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Causal Optimal Transport for Treatment Effect
Estimation

Qian Li, Zhichao Wang, Shaowu Liu, Gang Li and Guandong Xu∗

Abstract—Treatment effect estimation helps answer questions
such as whether a specific treatment affects the outcome of
interest. One fundamental issue in this research is to alleviate
the treatment assignment bias among those treated units and
controlled units. Classical causal inference methods resort to
the propensity score estimation, which unfortunately tends to
be misspecified when only limited overlapping exists between the
treated and the controlled units. Moreover, existing supervised
methods mainly consider the treatment assignment information
underlying the factual space, and thus their performance of
counterfactual inference may be degraded due to overfitting of
the factual results. To alleviate those issues, we build on the
optimal transport theory and propose a novel Causal Optimal
Transport model (CausalOT) to estimate individual treatment
effect. With the proposed propensity measure, CausalOT can
infer the counterfactual outcome by solving a novel regularized
optimal transport problem, which allows the utilization of global
information on observational covariates to alleviate the issue of
limited overlapping. In addition, a novel counterfactual loss is
designed for CausalOT to align the factual outcome distribution
with the counterfactual outcome distribution. Most importantly,
we prove the theoretical generalization bound for the counterfac-
tual error of CausalOT. Empirical studies on benchmark datasets
confirm that the proposed CausalOT outperforms state-of-the-art
causal inference methods.

I. INTRODUCTION

In the past decades, estimating the causal effect of a
treatment (or intervention) from observational study greatly
contributes to applications ranging from public health [1],
economics [2], [3] to education [4]. In those areas, causal
inference usually investigates the treatment effect when the
intervention is applied. For example, a typical question con-
cerned in public health is whether an alternative medication
treatment for a certain illness will lead to better results.
Treatment effect could be measured at either the group-level
or individual-level, which is known as individual treatment
effect (ITE) or average treatment effect (ATE), respectively.
For better decision making, treatment effect estimation is
necessary to answer those questions mentioned above. In
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this paper, we focus on the individual treatment effect (ITE)
estimation.

According to the binary treatment assignments, units in the
observational study include the treated units and the controlled
units. ITE is defined as the expected difference between
the treated outcome and controlled outcome. Inferring ITE
is different from standard supervised learning, because only
the factual outcome for a specific treatment assignment (say,
treatment A) is observable, while the counterfactual outcome
corresponding to alternative treatment B is unknown. A simple
comparison of units with different treatments may be biased
due to the fact that the treatments are not randomly assigned
to the units. Figure 1 shows one example on the treatment
effect estimation, which investigates whether positive Yelp
ratings (treatment) motivate customers to go to restaurants
(outcome) 1. For brevity, we consider the binary settings of
Yelp ratings (i.e., positive or negative). Obviously, we can
only get one factual outcome for a restaurant along with
the observed customer reviews. Estimating the causal effect
of review requires to predict what would have happened if
customers flipped their reviews comments or ratings. Many
customers’ ratings (i.e., treatment assignment) are not random
but biased, which can be affected by external factors such
as the context or restaurant type. For example, the average
rating of Chinese restaurants is usually higher than that of
fast food restaurants. The treatment assignment bias results in
considerable distribution discrepancy between two groups with
different treatments, thus easily leads to an inaccurate coun-
terfactual inference. This bias further renders ITE estimation
a challenging task.

Fig. 1: An example of treatment effect estimation: an arrow
represents a causal relation, t is a treatment, y is the outcome,
and z is the confounder that is the common cause of treatment
and outcome.

To overcome above challenges, many existing research

1Treatment and outcome are terms in the theory of causal inference, which
denote a decision made or action taken and its result, respectively.
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works resort to a set of representative covariates (e.g., age
and health status) of treatment assignment estimation, and
this category of methods is known as the propensity score
methods [5], [6]. Specifically, the propensity score as the prob-
ability of receiving a treatment is estimated by adjusting the
covariates. Popular methods of this category are the propensity
score matching (PscoreMatch) [5], and adjustment based on
propensity score [7], [8]. Although those methods have gained
grounds in many applications, their performance is sensitive to
inaccurate covariates selection when estimating the unknown
treatment assignment [9], [10]. Another category of methods
are the supervised models, which attempt to increase the accu-
racy of causal effect estimation, and to learn treatment effect
via modelling the correlation between the covariates, treatment
and factual outcomes. such as adjusted regression models [11],
tree-based methods [12], [13]. While those supervised methods
minimise the factual errors, but they can easily over-fit to
the treated units, and thus may not generalise well to the
entire population [14]. Representation-based methods as the
third category recently are suggested to reduce the treatment
assignment bias by learning a high-level representation for
which the covariate distributions are balanced across the over-
all units [15], [16]. However, the training of a balanced rep-
resentation requires sufficient overlapping between the treated
and the controlled units, otherwise the sparsity in the units
would decrease the accuracy and confidence of predicting
counterfactuals [17]. Moreover, representation-based methods
have more parameters, which may result in model-blindness
when compared with the propensity score matching [18], [19].

To alleviate these issues, we propose a causal optimal trans-
port (CausalOT) model to estimate the individual treatment
effect (ITE). Leveraging the inherent interpretability of the
propensity score, CausalOT is insensitive to the overlapping
size between the treated and the controlled units. The proposed
CausalOT method made three contributions:
• First, CausalOT builds on the optimal transport theory,

and it exploits the global information of the factual space
and the counterfactual space to alleviate the sparsity issue
caused by the limited size of overlapping. By propos-
ing the propensity measure, CausalOT reformulates the
counterfactual inference as the task of transporting from
the factual space to the counterfactual space, and it
can achieve satisfactory performance even with limited
overlapping between the treated and the controlled units.

• Second, we design a novel counterfactual loss for the
transported samples to offset the outcome prediction bias.
Moreover, a new proximal point algorithm based on Breg-
man divergence is proposed to improve the computation
efficiency of CausalOT.

• Finally, we prove that the counterfactual error of Causa-
lOT is bounded by the Wasserstein distance for our
novel propensity measure. Extensive numerical results
further confirm the effectiveness of the proposed Causa-
lOT method.

II. RELATED WORK

Although the effectiveness of treatment in observational
studies has traditionally been measured by the average treat-

ment effect (ATE), modern studies have shifted the research
efforts toward the individual treatment effect (ITE) [20]. In
general, ITE from observational data has proven to be a
challenge for two reasons: firstly, we can only observe one
factual outcome once the treatment is chosen for the individual
unit; secondly, the treatment assignment is typically biased. In
the past decade, a wide variety of methods has been proposed
for ITE, and they can be grouped into three categories: the
propensity score methods, the supervised models and the
representation based methods.

