
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.”

Graph Compression Networks
Ting Guo∗, Xingquan Zhu†, Yang Wang∗, Fang Chen∗

∗Data Science Institute, University of Technology, Sydney, Australia
†Dept. of Electrical Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL USA

{ting.guo, yang.wang, fang.chen}@uts.edu.au, xzhu3@fau.edu

Abstract—Graphs/Networks are common in real-world appli-
cations where data have rich content and complex relationships.
The increasing popularity also motivates many network learning
algorithms, such as community detection, clustering, classifica-
tion, and embedding learning, etc.. In reality, the large network
volumes often hider a direct use of learning algorithms to the
graphs. As a result, it is desirable to have the flexibility to
condense a network to an arbitrary size, with well-preserved
network topology and node content information. In this paper, we
propose a graph compression network (GEN) to achieve network
compression and embedding at the same time. Our theme is
to leverage the network topology to find node mappings, such
that densely connected nodes, including their node content, are
compressed as a new node, with a latent vector (i.e. embedding)
being learned to represent the compressed node. In addition to
compression learning, we also develop a novel encoding-decoding
framework, using feature diffusion process, to ”decompress” the
condensed network. Different from traditional graph convolution
which uses direct-neighbor message passing, our decompression
advocates high-order message passing within compressed nodes
to learning feature representation for all nodes in the network.
A unique strength of GEN is that it leverages the graph neural
network principle to learn mapping automatically, so one can
compress a network to an arbitrary size, and also decompress it
to the original node space with minimum information loss. Ex-
periments and comparisons confirm that GEN can automatically
find clusters and communities, and compress them as new nodes.
Results also show that GEN achieves improved performance
for numerous tasks, including graph classification and node
clustering.

Index Terms—Graph compression, graph neural networks,
pooling, graph classification, node clustering

I. INTRODUCTION

Graph-structured data appears in many fields, such as social
networks, citation networks, knowledge graphs, telecommu-
nication networks, and biological networks [1]. For these
application domains, graphs commonly exist into two forms:
(1) one single large network, consisting of many nodes and
relationships, such as social networks or citation networks [2];
and (2) many small networks/graphs, each having a rather
small number of nodes (e.g., less than 100 nodes), such as
chemical compounds [3]. For the former, the algorithms are
commonly designed in a transductive learning setting [4]–[6],
where nodes (including their connections) are observed and the
learning objective is to cluster nodes into groups or classify
nodes into predefined classes. For the latter, the algorithm
designs are often based on an inductive learning setting [7]–
[9], where some training graphs are given, and the objective
is to classify or cluster previously unseen test graphs.

Recently, the emerging graph neural network based rep-
resentation learning has motivated a graph pooling design
for two purposes: (1) discovering coherent node groups in
graphs, and (2) reduce the computational costs in large
graphs [10], [11]. Such graph pooling mechanisms largely
fall into two broad categories: adaptive and topological. The
adaptive pooling, such as DIFFPOOL [12], relies on a trainable
parametric pooling mechanism, where a parameterized neural
layer is used to learn a clustering of the current nodes based
on their embeddings at the previous layer. Such clustering
is realized by means of a graph neural network (GNN)
layer, followed by a softmax to obtain a soft-membership
matrix associating nodes to clusters. However, similar to
GNN, the clustered nodes only consider direct neighbors for
embedding/assignment tasks without considering the high-
order topological structure of the graph. Besides, DIFFPOOL
is a task-dependent method that cannot deal with unsupervised
tasks. Topological pooling, on the other hand, is non-adaptive
and typically leverages the structure of graph itself as well as
its communities. Note that, being non-adaptive, such mech-
anisms are not required to be differentiable [13], [14], and
their results are not task-dependent. Hence, these methods are
potentially reusable in multi-task scenarios [15]. However, if
the graph has some nodes with a low degree, the spectral based
clustering/partition methods may misclassify those nodes [16],
[17].

