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Abstract

Objective

Mercury and other toxic metals have been suggested to be involved in thyroid disorders, but

the distribution and prevalence of mercury in the human thyroid gland is not known. We

therefore used two elemental bio-imaging techniques to look at the distribution of mercury

and other toxic metals in the thyroid glands of people over a wide range of ages.

Materials and methods

Formalin-fixed paraffin-embedded thyroid tissue blocks were obtained from 115 people

aged 1–104 years old, with varied clinicopathological conditions, who had thyroid samples

removed during forensic/coronial autopsies. Seven-micron sections from these tissue

blocks were used to detect intracellular inorganic mercury using autometallography. The

presence of mercury was confirmed using laser ablation-inductively coupled plasma-mass

spectrometry which can detect multiple elements.

Results

Mercury was found on autometallography in the thyroid follicular cells of 4% of people aged

1–29 years, 9% aged 30–59 years, and 38% aged 60–104 years. Laser ablation-inductively cou-

pled plasma-mass spectrometry confirmed the presence of mercury in samples staining with

autometallography, and detected cadmium, lead, iron, nickel and silver in selected samples.

Conclusions

The proportion of people with mercury in their thyroid follicular cells increases with age, until

it is present in over one-third of people aged 60 years and over. Other toxic metals in thyroid

cells could enhance mercury toxicity. Mercury can trigger genotoxicity, autoimmune reac-

tions, and oxidative damage, which raises the possibility that mercury could play a role in

the pathogenesis of thyroid cancers, autoimmune thyroiditis, and hypothyroidism.
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Introduction

Environmental factors are estimated to contribute more that 40% to the risk of thyroid can-

cers [1] and about 25% to the risk of autoimmune thyroiditis [2]. The nature of these risk

factors remains largely unknown [3], but one topic of interest has been the possibility that

heavy metals may play a role in thyroid disorders since the thyroid gland appears to be a tar-

get for environmental toxic metals [4, 5]. Evidence for a role for toxic metals comes from

epidemiological and experimental studies showing the effects of toxic metals on thyroid

function, with most studies focusing on mercury, cadmium, and lead [4, 6–8]. However,

conflicting results, underpowered epidemiological studies, problems in establishing envi-

ronmental sources of heavy metal exposure, and difficulties in translating the findings of

animal toxicant studies to human toxicant exposure, have hampered research in this field.

Animal studies indicate that the thyroid gland of the rat, dog and monkey are predisposed

to take up heavy metals such as mercury [5, 9, 10], but animal studies cannot replicate the

human experience of being exposed long-term to continuous or repeated low levels of toxic

metals that bioaccumulate in tissues. They also do not account for potential human genetic

susceptibilities to heavy metal toxicity [11, 12]. Finding environmental influences on thy-

roid disorders remains an important topic, particularly since many of these disorders are

reported to be increasing in incidence [1, 13–17], raising suspicion that environmental pol-

lutants may contribute to this increase [3].

Few studies of toxic metals in the human thyroid are available [5, 18, 19]. Levels of mercury

in autopsy-sampled thyroid, measured by atomic absorption, were five times higher in people

with more than 11 occlusal mercury-containing amalgam fillings than people with fewer than

four such fillings [18]. Similarly, levels of mercury in autopsy-sampled thyroids, measured by

inductively coupled plasma-mass spectrometry, correlated with the numbers of dental amal-

gam surfaces present [19]. In tissue samples removed at surgery from euthyroid subjects, levels

of elements such as mercury and cadmium, measured with inductively coupled plasma-mass

spectrometry, were higher in the thyroid than in adjacent muscle and fat samples [5]. In these

studies, thyroid tissue had to be digested before analysis so elements could not be located

within specific cells. This is relevant to the thyroid, since its follicular architecture means the

overall cellularity of the thyroid is low, so elements present at low levels, or at high levels in

only a few cells, are difficult to detect.

To gain a clearer picture of the role of toxic metals in thyroid disorders, we designed a proj-

ect with two differences to previous studies. First, we used two elemental bio-imaging tech-

niques that allowed us to study the cellular distribution of mercury and other toxic metals in

sections of human thyroid glands. Second, we analysed autopsy-derived thyroid samples from

people with a spectrum of clinicopathological conditions, and from a wide range of ages, from

which we could estimate the prevalence of mercury-containing thyroid glands and the effect of

aging on the mercury content of the thyroid.