Methods in the first category are based on matching, which
provides a way to estimate the counterfactual while reducing
the confounding bias brought by the confounders. According
to the (binary) treatment assignments, a set of individuals can
be divided into a treatment group and a control group. For
each treated individual, matching methods select its counter-
part in the control group based on certain criteria, and treat
the selected individual as a counterfactual. The outcome of
counterpart is viewed as the counterfactual outcome that is
used for computing ITE [6]. Various distance metrics have
been adopted to compare the closeness between individuals
and to select counterparts. For example, the propensity score
matching [5] selects the counterpart in the controlled (or
treated) units from the treated (or controlled) units with similar
propensity scores (e.g., one-to-one or one-to-many). How-
ever, theoretical analysis suggests that the existing matching
estimators have poor performance when the distributions of
control and treatment groups are unbalanced [21]. Rather
than in original covariate space, a balanced and nonlinear
representation (BNR) [21] is learned from observational data,
and a novel matching estimator named BNR-NNM is per-
formed on BNR to provide a robust estimation of causal effect.
Another example is feature selection representation matching
(FSRM) [22] method that maps the original covariate space
into a selective nonlinear, and balanced representation space,
and then finds the counterpart individual based on the learned
representations.

Methods in the second category consider the treatment and
covariates as features, and they infer the potential outcomes
by exploiting the correlations with the features. Various re-
gression models such as linear regression can be used to
build either an outcome model with the treatment as the input
feature, or multiple separated outcome models, one for each
treatment [23]. More sophisticated regression models include
Bayesian additive regression tree (BART) [24] and Causal
random forest (CausalForest) [13]. Among them, BART [24]
can be intuitively considered as a Bayesian regularized tree
boosting procedure, because the algorithm repeatedly refits the
tree residuals; CausalForest [13] views tree and forests as an
adaptive neighbourhood metric, and it estimates the treatment
effect at the leaf node. As those supervised methods focus on
minimising the factual errors only and can easily over-fit to
the treated group [14], they may not generalise well to the
entire population.

Representation based methods in the third category learn a
balanced representation for which the covariate distributions
are balanced across the treated and the controlled units, and
then they predict the counterfactual outcomes using balanced
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feature representations. Early examples of this category in-
clude balancing neural networks (BalanceNN) [15] and coun-
terfactual Regression Networks (CFRNET) [16]. Particularly,
the balanced feature representation can be learned by minimis-
ing the discrepancy between the treated and the controlled
units. BalanceNN [15] learns a balanced representation that
adjusts the mismatch between the entire sample distribution
and treated/controlled distributions in order to account for
the confounding bias. CFRNET [16] provides an intuitive
generalization-error bound. The expected ITE representation
error is bounded by the generalization-error and the distri-
bution distance. However, the local similarity information is
largely unexplored, which prevents the generalization error
from decreasing in estimating the counterfactual outcomes.
SITE [25] is a deep representation learning based method
that preserves local similarity and simultaneously balances
data distributions for predicting counterfactual outcomes. To
capture the uncertainty in the counterfactual distributions,
Generative Adversarial Network for Individualized Treatment
Effect (GANITE) [26] builds a complex GAN framework
including the counterfactual outcome generator and ITE gen-
erator.

III. PRELIMINARY

We consider an observational dataset {X, t,Y}, with co-
variates matrix X ∈ Rn×d of n observed units of d-
dimensional covariates xi, the binary treatment vector t ∈
{0, 1} and the outcome vector Y ∈ Rn×1. According to
Rubin-Neyman causal model [27], two potential outcomes
y0(x), y1(x) exist for x with treatments {0, 1}, respectively.

A. Treatment Effect Estimation

Individual Treatment Estimation. Based on the poten-
tial outcomes y0(·) and y1(·), we can define the individual
treatment effect (ITE) as the difference between two potential
outcomes.

τITE(xi) = y1(xi)− y0(xi) (1)

When only one potential outcome is observed as the as-
signed treatment t, it is called the factual outcome y. In
addition, we refer the unobserved potential outcome as the
counterfactual outcome ŷ. Given the treatment ti, the rela-
tionship between y and two potential outcomes are

yi = tiy1(x) + (1− ti)y0(x) (2)

With the knowledge above, ITE can be alternatively esti-
mated by comparing the factual outcome and the correspond-
ing counterfactual.

τITE(xi) =

{
yi − ŷ, ti = 1
ŷ − yi, ti = 0

(3)

where the counterfactual outcome ŷ is unobserved in practice.
Estimating ITE can be transformed to counterfactual in-

ference, which lies precisely in the treatment assignment
mechanism. A machine learning model trained to minimise the
factual error may over-fit the treated units, but not generalise

well to the entire population. This is mainly because the
assignment of cases to treatments is typically biased, because
cases for which a treatment is known as effective are more
likely to receive the same treatment. The distribution of
samples may therefore differ significantly between the treated
units and the overall units.

Propensity Score. The propensity score technique considers
the mechanism of treatment assignment [5]. The propensity
score p(t|x) is the conditional probability for a unit being
assigned to a particular treatment given a set of observed co-
variates. One widely-adopted parametric model of propensity
score p(t|x) is the logistic regression:

p(t|x) =
1

1 + exp (−w>x− ω0)
(4)

where w and ω0 are estimated by minimizing the negative
log-likelihood [10].

Assumptions. Counterfactual inference from observational
data always requires further assumptions about the data-
generating process [28], [29]. Following the general practise
in causal inference literature [14], [3], [24], the following two
assumptions are related to unconfoundedness (or ignorability)
that ensures the identifiability of the treatment effect [29]:

Assumption 1. For all values of x, it is possible to observe
all treatments with non-zero probability.

p(t|x) > 0, ∀x and t (5)

Given some values of x, the treatment assignment is not de-
terministic; otherwise, at least for one treatment, the outcomes
could never be observed, which is infeasible to estimate the
treatment effect.

Assumption 2. The assignment to treatment t is independent
of the outcome y given the covariates x, i.e.,

y0, y1 ⊥ t|x (6)

With this unconfoundedness assumption, the values of the
potential outcomes (y0 and y1) are independent of the ob-
served treatment, given the set of confounding variables.
Namely, for the units with the same covariates x, their
treatment assignment can be viewed as random. We then have
p(y1|t,x) = p(y|t,x) to infer the unknown counterfactual
outcomes from the observed datasets, which further leads to
causal identification.