The above challenges motivate our research to design graph
compression networks (GEN) to assign nodes into soft clusters
by using a novel two-layer neural network architecture, where
the final output of this two-layer model is the trainable weights
(a soft assignment matrix). The compression and embedding
combined design allows GEN to be applied in a hierarchical
and end-to-end fashion for graph representation learning. In
addition to compression learning, we also develop a decoder
network to reconstruct the original graph by using a feature
diffusion process within communities/clusters learned during
compression. By combining direct-neighbor and high-order
message passing embedings, GEN achieves better performance
for node representation learning, node clustering, and graph
classification. The novelty of the proposed work, compared to
existing research in the field, is threefold:

• Learning to Compression: We propose a unsupervised
two-layer neural network to learn a soft assignment ma-
trix, based on network topological structure, to compress
a network to any sizes, as shown in Fig. 1.

Fig. 1. The proposed GEN with soft assignment, where densely connected
nodes are compressed into a new node. A two-layer neural network (lower
panel) is developed to learn the assignment matrix Ŵ∆. A stacked multi-layer
GEN can condense a network to arbitrary sized network hierarchies.

• Compressed Network Embedding: The proposed com-
pressing module can be adapted to GNN architectures
in an end-to-end fashion, allowing for developing deeper
GNN models that can learn to operate on hierarchical
representations of a graph.

• Decompressed Network Embedding: We also pro-
pose a GEN-based encoder-decoder architecture to use
community-level feature-aggregation for accurate node
representation learning.

II. PROBLEM DEFINITION & PRELIMINARY

A. Problem Definition

An undirected connected attributed graph G = {V, E ,A,X}
consists of a set of nodes V with |V| = n nodes, a set of edges
E with |E| = m, the adjacency matrix A, and node attribute
matrix X . If there is an edge between node i and node j, the
entry Aij denotes the weight of the edge; otherwise, Aij = 0.
For unweighted graphs, we simply set Aij = 1.

For each node, its content (feature) is represented as a vector
x ∈ Rn, where xi denotes feature values of node i (Node
attributes, node content, and node features are equivalent terms
in this paper). Therefore, X ∈ Rn×d denotes the node attribute
matrix of the graph, and the columns of X are the d features
of the graph.

Given a graph G, graph compression networks aim to create
a compressed graph G′ with a fewer number of nodes than G,
such that G′ not only preserves topology and content informa-
tion of G, but also preserves performance for common graph
learning tasks, such as node clustering, graph classification,
etc.

B. Graph Neural Networks

In this work, we build upon graph neural networks (GNNs)
in order to learn both node-level and graph-level representation
in an end-to-end fashion. In particular, we consider GNNs that
employ the general ”message-passing” architectures:

Graph Convolutional Networks: Graph Convolutional Net-
works (GCNs) [4] are deep neural networks that achieve
promising generalization in various tasks. At layer i, taking

graph adjacency matrix A and hidden representation matrix
H(i) as input, each GCN module outputs a hidden represen-
tation matrix H(i+1), which is described as:

H(i+1) = ReLU(D̂− 1
2 ÂD̂− 1

2H(i)W (i)) (1)

where H(0) = X , ReLU(a) = max(0, a), adjacency
matrix with self-loop Â = A+I (I is an identity matrix), D̂ is
the degree matrix of Â, and W (i) is a trainable weight matrix.
Then the output node embedding Z = H(K) and (K + 1) is
the number of layers in the network architecture.
Graph Auto-Encoders: Graph auto-encoders (GAEs) [18]–
[20] aim at mapping (encoding) each node to a vector from
which reconstructing (decoding) the graph should be possible.
More precisely, the node embedding matrix Z is usually the
output of a graph neural network (GNN) [21], [22] processing
A. To reconstruct the graph, GAE stacks an inner product
decoder to this GNN, resulting in Ā = σ(ZZ⊤), with σ(·)
denoting the sigmoid function: σ(x) = 1/(1+e−x). Therefore,
the larger the inner product Āij in the embedding, the more
likely nodes i and j are connected in G according to the
GAE. Weights of the GNN are trained by gradient descent
to minimize a reconstruction loss capturing the similarity of
A and Ā, usually formulated as a weighted cross entropy loss.