Materials and methods

Ethics

This study (X14-029) was approved by the Human Research Committee, Sydney Local

Health District (Royal Prince Alfred Hospital Zone). This institutional review board waived

the need for written informed consent from relatives of individuals studied since this was a

de-identified retrospective study of archived paraffin-embedded tissue. Data were fully

anonymised on the research database after initial access to Department of Forensic Medi-

cine records.

PLOS ONE Mercury in the thyroid

PLOS ONE | https://doi.org/10.1371/journal.pone.0246748 February 9, 2021 2 / 16

DE180100194. PAD and DPB are supported by a

National Institute of Health Grant R21AR072950.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0246748


Sample collection

Paraffin-embedded thyroid tissue blocks were obtained from The New South Wales Depart-

ment of Forensic Medicine tissue archive. These had been taken as part of standard tissue sam-

pling from the autopsies of 115 people (68 male, 47 female) with a mean age of 54 years,

median age of 47 years, age range 1–104 years, and SD 27 years (Table 1). Major medical con-

ditions were: none known (N = 50), neurodegenerative disease (N = 33), psychosis (N = 27),

Table 1. Age, gender, and follicular cell autometallography of samples.

ID Age Gender AMG ID Age Gender AMG ID Age Gender AMG

T1 1 Female 0 T40 39 Male ++ T79 70 Male +

T2 2 Male 0 T41 39 Male 0 T80 71 Female 0

T3 4 Male 0 T42 39 Male 0 T81 72 Female ++

T4 9 Male 0 T43 40 Female 0 T82 72 Female 0

T5 16 Male 0 T44 40 Female 0 T83 74 Male +

T6 18 Male 0 T45 41 Male 0 T84 74 Female ++

T7 18 Female 0 T46 41 Female 0 T85 75 Male 0

T8 18 Female 0 T47 41 Male 0 T86 76 Female ++

T9 20 Male 0 T48 42 Male 0 T87 77 Female +

T10 20 Male 0 T49 43 Male 0 T88 77 Female 0

T11 20 Female 0 T50 43 Male 0 T89 77 Male 0

T12 20 Male 0 T51 43 Male 0 T90 80 Male 0

T13 21 Female 0 T52 44 Male 0 T91 81 Female ++

T14 22 Female 0 T53 44 Female 0 T92 83 Male ++

T15 23 Male 0 T54 45 Male ++ T93 86 Male +

T16 24 Male 0 T55 45 Male 0 T94 86 Female 0

T17 25 Female 0 T56 45 Male 0 T95 87 Female 0

T18 26 Female 0 T57 46 Female 0 T96 89 Female +

T19 26 Male 0 T58 47 Male 0 T97 95 Female 0

T20 28 Male 0 T59 47 Male + T98 95 Female 0

T21 29 Female 0 T60 48 Female 0 T99 95 Male 0

T22 29 Male 0 T61 49 Female + T100 95 Female ++

T23 29 Male ++ T62 49 Male 0 T101 95 Female +

T24 30 Male 0 T63 49 Male 0 T102 96 Female 0

T25 30 Male 0 T64 49 Male 0 T103 96 Male +

T26 30 Male 0 T65 53 Male 0 T104 96 Male 0

T27 33 Male 0 T66 54 Male 0 T105 96 Female 0

T28 34 Male 0 T67 55 Male 0 T106 96 Female 0

T29 35 Male 0 T68 58 Male 0 T107 97 Female 0

T30 35 Female 0 T69 59 Female 0 T108 97 Female 0

T31 35 Female 0 T70 59 Male 0 T109 97 Female 0

T32 36 Male 0 T71 61 Male 0 T110 98 Male 0

T33 36 Female 0 T72 61 Male 0 T111 98 Male +

T34 37 Male 0 T73 61 Female ++ T112 99 Male 0

T35 37 Male 0 T74 62 Male ++ T113 100 Male 0

T36 37 Female 0 T75 66 Male 0 T114 104 Female 0

T37 38 Female 0 T76 67 Male + T115 104 Female 0

T38 38 Male 0 T77 69 Male 0

T39 38 Female 0 T78 70 Male 0

Age: years, AMG: autometallography staining of follicular cells, ID: sample identity number, 0: no AMG-positive follicular cells, +: AMG-positive follicular cells but

fewer than five follicles with 50% or more AMG-positive cells, ++: at least five follicles with 50% or more AMG-positive cells.