B. Optimal Transport

Optimal transport [30], [31], also known as Earth Mover’s
Distance in engineering-related fields, was first introduced
by French mathematician Gaspard Monge [32]. Originally,
optimal transport aims to transport a given mass of dirt
to a given hole with a minimal effort solution. Due to its
appealing ability in improving the accuracy of numerous
pattern recognition-related problem, optimal transport has re-
cently received significant attention from the machine learning
communities [33], [34]. Applications of the optimal trans-
port include various transport-based learning methods [34],
domain adaptation [33], [35], Bayesian inference [36], and
sampling [37], [38].
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Note that Acciaio et al. [39] use a same name as our
method, i.e., causal optimal transport. In fact, our method is
totally different from their work with regarding to both the aim
and technical methodology. Particularly, Acciaio et al. [39]
define an optimal transport over causal couplings to addresses
the stochastic analysis problem of filtrations enlargement. By
contrast, our paper defines transportation plan in the propensity
measure space to improve the causal effect estimation.

IV. CAUSAL OPTIMAL TRANSPORT

This work aims to infer the counterfactual outcomes for
individual treatment effect (ITE) estimation. To this end,
we have n observed samples {(xi, ti, yi)}ni=1 in the factual
space ΩF . Similarly, the counterfactual space ΩC includes the
samples {(xi, 1 − ti)}ni=1, by assuming that each sample i
receives the opposite treatment 1− ti.

The Propensity Measure. We infer the counterfactual
outcome by leveraging the information {(xi, ti)}ni=1 from the
factual space. The distribution of this information can not be
fully captured by the propensity score p(t|x), because p(t|x) is
merely the conditional probability of receiving treatment given
x. This motivates us to define two propensity measures, on the
factual space and on the counterfactual space, respectively.

µ(x, t) = p(x)p(t|x)

ν(x, 1− t) = p(x)p(1− t|x)
(7)

where p(t|x) estimated by eq. (4) refers to the propensity score
of the factual samples. In this paper, we consider the binary
treatment settings, hence a unit with treatment t in the factual
space will have treatment 1 − t in the counterfactual space.
Accordingly, the propensity score for the counterfactual space
can be represented by p(1−t|x). Apparently, the factual space
and the counterfactual space share the same covariates but
with different propensity measure values µ(x, t) and ν(x, t),
respectively.

Based on the propensity measures in eq. (7), we define the
joint distribution of factual space ΩF and counterfactual space
ΩC . For brevity, let u = (x, t) denote the factual feature
consisting of covariate and treatment in the factual space, and
let v = (x, 1− t) denote the counterfactual feature consisting
of covariate and treatment in the counterfactual space. The
joint distribution on the factual space is then:

pµ(u, y) = p(y|u)µ(u) (8)

Note that the factual outcome y is observed but the coun-
terfactual outcome is unobserved in practice. As the goal of
estimating ITE in eq. (3) requires the inference of counterfac-
tual outcome, we use the counterfactual predictor h : ΩC → R
as the proxy of counterfactual outcome, and then we define
pν(v, h) as the joint distribution on the counterfactual space
ΩC .

pν(v, h) = p(h|v)ν(v) (9)

Building on the optimal transport theory, the following
part will generate an unbiased h by searching an optimal
mapping from the factual joint distribution pµ(u, y) to the
counterfactual joint distribution pν(v, h).

A. Propensity Measure Transport

Because skewed data distributions naturally arise in causal
inference, where the treated or the controlled units occur
with reduced frequency, most propensity score based methods
overlook the information of minority treated or minority
controlled units, and hence suffer from the biased treatment
effect estimation. Inspired by the optimal transport theory [31],
we propose a novel causal optimal transport (CausalOT)
method as illustrated in Figure 2. CausalOT exploits the global
information of the observational covariates and the treatment
to learn an unbiased treatment effect.

Fig. 2: Causal optimal transport method.

According to the propensity measures on the factual space
and on the counterfactual space, we have two joint distri-
butions pµ(u, y) on ΩF and pν(v, h) on ΩC , as defined
in eqs. (8) and (9). When the factual joint distribution is
similar to the counterfactual joint distribution, the data is close
to randomized experimental study that involves less treatment
selection bias. According to the optimal transport theory [31],
we assume that the discrepancy between two spaces ΩF and
ΩC is due to an unknown mapping γ : ΩF → ΩC . In this
work, we propose to find a counterfactual predictor h by
minimizing the transport loss corresponding to the unknown γ,
so the optimal γ can be identified as a mapping that transports
pµ(u, y) to pν(v, h) with the minimum transport cost. By
defining Π(pµ, pν) as the space of probability distributions
over R2 with marginals pµ and pν , the optimal γ ∈ Π(pµ, pν)
minimizes the following quantity:

min
γ,h

∫
ΩF×ΩC

L (u,y;v, h(v)) dγ (u,y;v, h(v))

s.t. γ ∈ Π(pµ, pν)

(10)

where the joint cost function is

L (u,y;v, h(v)) = λC(u,v) +R(y, h(v)) (11)

Note that C measures the discrepancy between the factual fea-
tures (i.e., covariates and treatment) u and the counterfactual
v. In Section Section IV-B, we design a novel R(γ, h) as a
counterfactual loss that measures the discrepancy between the
factual outcome y and the predicted counterfactual outcome
h(v). R(γ, h) is continuous and differentiable with respects
to h(·). Although the problem (10) does not involve any
regularization on the mapping γ, it is essentially for the sake
of simplicity [35]. By minimizing the cost L, the optimal γ
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maps the factual samples to the counterfactual samples with
similar features and outcomes.

So far the optimization task as in eq. (10) has no analytic
solution. Rather than working with distribution functions pµ
and pν , we will relax it to the general case of transport between
discrete measures. The discrete uniform distribution (i.e., the
probability of each sample is equal) was usually adopted for
the discrete settings [31]. In our case, uniform distribution can
not fully exploit the joint distribution information underlying
in the factual and the counterfactual spaces. For the joint
distributions pµ and pν as in eqs. (8) and (9), two empirical
measures (i.e., pµ and pν) are proposed as the discrete
approximations to them:

pµ =

[
pµ(u1, y1)∑n
i pµ(ui, yi)

, · · · , pµ(un, yn)∑n
i pµ(ui, yi)

]>
pν =

[
ν(v1)∑n
i ν(vi)

, · · · , ν(vn)∑n
i ν(vi)

]> (12)

where pµ(ui, yi) is the propensity measure on the observed
factual sample (ui, yi), and it can be easily computed accord-
ing to eq. (8). Similarly, computing pν requires pν(vi, h(vi))
in eq. (9). As h(·) is a proxy of unknown counterfactual
outcome which also requires to be estimated, the probability
p(h(v)|v) is assumed to be uniform for simplicity. Consider
the fact that no prior knowledge is available for the probability
of counterfactual outcomes, we assume a uniform distribution
in which all counterfactual outcomes are equally likely given
v. The probabilistic coupling between pµ and pν is formulated
as

Π(pµ,pν) = {γ ∈ Rn×n|γ1n = pµ, γ
>1n = pν} (13)

where 1n represents the n-dimensional vector of ones.
Π(pµ,pν) refers to a set of all admissible couplings between
pµ and pν . γi,j represents the amount of mass shifted from
the bin pµi

to pνj . In our case, the matrix γ describes a
probabilistic matching of the samples in the factual space and
the counterfactual space. Consequently, the transport map γ
turns to be a coupling matrix where γi,j describes the amount
of mass flowing from bin i to bin j.