Variational graph autoencoder [18] (VGAE) extends the
variational autoencoder (VAE) [23] to graphs, by designing a
probabilistic model involving latent variables zi for each node
i ∈ V , interpreted as node representations in an embedding
space. The inference model, i.e. the encoding part of the VAE,
is defined as:

q(Z|X ,A) =

n∏
i=1

q(zi|X ,A) (2)

where q(zi|X ,A) = N (zi|µi, diag(σ
2
i)). Gaussian parame-

ters are learned from two GNNs, i.e. µ = GNNµ(X ,A),
with µ the matrix stacking up mean vectors µi; likewise,
logσ = GNNσ(X ,A). Latent vectors zi are samples drawn
from this distribution. From these vectors, a generative model
aims at reconstructing (decoding) A, leveraging inner prod-
ucts: p(A|Z) =

∏n
i=1

∏n
j=1 p(Aij |zi, zj), where p(Aij =

1|zi, zj) = σ(zTi zj). During training, GNN weights are tuned
by maximizing a tractable variational lower bound (ELBO) of
the model’s likelihood by gradient descent, with a Gaussian
prior on the distribution of latent vectors, and using the
reparameterization trick from [23]. Formally, for GAE, we
minimize the reconstruction error of the graph data by:

LR(Z) = Eq(Z|X ,A)[log p(A|Z)] (3)

while for VGAE, the loss function is:

LR(Z) =Eq(Z|X ,A)[log p(A|Z)]−KL[q(Z|X ,A)||p(Z)]
(4)

III. GEN: GRAPH COMPRESSION NETWORKS

In the following, we first describe the criterion to evaluate
the node compression quality, then we discuss how to learn a
soft assignment matrix using a neural network architecture.

Graph-compression assignment matrix: Give a graph G =
{V, E ,A,X}, we denote the learned cluster/community as-
signment matrix as M ∈ Rm×n, where m ≪ n. Each column
of M corresponds to one of the nodes and each row of M
corresponds to one of the clusters (C = {C1, C2, · · · , Cm}).
When each node can only be assigned to one cluster (i.e.
Mij ∈ 0, 1 and

∑m
i=1 Mij = 1), we call M a hard as-

signment matrix. While if each node can be partially assigned
to multiple clusters (i.e. 0 ≤ Mij ≤ 1 and

∑m
i=1 Mij = 1),

we call it a soft assignment matrix.
Ideally, optimal clusters/communities should ensure that

nodes in the same class are close to each other, i.e., nodes in
the same class should share more edges. Meanwhile, because
an increasing of nodes results in the increase of edges in
a cluster, we should consider the number of average edges
(cluster inter-connectivity) per node for each cluster. Based
on this property, we derive an evaluation criterion JC(m) for
a given graph G as follows:

JC(m) =
m∑

k=1

1

|Ck|
(

∑
Vi,Vj∈Ck

Aij) = tr(D−1
MMAM⊤) (5)

where DM ∈ Rm×m is the diagonal row sum matrix of M,
tr(·) is the trace of a matrix and | · | is the degree of nodes
in a given set1. We can easily observe that [D−1

MMAM⊤]ii
shows the cluster inter-connectivity for cluster Ci. And we
can also find that [MAM⊤]ij represents the intra-connectivity
between two clusters Ci and Cj (i ̸= j). So given an assignment
matrix M for graph G, we obtain not only the compressed
graph G′, but also the normalized compressed adjacency
matrix:

A′
ij =

{
0 if i = j

[D− 1
2

M MAM⊤D− 1
2

M]ij if i ̸= j
(6)

