. This differs from the Dijkstra algo-
rithm [8] in the sense that we explore the graph until µ nodes

1A consequence of the search being performed on S, is that G has to be a
subset of V and not a simple topological approximation of the shape (which
would be the case for voxel grid downsampling).



are found, and we do not keep track of the path as it is
not relevant here. One might argue that the exact geodesic
distance [9] or an approximation of this distance such as heat
kernel distances [10] should be used instead. However, after
empirical evaluation of both methods, we concluded that the
former is too costly from a computational point of view, and
the latter can yield outliers.

Once the modified deformation graph is created, we search
the set of local rotations Rd

j ∈ R3×3 and local translations
pdj ∈ R3 for every node gj of G. An energy function that
accounts for the pairwise distance between features nodes
Econ, the rotation Erot, and the regularization Ereg is defined
as:

argmin
Rd

1 ,p
d
1 ,...,R

d
ν ,p

d
ν

wconEcon + wrotErot + wregEreg + wrigErig

(4)
with Econ defined with the skeleton feature nodes such as

Econ =

n+m∑
l=1

‖a1,l − a2,l‖22 . (5)

Erot adds the errors of all the rotations matrices and is defined
similarly to [11] as

Erot =

ν∑
j=1

∥∥∥Rd
j

T
Rd
j − I

∥∥∥2
F
. (6)

The regularization term prevents divergence of the neighboring
nodes exerts on the overlapping space,

Ereg =

ν∑
i=1

µ∑
j=1

∥∥Rd
j (gi − gj) + gj + pdj − (gi + pdi )

∥∥2
2
.

(7)
Similarly to Chen et al. [11], we add an additional regulariza-
tion term Erig on the bridges in the deformation graph defined
as

Erig =
∑

(j,k)∈Eb

∥∥∥Rd
j

T
Rd
k − I

∥∥∥2
F
, (8)

with Eb, the set of bridges present in the deformation graph
(found using depth-first search (DFS) [12]).

The energy function described in (4) is then minimized with
a Levenberg-Marquardt optimization. Once the new position
of the deformation graph nodes is known, the vertices of S1
are updated using

v∗i =

µ∑
j=1

wj(vi)[R
d
j (vi − gj) + gj + pdj ], (9)

with the neighbor’s nodes gj from vi found using Dijkstra-
like search over the manifold. The weight for each vertex is
defined as

wj(vi) = (1− ||vi − gj ||/dmax), (10)

where dmax is the maximum distance of the vertex to µ + 1
nearest node from G.

Following the example from Fig. 2, the result of posture
alignment is shown in Fig. 3. As suggested by Eq. (9), ED

(a) (b)

Fig. 3: In (a), the template and the target are displayed with
the skeletons pairwise associations. In (b), the template with
corrected posture is superimposed on the target.

(a) (b)

Fig. 4: In (a), the template and the target meshes are displayed
with the associations of the surfaces. In (b), the morphed
template is superimposed on the target.

works directly on the vertices. As a result, the transformation
of S1 into S∗1 updates the vertices position such that S∗1 =
{V∗1 ,F1}.

B. Dense surface alignment

The second part of the surface morphism consists of align-
ing the surface of S∗1 and S2. Once the posture is aligned, this
task is equivalent to inflating or deflating the surface of S∗1 to
match S2.

1) Dense surface point association: A local search is
performed for the surface vertex association by considering
the similarity of the normal orientation with a regularization
term on the distance between the vertices.

More formally, the normals o∗1,j ∈ O∗1 and o2,j ∈ O2 are
first computed for the vertices of S∗1 and S2 respectively. Then,
a set of points is selected by subsampling V∗1 and for each
vertex v∗i of this subset we find the vertex in V2 that satisfies
the following relation:

v2 = argmin
j

(
λ ‖v∗i − vj‖2 − o∗i .oj

)
. (11)

To reduce the complexity of the search, we transform V2
into a Kd-tree and evaluate Eq. (11) over a subset of the closest



TABLE I: Comparison of our approach with state-of-the-art methods. The maximum error for a variety of noise values is
reported (in m). The relative volume and surface area of annotated body part are used as a benchmark.

average
max error
σ = 0mm

average
max error
σ = 2mm

average
max error
σ = 4mm

average
max error
σ = 8mm

average
max error
σ = 16mm

relative
volume
RMSE

relative
surface
RMSE

computation
time (s)

FMaps [13] 1.45 1.54 1.57 1.59 1.70 0.33 0.48 43.12
FMaps + slanted [14] 0.76 0.79 0.82 1.33 1.71 0.52 0.40 25.08

FMaps + structured [15] 0.79 0.79 1.06 1.47 1.70 0.36 0.39 36.52
FMaps + BCICP [16] 0.28 0.28 0.30 0.32 0.37 0.31 0.10 562.63
Kernel Matching [17] 1.06 1.05 1.08 1.03 1.24 0.56 0.62 141.00

proposed method 0.08 0.09 0.09 0.11 0.11 0.14 0.09 64.96

points. We then stack the dense surface association into two set
Ad1 and Ad2. An example of the surface pairwise associations
is shown in Fig. 4(a).