Under discrete measures, the optimal transport problem as
in eq. (10) can be generalized for the counterfactual inference
as

min
γ,h

λ〈γ,C〉+R(γ, h) s.t. γ ∈ Π(pµ,pν) (14)

where λ is a hyperparameter to balance the alignment of
features (i.e., u and v) and outcomes (i.e., y and h(·)). Since
counterfactual outcome prediction h(·) is the main task for
treatment effect estimation, λ should be less than 1 from
intuition. Specifically, 〈·, ·〉 denotes the Frobenius dot-product
in the feature space. The matrix C = [Ci,j ] ∈ Rn×n denotes
the cost matrix, in which each element Ci,j represents the cost
of moving a probability mass u to v. We define Ci,j as the
squared Euclidean distance between i-th and j-th sample, i.e.,

Cij = ‖ui − vj‖22 (15)

In the following section, the newly designed R(γ, h) as a
counterfactual loss in eq.(14) will be discussed in detail.

B. Counterfactual Loss

Recall that h(·) predicts a counterfactual outcome given
an input of v in terms of covariates and treatment. The
counterfactual loss term R(γ, h) is proposed to reduce the
shift bias when transporting the propensity measures. As the
mapping γ transports the propensity measure µ to ν, the
transported outcome γ(y) should be also aligned with h to
guarantee p(y|x, t) = p(h|x, 1− t) in eq. (8). To achieve this,
we use the following loss

R(γ, h) =
1

2

n∑
j=1

(ŷj − h(vj))
2 (16)

Based on the properties of the Euclidean quadratic loss [31],
we have ŷj to be a weighted mean of factual outcomes {yj}nj=1

as follows.

ŷj =

∑
j γi,jyj

pµ(yj)
(17)

where pµ(yj) represents the j-th element in the distribution
vector pν . Because the factual samples with larger propensity
scores indicate that these units are more likely to be treated, the
estimated ŷ weighted by the inverse probability of treatment
results in the factual unit with less propensity score to con-
tribute more. Namely, to reduce the treatment assignment bias,
eq. (17) simulates a population in which baseline covariates
are independent of the treatment assignment for the training
of an unbiased predictor h(·).

Given the unconfoundedness as in Assumption 2 and As-
sumption 1, for simplicity, we use the linear model for the
counterfactual predictor: h is the linear hypothesis conditioned
on v, i.e., h(v) = β>v + ξ, and β> ∈ R1×d is the weight
vector. Accordingly, R(γ, h) can be written as

R(γ, h) =
1

2

n∑
j=1

(
ŷ2
j + h(vj)

2 − 2ŷjh(vj)
)

=
1

2

n∑
j=1

(
ŷ2
j + (β>vj + ξ)2 − 2ŷj(β

>vj + ξ)
)

=
1

2
tr(ŷŷ>)− tr(ŷβ>V>)− tr(ξŷ1n) + ξ2

+
1

2
tr(Vββ>V>) + ξtr((1>n ⊗ β)V>)

(18)

where ŷ = [ŷ1, · · · , ŷn]> ∈ Rn×1, V = [v1, · · · ,vn]> ∈
Rn×d, and ⊗ is the Kronecker product. Based on eq. (17),
the counterfactual outcome ŷ can be computed based on the
factual outcome vector y = [y1, · · · , yn]>.

ŷ = diag(pµ)−1γy = Dγy (19)

Let D = diag(pµ)−1 ∈ Rn×n be a diagonal matrix with the
vector pµ on the diagonal. Using eq. (19), the counterfactual
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loss can be further written as

R(γ, h) =
1

2
tr
(
Dγyy>γ>D>

)
+ ξtr((1>n ⊗ β)V>) + ξ2

+
1

2
tr(Vββ>V>)− tr(Dγyβ>V>)− ξ tr(Dγy1n)

=
1

2
tr
(
γyy>γ>D>D

)
+ ξtr((1>n ⊗ β)V>) + ξ2

− tr(γyβ>V>D + γξy1nD) +
1

2
tr(Vββ>V>)

(20)

Substituting eq. (20) into the objective as in eq. (14), we
organize the reformulated objective function L as follows:

L = tr(γλC>) +R(γ, h)

= tr(γλC>) +
1

2
tr(Vββ>V>) + ξtr((1>n ⊗ β)V>) + ξ2

− tr(γyβ>V>D + γξy1nD) +
1

2
tr
(
γyy>γ>D>D

)
= tr(γΘ) +

1

2
tr
(
γΦγ>Ψ

)
+ ξtr((1>n ⊗ β)V>)

+
1

2
tr(Vββ>V>) + ξ2

(21)

where

Θ = λC> − (ξy1n + yβ>V>)D

Φ = yy>

Ψ = D>D

(22)

V. PROXIMAL POINT ALGORITHM

The objective function as in eq. (21) is smoothly separable
according to the counterfactual predictor h(·) (in terms of β, ξ)
and γ. As the objective function is with a novel counterfactual
loss, γ can not be directly solved by traditional solver, and
we propose to solve it based on a generalized proximal point
algorithm.

Updating γ. When h is fixed, eq. (21) can be considered
as an optimal transport problem regularized by R to fit the
counterfactual outcomes. However, traditional optimal trans-
port algorithm is not appropriate for this regularized problem.
Inspired by [40], [41], we propose to add the Bregman
divergence to the subproblem of γ in eq. (21). The proximal
point iteration for optimizing γ can then be solved by

γ(l+1) = arg min
γ
〈∇L(γ(l)),γ〉+ αdB

(
γ,γ(l)

)
(23)

The Bregman divergence dB is defined as the proximal opera-
tor associated with entropy function g(z) =

∑n
i,j zi,j log(zi,j),

and we have

dB(γ,γ(l)) =

n∑
i,j

γi,j

(
log γi,j − log γ

(l)
i,j

)
−

n∑
i,j

γi,j+

n∑
i=1

γ
(l)
i,j

(24)

Substituting Bregman divergence (24) into proximal point
iteration (23), with simplex constraints, we have

γ(l+1) = argmin
γ

〈
∇L(γ(l)),γ

〉
+ α

n∑
i,j

γi,j

(
log γi,j − log γ

(l)
i,j

)
− α

n∑
i,j

γi,j + α

n∑
i=1

γ
(l)
i,j

(25)