Accordingly, our goal is to find an optimal soft/hard as-
signment matrix with m clusters that can maximize JC(m)
as:

M∗ = argmax
M

tr(D−1
MMAM⊤) (7)

Learning the assignment matrix: To solve Eq. (7), we
develop a two-layer neural network to learn the assignment
matrix M∗. The two layer neural network shares a weight
matrix Ŵ∆ ∈ Rm×n, whose role is to determine the optimal
assignment of a node from its input space (with n nodes) to
a compressed network (with m nodes). Overall, the two layer
network is as follows:

H(0) = A, Ŵ∆·i = Softmax(W∆·i), H
(1) = Ŵ∆H

(0),

H(2) = D−1

Ŵ∆
(H(1)Ŵ⊤

∆),M∗ = Ŵ ∗
∆

(8)

where DŴ∆
∈ Rm×m is the diagonal row sum matrix of

Ŵ∆. The layers H(1) ∈ Rm×n and H(2) ∈ Rm×m share the
same trainable weight matrix W∆. Different from traditional
neural network, our final output (the optimal assignment

1For hard assignment, the degree here means the number of nodes in a given
set, while for soft assignment, the degree represent the sum of all portions of
nodes that have been assigned to the given set

matrix M∗) is the optimal weight matrix Ŵ∆. Because the
ith column of Ŵ∆ determines the assignment of the ith

node, which should follows a distribution with respect to the
compressed node space, we force the values in W∆ to be
positive and

∑m
i=1 W∆ij = 1 by applying softmax function on

each column of W∆. As a result, we optimize the following
loss function until convergence:

L0 = −tr(H(2)) (9)

Note that the output M∗ is a soft assignment matrix. To
obtain the corresponding hard assignment matrix M∗

h, we just
assign a node to the cluster with highest assignment possibility.
Specifically, [M∗

h]ij = 1 if [M∗]ij = MAX([M∗]·j) and
[M∗

h]ij = 0, otherwise.
Graph Compression Layer: Suppose that the soft assignment
matrix M has already been computed. The next task is to
compress the nodes in the same clusters as a new node. We
denote the original graph as G = {V, E ,A,X} and denote the
output compressed graph as G′ = {V ′, E ′,A′,X ′}. Given these
inputs, the GEN layer follows the layer-wise compression rule:

X ′ = σ(D−1
MMXW) (10)

In order to avoid changing the scale of the feature vectors,
we normalize M by multiplying it with D−1

MM, which cor-
responds to taking the average of neighboring node features.

By the introduction of a trainable weight matrix W in
Eq. (10), GEN can achieve structural compression and attribute
embedding at the same time. It is worth noting that W in
Eq. (10) and W∆ in Eq. (8) play different roles. W is the train-
able parameters aiming to optimize the output X ′, whereas
W∆ is not only the trainable parameters for minimizing loss
function L0 but also the output itself (Ŵ∆). The adjacency
matrix A′ for the compressed graph G′ can be generated by
applying Eq. (6).

IV. GEN FOR GRAPH REPRESENTATION LEARNING

The goal of graph representation learning is to use a
compact feature vector to represent the entire graph. Our theme
is to use GCN to learn node embedding, and then use GEN
to compress network as a vector, as shown in Fig. 2.

The first step of our model is to apply L1 GCN layers
to learn node embedding (Eq. (1)), so node representation
can indirectly capture topological information within its local
neighborhood. After that, we adapt stacked L2 GEN layers to
smoothly map the original graph to a denser one and eventu-
ally as a single node (a compact feature vector). Specifically,
we denote the input assignment matrix at layer l as M(l) and
denote the input node embedding matrix at this layer as Z(l).
As the adjacency matrix A(l) can be learned from M(l−1) and
A(l−1), the assignment matrix for different GEN layers can be
recursively generated one after another.

