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ABSTRACT

Image super-resolution is an important problem in the computer vision field.
Image super-resolution aims to generate high-resolution images with an “ideal” ap-
pearance from low-resolution ones. From traditional interpolation methods (bilinear,
bicubic et al.) to CNN methods, the quality of reconstructed HR image is highly
improved. However, most of these methods are failing to keep texture details and

edge structure, especially in highly complicated texture area.

To tackle such problems, fractal geometry is applied to image super-resolution,
which demonstrates its advantages when describing the complicated details in an im-
age. The common fractal-based method does not distinguish the complexity differ-
ence of texture across all regions of image regardless of smooth regions or texture-rich
regions. Due to such strong presumption, it causes artificial errors while recovering
smooth area and texture blurring at the regions with rich texture. This thesis firstly
proposes a rational fractal interpolation model with various setting in different re-
gions to adapt to the local texture complexity. Secondly, it should keep the degree
of image roughness non-decreasing, which reflects various texture features and ap-
pearance during the image super-resolution process. However, this point is not well
addressed in the current work. This thesis argues that reducing roughness during
image super-resolution is the key reason causing various problems such as artificial
texture and/or edge blur. Here, keeping the image roughness non-decreasing during
super-resolution is being well investigated for the first time to our best knowledge.
Thirdly, fine details are more related to the information in the high-frequency spec-
trum on the Fourier domain. Most of the existing methods do not have specific
modules to handle such high-frequency information adaptively. Thus, they cause
edge blur or texture disorder. To tackle the problems, this thesis explores im-
age super-resolution on multiple sub-bands of the corresponding image, which are

generated by NonSubsampled Contourlet Transform (NSCT). Different sub-bands



hold the information of different frequency which is then related to the detailed-
ness of information of the given low-resolution image. Our extensive experimental
results demonstrate that the proposed method achieves encouraging performance

with state-of-the-art super-resolution algorithms.
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