We define H(γ) =
∑n
i,j γi,j(log γi,j − 1) and γ(l+1) is

reformulated (26) as

γ(l+1) = argmin
γ

〈
∇L(γ(l))− α log γ(l),γ

〉
+ αH(γ) + α

n∑
i=1

γ
(l)
i,j

= argmin
γ

〈
∇L(γ(l))− α log γ(l),γ

〉
+ αH(γ)

(26)

where γ(l)
i,j is a fixed value that is irrelevant to the optimization

variable γ. According to [42], H(γ) is an entropy that
allows eq. (26) to have a closed-form solution and speed up
the optimization. Based on eq. (29), the closed-form solution
of (26) is provided as follows:

γ(l+1) = diag(a)K(l)diag(b) (27)

where diag(a) is the diagonal matrix with the vector a on the
diagonal. The updates of (a, b) in Sinkhorn’s algorithm [43]
are defined as

a =
pµ

K(l)b
and b =

pν

K(l)>a

K(l) = γ(l) � exp

(
−∇L(γ(l))

α

) (28)

As the objective function L in eq. (21) is differentiable and
quadratic w.r.t. γ, we compute its derivative as

∇L(γ) =
1

2
Ψ>γΦ> + Θ> (29)

Updating β and ξ. When γ is fixed, β and ξ can be obtained
by the gradient descent algorithm:

∇L(ξ) = tr((1>n ⊗ β)V>)− γ>y1nD + 2ξ

∇L(β) = 2V>Vβ + ξ(1n ⊗ 1d)V
> + y1dV

>D
(30)

We update γ, β and ξ iteratively until the objective func-
tion eq. (21) converges. All steps are summarized in Algo-
rithm 1.

VI. THEORETICAL RESULTS

In this section, we provide theoretical justification on the
optimal transport for the counterfactual outcome inference.
Specifically, we derive an upper bound on the counterfactual
generalization error with respect to the propensity measures.
We assume that the factual space and the counterfactual space
are with the same ground-truth outcome function f . This is
reasonable because from the unconfoundedness in Assump-
tion 2, units with similar covariates (e.g., healthy status or
age) tend to have similar outcomes, no matter being treated or
untreated (i.e., controlled). If the hypothesis h ∈ H learned by
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Algorithm 1 Causal Optimal Transport (CausalOT)

Input: Factual units (u1,y1) · · · (un,yn) and counterfactual
units v1, · · · ,vn.

1: Initialize the weight β = 1 and residual ξ = 0
2: Estimate the propensity score p(t|x) for the observed

covariates by eq. (4).
3: Compute the propensity score measures µ(u) and ν(v)

for u and v by eq. (7).
4: Estimate two joint distributions pµ(ui, yi) and pν(vi)

by eqs. (8) and (9).
5: Normalize the joint distribution pµ and pν by eq. (12).
6: Set the cost matrix [C]ij = ‖ui − vj‖22, a = pµ, b = pν ,

D = diag(pµ)−1,
7: repeat
8: Compute the parameters Θ,Φ,Ψ by eq. (22).
9: Update the gradient

∇L(γ) =
1

2
Ψ>γΦ> + Θ>

10: Update a =
pµ

K(l)b
, b = pν

K(l)>a

11: Update K(l) = γ(l)&� exp
(
−∇L(γ(l))

ε

)
12: Update γ(l+1) = diag(a)K(l)diag(b)
13: Update gradient

∇L(ξ) = tr((1>n ⊗ β)V>)− γ>y1nD + 2ξ

14: Update

L(β) = 2V>Vβ + ξ(1n ⊗ 1d)V
> + y1dV

>D

15: Update ξ(l+1) = ξ(l) −∇L(ξ(l))
16: Update β(l+1) = β(l) −∇L(β(l))
17: until convergence
18: Compute the counterfactual outcome h(v) = β>v + ξ
19: Compute ITE using h(v) and y by eq. (3)
Output: ITE

CausalOT disagrees with f , the expected counterfactual error
is

εν(h, f) = Ev∼ν [l(h(v), f(v))] (31)

where the loss function l(h(v), f(v)) = (h(v) − f(v))2 is
denoted as l(v) for short in the following text. Since covariates
(e.g., salary or age) and treatments in observational study are
finite values, it is reasonable to assume that v is sampled from
a compact (bounded and closed) set O.

Given two samples v1,v2 from the compact set O, we
have θ ∈ O that satisfies eq. (32) because of the mean value
theorem.

‖l(v1)−l(v2)‖2 = ‖l′(θ)(v1−v2)‖2 ≤ sup
θ∈O
‖l′(θ)‖2‖v1−v2‖2

(32)
The squared loss function l is continuously differentiable, and
compact set O is bounded and closed. Therefore, ‖l′(θ)‖2 has
upper bound, and we have the local Lipschitz condition

‖l(v1)− l(v2)‖2 ≤ κ‖v1 − v2‖2 (33)

with Lipschitz constant κ. Based on eq. (33), we apply Wasser-
stein distance to analyze the generalization error between the
propensity measures µ and ν.

Lemma 1. For every h ∈ H, the following error holds

εν(h, f) ≤ 4εµ(h, f) + 2κW1(µ, ν) + η (34)

where η = 4εµ(h∗, f) + 2εν(h∗, f) is the minimal combined
error achieved by the optimal hypothesis h∗.

Proof. The Kantorovich-Rubinstein theorem shows that the
dual representation of the 1-Wasserstein distance can be writ-
ten as a form of

W1(µ, ν) = sup
‖l‖≤1

Eu∼µ[l(u)]− Ev∼ν [l(v)] (35)

where the Lipschitz semi-norm ‖l‖ is defined as sup |l(u) −
l(v)|/ρ(u,v) and ρ is a distance function. Given the definition
of η, we know h∗ = argmin

h
4εµ(h, f) + 2εν(h, f). Followed

by the polarization identity, the error εν(h, f) = Ev∈ν [(h(v)−
f(v))2] can be written as

Ev∈ν [(h− h∗ + h∗ − f)2]

≤ 2Ev∈ν [(h∗ − f)2] + 2Ev∈ν [(h∗ − h)2]

= 2εν(h∗, f) + 2εν(h∗, h)

= 2εν(h∗, f) + 2εµ(h, h∗) + 2(εν(h, h∗)− εµ(h, h∗))

= 2εν(h∗, f) + 2εµ(h, h∗) + 2(Eν [l(h, h∗)]− Eµ[l(h, h∗)])
(33)
≤ 2εν(h∗, f) + 2εµ(h, h∗) + 2 sup

‖l‖≤κ
Eν [l(h, h∗)]− Eµ[l(h, h∗)]

≤ 2εν(h∗, f) + 4εµ(h, f) + 4εµ(h∗, f) + 2κW1(µ, ν)

= 4εµ(h, f) + 2κW1(µ, ν) + η

With Lemma 1, we have proved the generalization error
of applying Wasserstein distance between the true probability
measures µ and ν. In order to compute the generalization
bounds for finite samples rather than the true population
measures, we use two empirical measures µ̂ and ν̂ as discrete
approximations of µ and ν. Specifically, µ̂ = 1

n

∑n
i=1 δi

is defined on independent samples {ui}ni=1 drawn from µ.
Similarly, we define ν̂ = 1

n

∑n
j=1 δj on {vi}ni=1 for ν. To

further prove the generalization error bound of h using the
empirical measures, we give an important theorem as follows.