2) Association filtering: Given the crude definition of
Eq. (11), we propose a filter that can trim the associations.
Our filter is inspired by the ARAP deformation method [5]
and aims to trim a set of associations (Ad1,Ad2) to minimize
the ARAP residuals. Our method is as follows: a) A graph
is built on the template from the nodes Ad1 and connected to
their k closest points, this gives us a graph G1 = {Ad1, Ed1 }.
b) We then transfer the edges Ed1 on the target to generate the
following graph G2 = {Ad2, Ed1 }. c) The local rigidity residuals
terms are then computed as

r(i)=
∑

j∈N (i)

∥∥∥(a2,i 9 a2,j) 9 R̂i(a1,i 9 a1,j)
∥∥∥2 1

‖a1,i 9 a1,j‖2

(12)
where the right part of the equation makes it scale invariant,
and d) we then trim the association with the highest residual.
This procedure is repeated iteratively until the following
termination criterion is met: max(r) < mean(r) + 2 ∗ std(r).

3) Surface non-rigid deformation: Given these point as-
sociations, the non-rigid deformation is then performed by
applying the method described in Section II-A3 by replacing
the Econ by Eplane, to minimize the point to plane distances.
The cost function optimized is then defined as follow:

E = wplaneEplane +wrotErot +wregEreg +wrigErig (13)

with Eplane defined as

Eplane =

n+m∑
l=1

‖oj .(vi − vj)‖2 . (14)

The output of S∗∗1 = {V∗∗1 ,F1} is shown in Fig. 4(b).

III. EXPERIMENT

A. controlled evaluation

In this section, we present a quantitative evaluation by
benchmarking the proposed approach alongside with [13],
[14], [15], [16], [17] on the FAUST dataset [18] which
provides 3D meshes of ten people posing in a variety of
different postures.

The evaluation on the FAUST dataset is performed by
considering all the poses which have less than two axes of
symmetry (with respect to the skeleton) as shown in Figure 5.

(a) pose 1 (b) pose 2 (c) pose 3

Fig. 5: Samples from the FAUST dataset, used for evaluation.
While having similar poses, there are differences in term of
shape and scale. A Gaussian noise is added to the surface to
emulate a realistic scenario.

The first actor in the dataset is chosen as the template,
and all the other actors are set as targets, repeating these
experiments for six different postures with a range of different
noise added over the surface (in total, our experiment results
in 270 different scenarios). In order to simulate the noise
generated by RGB-D cameras, we move each vertex by a
random distance d ∼ N (0, σ2) in the direction of the vertex
normal, with σ chosen from the range {0, 2, 4, 8, 16} (in mm).
The maximum errors of the shape correspondence between the
morphed shape and the ground truth are reported in Table I
(we report the mean value of the maximum error over the
270 different scenarios). As an additional evaluation criterion,
we also consider the relative RMSE of the volumes after
slicing the 3D shapes based on the annotation transfer with
σ = 8mm for the legs, arms, and torso. The computation
time, obtained using a processor Intel i7-4771 - 3.50Ghz, is
intended to give an order of magnitude of the computational
complexity. However, no particular effort was spent towards
code optimisation such as parallelism in our proposed method.

B. Field experiment

The figures used in the methodology show the matching
between a template collected using CT and reconstructed using
itk-snap [19] and a target reconstructed using a dedicated rig
equipped with Primesense RGB-D camera [3].

The proposed approach is further validated using recon-
structed meshes from CT data. Four lamb carcasses recon-



Fig. 6: Example of annotations transfer and virtual cutting.
The template (a) is manually annotated. The template is then
morphed into the targets (b, c, and d) and the annotation is
then used for virtual cutting.

struction where manually annotated by an expert using CT data
as a guideline. The annotations shown in Fig. 6 separate the
carcasses above the ilio-sacral junction, between the 12th and
the 13th ribs, and between the 4th and 5th ribs (these cuts are
used in industrial processes [1]). Our method has an average
relative accuracy of 93.9% on the volumes of the parts when
compared to the ground truth.

IV. DISCUSSION

This paper proposes a method for automatically aligning,
morphing, and solving the annotation transfer between two
shapes (meshes or point clouds), while handling differences
in shape, scale, and rotation. Given an annotated template,
this method allows transposing the annotations to a multitude
of other targets robustly. The performances of the proposed
method are evaluated on two datasets using FAUST [18]
for benchmarking our approach with state-of-the-art methods.
Further evaluation is performed on carcasses reconstructed
from CT and RGB-D data.

Given that our proposed method divide the problem of
shape correspondence into a coarse alignment followed by a
refinement method, a good generalisation for different breeds
of lambs should be expected (i.e., there are no reason why the
skeleton extraction, nor the refinement step would fail). How-
ever, this has not been thoroughly tested in our experiment,
which solely contain crossbred lambs from the MLA Resource
Flock [?].

The proposed method can solve detecting cutting lines on
lamb carcasses. To fully automate cutting of carcass primals,
two further works are required. First, a reprojection of the
cutting lines in 3D space would be needed. Secondly, the
proposed perception system would have to be linked with the
control of the robotic arm handling the band-saw. While the
former would be trivial, given 3D cameras information, the in-
tegration with a robotic arm is more challenging as it requires
the fusion of the perception and the control algorithms.
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