M(l)∗ = argmax
M(l)

tr(D−1
M(l)M(l)A(l−1)M(l)⊤),

A(l)
ij =

{
0 if i = j

[D− 1
2

M(l)M(l)A(l−1)M(l)⊤D− 1
2

M(l)]ij if i ̸= j
(11)

Fig. 2. The architecture of GEN-based graph representation learning for inductive graph classification. Given an input network, GEN first applies L1 GCN
layers for learning node embedding from local neighbors. After that, GEN learns assignment matrix to compress nodes, followed by one or more GEN layers
on the compressed graph. This process is repeated for L2 layers and the final output representation is used to classify the graph.

Given these inputs, the GEN layer follows the layer-wise
compression rule:

Z(l+1) = σ(D−1
M(l)M(l)Z(l)W (l)) (12)

For graph classification, all nodes at the final GEN layer L2

are assigned to a single node, generating a final embedding
vector corresponding to the entire graph. This final output
embedding can then be used as feature input to a differentiable
classifier (e.g., a softmax layer), and the entire system can be
trained end-to-end using stochastic gradient descent.

Permutation invariance: Note that in order to be useful for
graph classification, the GEN compression layer should be
invariant under node permutations. Let P ∈ {0, 1}n×n be
any permutation matrix, then the deformation of the input
graph G is GP where AP = PAP⊤ and XP = PX .
Based on Eqs.(7) and (8), the deformation of the optimal
assignment matrix is MP = MP⊤. And since permutation
matrix is orthogonal, applying P⊤ = I to Eq. (10), we have
MPXPW = MP⊤PXW = MXW . It proves that the GEN
layer is invariant as the normalization factor D−1

M does not
affect the permutation invariance.

V. GEN FOR NODE REPRESENTATION LEARNING

Similar to traditional GCNs, GENs approximate smooth
filters that can extract local features independently of the
graph size. But different from GCNs, which is a first-order
approximation of ChebNet [4], our GENs is a higher-order
convolutional method that aggregates feature information from
a learned cluster/community. We assume that the nodes in the
same cluster should be strongly correlated. As our compression
method is based upon a soft assignment, the nodes that near the
cluster boundaries tend to be assigned to multiple clusters and
will pass feature information crossing clusters, which better
fit the real situation. Therefore, GENs can be considered as
a high-order message passing process if we can restore the
original nodes with the compressed nodes’ representation. In
this section, we develop a GEN-based decoder layer that can
restore the original graph from the compressed one.

Fig. 3. GEN-based node representation learning.

Hierarchical GEN decoder layers: Given a compressed
graph G and its corresponding assignment matrix M, the GEN
decoder is as follow:

X ′ = σ(M⊤X) (13)

And in a stacked layer-wise form:

Z(l+1) = σ(M(l)⊤Z(l)) (14)

Integrate with graph compression Layers (GEN encoder lay-
ers), the overall framework of GEN encoder-decoder networks
are shown in Fig. 3 (the right panel). As mentioned before,

TABLE I
BENCHMARK NETWORK STATISTICS

Dataset # graphs # Nodes # Edges # Features # Classes

Cora 1 2,708 5,429 1,433 7
Citeseer 1 3,327 4,732 3,703 6
Pubmed 1 19,717 44,338 500 3

MUTAG 188 17.9 19.8 7 2
PTC 344 25.5 26 19 2

PROTEINS 1,113 39.1 72.8 3 2

TABLE II
THE PERFORMANCE OF PARTITION RESULTS ON FOOTBALL, CORA AND

CITESEER. NUMBERS IN PARENTHESIS DENOTE NUMBERS OF CLUSTERS.