Theorem 1. [44] Given a probability measure µ and its
associated empirical measure µ̂, then for any ε > 0, there
exists n ≥ n0 max

(
ε−(d1+2), 1

)
, we have

P [W1(µ, µ̂) > ε] ≤ exp

(
−ζ

2
nε2
)

(36)

where n0, d1 and ζ are constants.

Theorem 1 shows the convergence of µ̂ to its true measure
µ w.r.t. the Wasserstein metric. We can now use Theorem 1 in
combination with Lemma 1 to prove the following theorem.
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Theorem 2. For any ε > 0 with probability at least 1−ε, the
following bound holds for all hypothesis h ∈ H:

εν(h, f) ≤ 4εµ(h, f) + 2W1(µ̂, ν̂) + 4

√
2 log(1/ε)

nζ
+ η (37)

where η = 4εµ(h∗, f) + 2εν(h∗, f) is the combined error of
the optimal hypothesis h∗.

Proof. Follow Lemma 1, we have

εν(h, f) ≤ 2εν(h∗, f) + 2εν(h∗, h)

= 2εν(h∗, f) + 2εµ(h∗, h) + (2εν(h∗, h)− 2εµ(h, h∗))

≤ 2εν(h∗, f) + 2εµ(h∗, h) + 2W1(µ, ν)

≤ 2εν(h∗, f) + 4εµ(h∗, f) + 4εµ(h, f) + 2W1(µ, ν)

= 4εµ(h, f) + 2W1(µ, ν) + η

≤ 4εµ(h, f) + 2W1(µ, µ̂) + 2W1(µ̂, ν) + η

= 4εµ(h, f) + 2W1(µ, µ̂) + 2W1(µ̂, ν̂) + 2W1(ν̂, ν) + η

= 4εµ(h, f) + 4

√
2 log(1/ε)

nζ
+ 2W1(µ̂, ν̂) + η

Lemma 1 and Theorem 2 ensure that the error of counter-
factual predictor h is bounded by the Wasserstein distance for
empirical measures. This means that reformulating the coun-
terfactual inference as optimizing the task as in eq. (14) would
have good generalization for the treatment effect estimation.
With the error bound of counterfactual outcome, the treatment
effect estimation in eq. (3) is thus theoretically guaranteed to
be accurate.

VII. EXPERIMENTS

Since the ground truth treatment effects are rarely available
in real-world data, evaluating the performance of causal infer-
ence methods is a challenging task. In this section, we adopt
four benchmark datasets in causal inference, i.e., IHDP, News,
Twins and Jobs, among which three datasets have known
two-sides (the factual and the counterfactual) outcomes.

A. Baselines

We compare the proposed CausalOT method with meth-
ods from different categories: linear regression based meth-
ods: Ordinary Least Squares (OLS-1,OLS-2) [45]; classical
causal methods: Doubly Robust Linear Regression (DoubleR-
obust) [7], Propensity Score Matching (PscoreMatch) [5]; tree
and forest based methods: Bayesian Additive Regression Trees
(BART) [24], Causal Random Forest (CausalForest) [13];
and representation based methods: Balancing Neural Network
(BalanceNN) [15]. All those compared methods can predict the
unknown counterfactual outcomes and then apply the results
for individual treatment estimation (ITE).
• OLS-1 [45] takes the treatment as an input feature and

predicts the outcome by least square regression. OLS-
2 [45] uses two separate least squares regressions to fit
the treated and controlled units respectively.

• PscoreMatch [5] matches the controlled units which
received no treatment with those treated units which
received the treatment, based on the absolute difference
between their propensity scores.

• DoubleRobust [7] is a combination of regression model
and propensity score estimation model to estimate the
treatment effect robustly.

• BART [24] directly applies a prior function on the co-
variate and treatment to estimate the potential outcomes,
i.e., Bayesian form of the boosted regression trees.

• CausalForest [13] is an extension of random forest al-
gorithm. We implement CausalForest with a number of
causal trees, each of which estimates the treatment effect
on the leaves.

• BalanceNN [15] is the balanced representation that max-
imizes the similarity between the treated and the con-
trolled units for counterfactual outcome prediction.

For hyper-parameters optimization, we use the default prior
or network configurations for DoubleRobust [7], BART [24],
BalanceNN [15]2. For PscoreMatch, we apply 5-nearest neigh-
bour matching with replacement, and impose a nearness cri-
terion, i.e., caliper=0.05. The number of regression trees in
BART is set to 200, and CF consists of 100 causal trees.

B. Benchmark Data

We use four benchmark datasets for comparison, i.e., IHDP,
News, Jobs and Twins as summarized in Table I. Among
them, IHDP is a standard semi-synthetic dataset in the Infant
Health and Development Program (IHDP) [24], which is an
observational program designed to study the effect of the
specialist visits and parent support on future cognitive and
health status of infants. The dataset contains information on
747 infants with 139 treated and 608 control units, and each
with 25 real covariates (features). The outcomes are their
simulated IQ scores at age 3.
News dataset simulates the consumers’ opinions on news

items affected by different exposures of viewing devices [15].
Each record is one news item represented by word counts
xi ∈ Rd×1, where d = 3477 is the total number of words.
The factual outcome yi is the reader’s opinion on xi under
the treatment ti. The treatment t = 0 or t = 1 indicates that
the unit views the news via desktop or mobile, respectively.
The bias in treatment assignment is simulated as a function of
the similarity between the topic distribution of the news items
and the two centroids [15].
Twins dataset is collected from the twins born in the

USA between 1989 to 1991 [46]. Each twin pair has 40 pre-
treatment covariates related to the biological parents, the preg-
nancy and the birth information. We use 5409 twins records
that weigh less than 2kg and without missing covariates. For
each twin pair we observe both the case t = 0 (lighter
twin) and t = 1 (heavier twin). The outcome is the one-year
mortality. To simulate the selection bias, we choose one of the
twins as the observation by following the procedures in [26].
Jobs dataset is based on a randomized study of a job

training program [47], where the treatment is job training and

2https://github.com/clinicalml/cfrnet

https://github.com/clinicalml/cfrnet
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(a) 100 samples

(b) 200 samples

Fig. 3: Toy examples: CausalOT for counterfactual inference on the synthetic dataset.

the outcome is income after training. We use 2, 915 records
with 7-dimensional covariate, among which 2, 490 are control
units (t = 0). Different from IHDP, News and Twins, the
ground truth of ITE in Jobs is unknown due to the fact
that only one potential outcome was observed (i.e., factual
outcome).