https://doi.org/10.1371/journal.pone.0246748.t001
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epilepsy (N = 2), and one each of anorexia nervosa, cancer, and Down syndrome. Causes of

death were: suicide (N = 26), trauma (N = 17), drowning (N = 16), cardiovascular (N = 14),

drug overdose (N = 14), infection (N = 8), undetermined (N = 6), choking (N = 5), cerebrovas-

cular (N = 3), cancer (N = 2), and one each of hypothermia, respiratory insufficiency, sudden

unexpected death from epilepsy, and undernutrition.

Autometallography

Paraffin blocks were sectioned at 7 μm with a Feather S35 stainless steel disposable microtome

blade and deparaffinised. Sections were stained for inorganic mercury using silver nitrate auto-

metallography, which represents the presence of mercury as black silver grains surrounding the

mercury [20]. Autometallography is a sensitive amplification technique that can detect as few as

10 mercury sulphide/selenide molecules in a cell [21]. Briefly, sections were placed in physical

developer containing 50% gum arabic, citrate buffer, hydroquinone and silver nitrate at 26˚C

for 80 min in the dark then washed in 5% sodium thiosulphate to remove unbound silver. Sec-

tions were counterstained with mercury-free hematoxylin and viewed with bright-field micros-

copy. Each staining run included a control section of mouse spinal cord where motor neuron

cell bodies contained mercury following an intraperitoneal injection of mercuric chloride, with

archived paraffin blocks used from a previous experiment approved by the University of Sydney

Animal Ethics Committee [22]. Sections were stained with hematoxylin only to act as a control

for the autometallography-stained sections, to ensure any black grains seen were from the auto-

metallography and not from the melanin-like pigment that can occasionally be seen in follicular

cells [23]. Autometallography staining of the thyroid was categorised as either: 0: no AMG-posi-

tive follicular cells, +: AMG-positive follicular cells but fewer than five follicles with 50% or

more AMG-positive cells, or ++: at least five follicles with 50% or more AMG-positive cells.

Laser ablation-inductively coupled plasma-mass spectrometry

(LA-ICP-MS)

To confirm which metal autometallography was demonstrating (since autometallography can

also detect inorganic silver and bismuth) and to look for the presence of other toxic metals, 7 μm

paraffin sections of selected thyroid samples were deparaffinised and subjected to LA-ICP-MS for

mercury, silver, bismuth, aluminium, gold, cadmium, chromium, iron, nickel and lead, as well as

for phosphorus (contained in cell nuclei) to assess cellular density. Analyses were carried out on a

New Wave Research NWR-193 laser or a Teledyne Cetac LSX-213 G2+ laser hyphenated to an

Agilent Technologies 7700x ICP-MS, with argon used as the carrier gas. LA-ICP-MS conditions

were optimised on NIST 612 Trace Element in Glass CRM and the sample was ablated with a

50 μm spot size and a scan speed of 100 μm/s at a frequency of 20 Hz. The data were collated into

a single image file using in-house developed software and visualised using FIJI.

Statistical analyses

Prism v8.4 software was used for chi-square analyses with Fisher’s exact test to compare cate-

gorical variables, chi-square analysis for trend to look for age-effects in groups, and t-tests to

compare continuous variables. Significance was assessed at the 0.05 level.