Performance of partition
Methods Football (6) Cora (105) Citeseer (488)

AsynFluid 0.8628 - -
GreedyMod 0.8682 0.9271 0.9692

GEN 0.8781 0.9877 0.9969

the GEN encoder-decoder structure is a high-order smoothing
filter acting on bigger local areas comparing with GCN-based
methods. The size of the local area depends on the scale of
the compression defined by the size of the assignment matrix.
We will show the impact of the compression scale in the
experimental section.
GAE+GEN auto-encoder model: The model contains two
parts as shown in Fig. 3. The left panel is a GAE/VGAE
model with GCN convolutional encoder layers to learn the
first-order approximation by reducing the reconstruction loss
of A [18]. The right panel is a GEN encoder-decoder model to
learn high-order approximation by reducing the reconstruction
loss of X :

LG(Z) = MSE(Z,X) (15)

Different from GAE/VGAE, the output of GEN encoder-
decoder model is not the compressed intermediate result but
the output of the final GEN decoder layer. The final node
embedding Z is the concatenation of Z1 from the GAE/VGAE
and Z2 from the GEN encoder-decoder. For supervised
node representation learning tasks, the GAE/VGAE+GEN
model can be considered as a block. With stacking multiple
GAE+GEN blocks, the graph neural networks can go deeper
and capture even higher-order topological information within
and without its local neighborhood.

VI. EXPERIMENTS

A. Benchmark Networks

We use seven benchmark networks, as shown in Table I,
including three networks for graph classification and three
graph datasets for node clustering.

B. Network Compression Results

We investigate the extent to which GEN learns meaningful
node clusters/communities (M) by comparing it with the state-
of-the-arts community detection methods and visualizing the

cluster assignments as community detection. Note that, for
visualization purpose, we generate hard assignment matrix
from soft assignment matrix.
Baselines: We compare our algorithm against following base-
lines: AsynFluid [24]: the asynchronous fluids communities
algorithm is based on the simple idea of fluids interact-
ing in an environment, expanding and pushing each other.
GreedyMod [25]: it finds communities in graph using Clauset-
Newman-Moore greedy modularity maximization.
Metrics. The performance of a partition [16] is the ratio of the
number of intra-community edges plus inter-community non-
edges with the total number of potential edges. The number of
clusters is set as the results of GreedyMod, which provide the
partition number and partition sets at the same time. As the
initialization for the community detection methods is random,
we conduct each experiment 10 times and report the mean
values as the final scores.
Experimental Results. We observe significant improvement
in membership assignment quality with community detection
objectives as shown in Table II. As the asynchronous fluids
communities algorithm requires connected graphs, it cannot
deal with sparse graphs like Cora and Citeseer. Comparing
with GreedyMod, GEN-based node assignment method can
achieve more than 6% increased performance on Cora and
more than 3% on Citeseer, which means GEN performs
even better on sparse graphs. What is more, different from
GreedyMod, GEN can predefine the number of clusters, which
makes it suitable for further graph compression with different
sizes.

C. Graph Classification Results

Baselines. We use three public graph classification datasets
to evaluate GEN, and compare its performance with five
baselines. DCNN [26] adopts a diffusion-convolution op-
eration to learn a latent representation for graphical data.
GraphSage [8] with global mean pooling has enabled an
inductive capability for inferring unseen nodes or graphs by
aggregating subsampled local neighborhoods and by learning
in a mini-batch gradient descent fashion. GCN [4] is the
implementation of GCN with global mean pooling approach
for graph classification tasks. DIFFPOOL [12] adopts the end-
to-end training architectures for supervised graph classification
with differentiable pooling.
Metrics. We employ 10-fold cross-validation accuracy (Acc)
as the metrics to validate the graph classification results.
Experimental Results. The classification results on three
benchmark datasets are reported in Table IV. The results show
that GEN outperforms all other baselines, including graph
pooling based approaches, for graph representation based
classification.

D. Node Clustering Results

We investigate the extent to which GAE/VGAE+GEN
framework learns meaningful node representation comparing
to other node embedding methods. For node clustering task,

TABLE III
NODE CLUSTERING RESULT COMPARISONS ON CORA, CITESEER, AND PUBMED NETWORKS.