We run each algorithm 100 times (except for the IHDP
dataset, on which we run each algorithm 1,000 times which is
the same setting as in [16]) with 70/20/10 train/validation/test
splits. To find the optimal setting for the importance of
propensity measure transport λ, a grid search in the range
of [10−5, 102] is performed, where the best performance is
achieved with λ = 10−2. For the hyper-parameter optimization
of the baselines, we follow the hyper-parameter optimization
code published in the GitHub with their main codes.

TABLE I: Summary of datasets. n is the number of samples,
d is the dimension of covariates.

Data Condition Property
Fact Counterfact t = 1 t = 0 n d

IHDP X X 139 608 747 25
News X X 2168 2832 5000 3477
Twins X X 1408 3996 5409 40
Jobs X 297 2915 3212 7

C. Evaluation Metrics

We compare those methods in terms of Precision in Esti-
mation of Heterogeneous Effect (PEHE) [24], which evaluates
the accuracy of estimated individual treatment effect (ITE), for
cases in which only the covariates are observed but without
the factual outcomes.

εPEHE =
1

N

N∑
i=1

(τITE(i)− τ̂ITE(i))
2 (38)

where τ̂ITE(i) is the estimated ITE by eq. (3), and τITE(i)
is the ground-truth. A lower PEHE value indicates the more
accurate estimation of both the factual and the counterfactual
responses.

As a second metric, we consider the absolute error in the
estimated average treatment effect (ATE) [24].

εATE = |τATE − τ̂ATE| (39)

where τ̂ATE = 1
n

∑n
i=1 τ̂ITE(i) is computed by averaging ITE,

and τATE = is the ground truth.
The third metric is the absolute error in the estimated

average treatment effect on the treated (ATT).

εATT = |τATT − τ̂ATT| (40)

ATT reflects the treatment effect on the outcome among
those who received the treatment ti = 1, i.e., τATT =
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(a) Examples of CausalOT on IHDP dataset: 50 samples.

(b) Examples of CausalOT on IHDP dataset: 100 samples.

Fig. 4: Left column: The transport mapping from factual
outcomes and estimated counterfactual outcomes by Causa-
lOT. The grey line between two points indicates the coupling
between them. Right column: coupling matrix γ over the
factual space and the counterfactual space.

1
n∗

∑n∗
i=1 τ̂ITE(i) and n∗ is the number of treated units.

We average over 5 splits of train/validation/test with ratios
60/30/10, and then evaluate the criterion on the testing sample
in 100 different experiments on both datasets.

As no ground truth is available for ITE in Jobs, the policy
risk [16] is used for the dataset Jobs,

Rpol(πf ) = 1− E [ŷt|πf = 1] p(πf = 1)

− E [ŷc|πf = 0] p(πf = 0)
(41)

where πf = 1 if ŷt − ŷc > 0, and πf = 0, otherwise.

D. Results

A toy example of CausalOT. CausalOT formulates the
counterfactual inference as a regularized optimal transport
problem that maps the factual space to the counterfactual
space. Figure 3 visualizes the mapping process, which is pro-
duced by CausalOT on two synthetic datasets with n samples.
We simulate n samples, and each sample has one-dimensional
covariate x, treatment t and outcome y. For the convenience of
visualization, Figure 3 does not include t. Given ηi ∼ N (0, 1),
xi is simulated by a normal distribution ηi−2 for 0 < i < n/2,
and ηi+2 otherwise. For n = 100, the treatment ti determined
by covariate xi is binary, i.e., t = 0 for xi < 0 otherwise t = 1.
For n = 200, ti = 0 if ηi > 0, otherwise ti = 1. The factual
outcome y = σ∗N (0, 1)+x/4+0.1∗t and the counterfactual
outcome y = σ ∗N (0, 1)−x/4 + 0.1 ∗ (1− t). Figure 3 gives
two synthetic regression models for two potential outcome

models (i.e.,factual outcome and counterfactual outcome) each
of which with 200 samples. The corresponding marginal
distributions of covariates and outcomes for the sampling data
is depicted in the middle figure. With CausalOT method,
we can compute the transport maps between the factual
samples and counterfactual samples for inferring unknown
counterfactual outcomes. The green line in the right figure
indicates the coupling γ between the factual outcome and the
counterfactual outcome. Recall that γi,j indicates the amount
of mass (the propensity measure) flowing from the factual
sample i to the counterfactual sample j, we depict 30 green
lines corresponding to top 30 values in γ.

Illustration of CausalOT on IHDP. We illustrate the
behavior of the proposed CausalOT method on two subsets
of IHDP with 50 and 100 samples, respectively. CausalOT
aims to estimate the treatment effect from the observations,
which requires to infer the unknown counterfactual outcomes.
Before presenting the results of treatment effect estimation,
we first illustrate our CausalOT on counterfactual inference.
As shown in Figure 4, the left figure includes two colour points
corresponding to the factual outcomes and the counterfactual
outcomes. The grey line in the left figures indicates a coupling
matrix γ between the factual outcomes and the counterfactual
outcome. The lighter point is a larger value indicating that the
corresponding element of coupling matrix is higher.

Treatment effect estimation. We further evaluate those
methods on IHDP and News datasets by εPEHE, εATE and
εATT. For dataset Twins and Jobs, we report the εPEHE and
Rpol(πf ) both in-sample and out-of-sample as in Table IV.
Apparently, our CausalOT method outperforms the baselines,
in which the counterfactual loss accounts for the improvement
in the accuracy of treatment effect estimation. BalanceNN
obtains better εPEHE than CausalForest and BART on both
datasets, as it considers the balanced property across the
treated and the controlled units. On the dataset IHDP, Causal-
Forest and BART outperform slightly BalanceNN on εATE
and εATT , and this might due to the fact that BalanceNN has
more parameters to be optimized but IHDP is a relatively small
dataset. Both BalanceNN and DoubleRobust perform slightly
worse than CausalForest. PscoreMatch fails to find good match
for treated units as the dimension of covariates in News dataset
is high, which results in its deteriorated performance when
compared with that on IHDP dataset.

TABLE II: Comparison results on IHDP dataset.