CORA CITESEER PUBMED
Methods Acc NMI ARI Acc NMI ARI Acc NMI ARI

k-means 0.493 0.337 0.241 0.389 0.173 0.106 0.573 0.291 0.221
Spectral Clustering 0.419 0.198 0.076 0.462 0.212 0.179 0.598 0.313 0.296

DeepWalk 0.513 0.378 0.269 0.362 0.097 0.032 0.601 0.168 0.103
GAE 0.657 0.431 0.306 0.574 0.227 0.139 0.562 0.230 0.181

VGAE 0.670 0.412 0.340 0.553 0.184 0.123 0.541 0.251 0.212
ARVGA 0.672 0.427 0.305 0.544 0.260 0.211 0.597 0.238 0.197

GAE+GEN 0.690 0.459 0.372 0.616 0.382 0.243 0.623 0.304 0.289
VGAE+GEN 0.698 0.473 0.384 0.610 0.327 0.204 0.618 0.335 0.312

TABLE IV
GRAPH CLASSIFICATION ACCURACY ON MUTAG, PTC, AND PROTEINS.

10-fold Cross-validation Accuracy
Methods MUTAG PTC PROTEINS

DCNN 0.672 0.568 0.579
GraphSage 0.656 0.372 0.703

GCN 0.723 0.538 0.721
DIFFPOOL 0.741 0.556 0.733

GEN 0.764 0.576 0.754

Fig. 4. Node clustering results with respect to different GEN compression
ratios for testing VGAE+GAE framework. An α% (x-axis) value means the
number of clusters being set as α% of the number of nodes of the input
network.

we first learn node embedding, and then perform k-means
clustering using the node embedding results.
Baselines. We compare our algorithm against following base-
lines: k-means is a classical method and also the foundation
of many clustering algorithms. Spectral Clustering: [27] is an
effective approach for learning social embedding. DeepWalk:
[28] is a network representation approach which encodes
social relations into a continuous vector space. GAE/VGAE:
[18] are (variational) autoencoder-based unsupervised frame-
works for graph data, which naturally leverages both topo-
logical and content information. And ARVGA: [29] is an
adversarially regularized variational graph autoencoder for
learning the node embedding.
Metrics. We employ three metrics to validate the clustering
results: Clustering accuracy (Acc), Normalized Mutual Infor-
mation (NMI), and Average Rand index (ARI).
Experimental Results. The node clustering results in Table III
show that by incorporating the high-order weighted feature

aggregation, GAE/VGAE+GEN achieves best performance on
all three metrics. For instance, on Cora, VGAE+GEN has
increased the accuracy from 3.8% compared with ARVGA
to 40% compared with Spectral Clustering.

We have also checked the performance of node clustering
with different GEN compression ratio to test our VGAE+GEN
framework as shown in Fig. 4, where 100% means no graph
compression (Z2 = X) before the concatenation of the two
node embedding (Z1 and Z2). Fig. 4 shows that with 50%
compression ratio, the clustering performance increase for both
Cora and Citeseer. For Cora, the performance remains stable
when the compression ratio changes from 50% to 5%. This
is because the generated assignment matrix tends to generate
similar clusters, meaning that there are some null-clusters
when the compression ratio is bigger than 5%. When the
compression ratio is smaller than 5%, the performance dropped
significantly, implies information loss in feature aggregation.
Similar phenomenon can be found for the Citeseer dataset,
but the inflection point is at 10%. This illustrates that the best
partition is unique for each network.

VII. CONCLUSION

In this paper, we proposed a graph compression network
(GEN) to achieve network compression and embedding at the
same time. Our theme is to learn a two-layer neural network
to find soft node cluster assignment, and further use it to
guide network compression process to learn representation
for a single node or the whole graph. GEN is designed to
learn network compression, and to decompress a compressed
network to the original node space. It can also be stacked
to form a multi-layer GEN with hierarchical compression
networks. Experiments and comparisons show that GEN can
find coherent structures in networks for effective compression.
The compression also helps GEN deliver better graph repre-
sentation and node representation for both transductive and
inductive graph learning tasks.

ACKNOWLEDGMENT

This research is supported by the U.S. National Science
Foundation (NSF) through Grant Nos. IIS-1763452, CNS-
1828181, and IIS-2027339.

REFERENCES

[1] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,” TKDE,
vol. 30, no. 9, pp. 1616–1637, 2018.

[2] S. Dawson, D. Gašević, G. Siemens, and S. Joksimovic, “Current state
and future trends: A citation network analysis of the learning analytics
field,” in Proceedings of the fourth international conference on learning
analytics and knowledge, 2014, pp. 231–240.

[3] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal of Ma-
chine Learning Research, vol. 12, no. Sep, pp. 2539–2561, 2011.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv:1609.02907, 2016.

[5] S. Nandanwar and M. N. Murty, “Structural neighborhood based classi-
fication of nodes in a network,” in ACM SIGKDD, 2016, pp. 1085–1094.

[6] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, “Mgae: Marginalized
graph autoencoder for graph clustering,” in Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, 2017,
pp. 889–898.

[7] J. B. Lee, R. Rossi, and X. Kong, “Graph classification using structural
attention,” in Proc. of ACM SIGKDD, 2018, pp. 1666–1674.

[8] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017, pp. 1024–1034.

[9] R. A. Rossi, R. Zhou, and N. Ahmed, “Deep inductive graph represen-
tation learning,” IEEE TKDE, 2018.

[10] D. Bacciu, F. Errica, A. Micheli, and M. Podda, “A gentle introduction
to deep learning for graphs,” arXiv:1912.12693, 2019.

[11] I. Spinelli, S. Scardapane, and A. Uncini, “Adaptive propagation graph
convolutional network,” IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[12] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in Advances in neural information processing systems, 2018, pp. 4800–
4810.

[13] J. Wu, J. He, and J. Xu, “Demo-net: Degree-specific graph neural
networks for node and graph classification,” in ACM SIGKDD, 2019,
pp. 406–415.

[14] S. Jin, W. Liu, E. Xie, W. Wang, C. Qian, W. Ouyang, and P. Luo,
“Differentiable hierarchical graph grouping for multi-person pose esti-
mation,” in European Conference on Computer Vision. Springer, 2020,
pp. 718–734.

[15] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors a multilevel approach,” IEEE PAMI, vol. 29, no. 11, pp.
1944–1957, 2007.

[16] S. Fortunato, “Community detection in graphs,” Physics reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[17] M. Li, R.-R. Liu, L. Lü, M.-B. Hu, S. Xu, and Y.-C. Zhang, “Percolation
on complex networks: Theory and application,” Physics Reports, 2021.

[18] T. N. Kipf and M. Welling, “Variational graph auto-encoders,”
arXiv:1611.07308, 2016.

[19] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep
representations for graph clustering,” in AAAI, 2014.

[20] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
KDD, 2016, pp. 1225–1234.

[21] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv:1312.6203, 2013.

[22] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in neural information processing systems, 2016, pp. 3844–3852.

[23] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv:1312.6114, 2013.

[24] F. Parés, D. G. Gasulla, A. Vilalta, J. Moreno, E. Ayguadé, J. Labarta,
U. Cortés, and T. Suzumura, “Fluid communities: a competitive, scalable
and diverse community detection algorithm,” in Intl. Conf. on Complex
Networks and their Applications. Springer, 2017, pp. 229–240.

[25] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.

[26] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Advances in neural information processing systems, 2016, pp. 1993–
2001.

[27] L. Tang and H. Liu, “Leveraging social media networks for classifi-
cation,” Data Mining and Knowledge Discovery, vol. 23, no. 3, pp.
447–478, 2011.

[28] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in KDD, 2014, pp. 701–710.

[29] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially
regularized graph autoencoder for graph embedding,” IJCAI, 2018.