Method IHDP
√
εPEHE εATE εATT

OLS-1 5.41±0.3 0.72±0.2 1.80±0.4
OLS-2 4.32±0.2 0.19±0.1 0.93±0.2

PscoreMatch 3.90±1.3 0.82±0.6 2.32±1.6
DoubleRobust 5.12±0.3 0.27±0.1 1.21±0.2

BART 2.65±0.4 0.24±0.3 0.49±0.6
CausalForest 4.14±0.2 0.22±0.8 0.85±1.0
BalanceNN 3.01±0.3 0.39±0.0 0.67±0.0
CausalOT 2.22±0.2 0.15±0.0 0.34±0.1

To investigate how the performance of causal inference is
affected by the size of overlapping between the treated and
the controlled units, we vary the assignment bias for News
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(a) εATE on News under different κ. (b)
√
εPEHE on News under different κ.

TABLE III: Comparison results on News dataset.

Method News
√
εPEHE εATE εATT

OLS-1 4.59±0.1 0.96±0.3 1.53±0.2
OLS-2 4.20±0.2 0.87±0.0 0.74±0.1

PscoreMatch 4.62±1.0 1.3±0.7 0.89±0.7
DoubleRobust 4.38±0.1 0.92±0.6 1.12±0.3

BART 3.77±0.1 0.78±0.5 0.67±0.7
CausalForest 4.12±0.2 0.84±0.1 1.24±1.1
BalanceNN 3.65±0.2 0.65±0.0 0.72±0.3
CausalOT 3.40±0.1 0.57±0.0 0.55±0.1

TABLE IV: Comparison results on Twins and Jobs dataset.

Method Twins εPEHE Jobs Rpol(πf )

In-sample Out-sample In-sample Out-sample

OLS-1 0.32±0.01 0.33±0.00 0.24±0.00 0.25±0.00
OLS-2 0.31±0.02 0.34±0.02 0.22±0.00 0.23±0.01

PscoreMatch 0.33±0.03 0.34±0.02 0.30±0.01 0.31±0.02
DoubleRobust 0.35±0.01 0.36±0.02 0.29±0.02 0.32±0.02

BART 0.32±0.01 0.33±0.01 0.24±0.01 0.26±0.03
CausalForest 0.37±0.01 0.40±0.01 0.25±0.02 0.29±0.00
BalanceNN 0.30±0.01 0.31±0.00 0.21±0.01 0.24±0.01
CausalOT 0.29±0.00 0.30±0.01 0.20±0.01 0.21±0.03

dataset. A higher assignment bias indicates that less overlap
between the treated and the controlled units. The treatment
assignment of an News item x to a device t ∈ {0, 1} is biased
towards the preferred device for that item. As in [15], we
assign the observed treatment by t ∼ Bern(softmax(κyFj ))
with a coefficient κ ≥ 0 determining the strength of the bias.
We set κ in the range (0, 10), where κ = 0 represents no
assignment bias. We repeat the generative process 20 times
for every κ.

Apparently, CausalOT achieves the best results under dif-
ferent biases κ, as shown in Figures 5a and 5b. Namely,
CausalOT is more robust to high assignment bias than ex-
isting state-of-the-art methods. This is because our method
transports the propensity measures that statistically capture
the global informative covariates among the factual and the
counterfactual space to alleviate the issue of limited overlap.
BalanceNN performs well and stably as the increasing of the
treatment assignment bias, because it can learn a balanced
representation for treated and controlled units. PscoreMatch,

DoubleRobust and OLS-2 perform similarly on the balanced
observed covariates for κ = 0. The performance of most
baselines degrade dramatically as the treatment bias increases
to the maximum value, which indicates that they are sensitive
to the relative sample sizes of the treated and the controlled
units.

Impact of trade-off parameter λ. As defined in objective
function (11), the parameter λ > 0 balances the contributions
of transport loss C(u,v) and counterfactual loss R(y, h(v)).
Figure 6 plots the performance of CausalOT under various λ
on datasets IHDP and News. When λ → +∞, the objective
function L is mainly dominated by C(u,v) and thus is less
affected by R(y, h(v)). Figure 6 indicates that relying mostly
C(u,v) leads to a deteriorate accuracy of treatment effect
estimation. Increasing the contribution of R(y, h(v)) (e.g.,
decreasing λ = 100 to λ = 10−5) allows a performance
gain, i.e., the errors of PEHE and τATE are reduced. Namely,
counterfactual lossR(y, h(v)) contributes more than transport
loss C(u,v) to improving the performance on treatment effect
estimation. Using λ being in the range of (10−3, 10−1) leads
to the best performance on datasets IHDP and News.

Discussion of propensity score model. We defines a
new propensity score measure that relies on the choice of
propensity score model. The misspecification of propensity
score indeed affects the performance of CausalOT. Following
the pioneer work [5] in causal inference, we model the
propensity score using logistic regression due to its simplicity
and robustness. The parameters of the logistic regression can
be tuned to achieve high accuracy. For instance, the trained
logistic regression achieves accuracy of 0.901 for estimating
the propensity scores on IHDP dataset, which results in√
εPEHE = 2.22±0.2 for treatment effect estimation. Inspired

by [48], we train an advanced machine learning method (i.e.,
super-learner) to estimate the propensity score. We run the
trained super-learner 100 times and achieve average accuracy
of 0.931 on IHDP. Compared with logistic regression, the
treatment effect estimation under the super-learner achieves
very limited improvements with

√
εPEHE = 2.20 ± 0.3.

Following this, we resort to the common choice of logistic
regression for the estimation of propensity score.
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(a) IHDP dataset

(b) News dataset

Fig. 6:
√
εPEHE and εATE under different λ

.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose an effective causal inference
method CausalOT based on the optimal transport theory.
First, we propose a novel propensity measure to capture the
covariates and treatment assignment in factual and counter-
factual space. With the propensity measure, CausalOT can
reformulate the counterfactual outcome inference as a novel
regularized optimal transport problem. Such reformulation is
capable of utilizing the global information of observational
covariates to alleviate the issue of limited overlapping. Second,
to further guarantee the accuracy of counterfactual inference,
we design a novel counterfactual loss for CausalOT to align the
transported factual outcome during the transport of covariates.
For the computation efficiency of CausalOT, we propose a
proximal point algorithm based on Bregman divergence. Third,
we prove that the counterfactual error of our CausalOT is
bounded by the Wasserstein distance, which guarantees that
CausalOT has a good generalization on the treatment effect
estimation. Extensive empirical results confirm the superior
performance of the proposed CausalOT method when com-
pared with state-of-the-art methods.

CausalOT method uses raw covariates for the observa-
tional study, and our future research will incorporate available
domain expertise or context knowledge to achieve higher
interpretability.
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