Results

Autometallography

Mercury-staining black grains were seen in the cytoplasm of follicular cells in 22 of the 115

(19%) samples, 15 with category + and 7 with category ++ autometallography (the latter all
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Fig 1. Mercury staining in the thyroid gland. Insets are enlarged views from the dashed-line rectangles. (A) Dense mercury grains (eg, arrow in inset) are present

in most cells of these thyroid follicles (T81). (B) Another region of the thyroid in sample A shows mercury grains in only a few scattered follicular cells (eg,

arrowhead), showing the variability of mercury uptake in different regions of the thyroid (T81). (C) Black mercury grains (eg, arrow) are seen in fewer that 50% of

the follicular cells in this thyroid (T87). (D) Multiple small mercury grains (eg, arrowhead) are present in most cells of this follicle (T23). (E) In some follicles, a

mixture of cells containing mercury (arrowhead, left) and lipofuscin (eg, arrowhead, right) were seen (T103). (F) No black mercury grains are seen in the cells (eg,

arrowhead) of these follicles (T97). Autometallography/hematoxylin. T: sample identity number (see Table 1).

https://doi.org/10.1371/journal.pone.0246748.g001
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aged over 70 years) (Fig 1, Table 1). The density of mercury staining in individual follicular

cells varied within and between samples. The proportion of follicular cells containing mercury

also varied within samples, as well as between samples.

Proportion of people with mercury in their thyroid glands

The proportion of people with mercury in their thyroid follicular cells was 4% in the 1–29

years age range, 9% in the 30–59 years age range, and 38% in the 60–104 years age range

(trend p<0.0001) (Fig 2). The mean age of people with thyroid follicular cell mercury was

Fig 2. Proportion of people with follicular cells containing mercury. Mercury was seen on autometallography in the thyroid

follicular cells of 4% of people aged between 1–29 years old, 9% of people aged between 30–59 years old, and 38% of people

aged between 60–104 years old. Numbers above bars = numbers in age groups.

https://doi.org/10.1371/journal.pone.0246748.g002

PLOS ONE Mercury in the thyroid

PLOS ONE | https://doi.org/10.1371/journal.pone.0246748 February 9, 2021 6 / 16

https://doi.org/10.1371/journal.pone.0246748.g002
https://doi.org/10.1371/journal.pone.0246748


Fig 3. Localisation of mercury and cadmium with LA-ICP-MS. This sample (T40) showed autometallography staining of most

thyroid follicles. (A) Phosphorus imaging of cell nuclei demonstrates the follicular architecture of the thyroid. The filled arrow
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higher (mean age 71 years, SD 20 years, range 29 to 98 years) than those without mercury

(mean age 50 years, SD 28 years, range 1–104 years) (p = 0.001). The proportion of thyroid

samples containing mercury did not differ between males (12 out of 68, 18%) and females (10

out of 37, 21%) (p = 0.64), despite females having a higher mean age (61 years, SD 30 years)

than males (49 years, SD 25 years) (p = 0.028). There were insufficient numbers in subgroups

of pre-mortem medical conditions, or of causes of death, to undertake robust statistical analy-

sis of thyroid mercury in these subgroups.

LA-ICP-MS

LA-ICP-MS phosphorus images demonstrate cell nuclei and outlined the follicular architecture

of the thyroid (Fig 3). Metals such as mercury and cadmium could therefore be localised to fol-

licular cells using LA-ICP-MS (Fig 3). LA-ICP-MS images showed follicular cell mercury in all

the three autometallography-positive thyroid samples (Fig 4, Table 2), but no LA-ICP-MS mer-

cury was seen in three samples that did not stain with autometallography (Fig 5, Table 2).

Apart from mercury, four other potentially toxic metals were detected in the six LA-ICP-MS

samples (Figs 4 and 5, Table 2): follicular cadmium was detected in all six samples, iron in five

samples, lead in four samples, and nickel in two samples. Some background silver was seen in

two samples. Chromium, aluminium, bismuth and gold were not detected in any samples.

Discussion

A key finding of this study is that mercury is commonly present in human adult thyroid follic-

ular cells, raising the possibility that mercury could contribute to several thyroid disorders (S1

Fig). Other toxic metals such as cadmium and lead are also found in the human thyroid, sug-

gesting synergistic interactions between toxic metals could enhance mercury toxicity in thy-

roid cells [24].

We were unable to ascertain why usually only some follicular cells contained mercury, but

this variability in cellular mercury appears to be common in human tissues such as the brain

[25], pituitary [26], pancreas [27] and breast [28]. Of note, follicular cells within a single follicle

can be flattened on one side and cuboidal or columnar on the other, indicating the presence of

functional polarity [23]. Theoretically, either increased mercury uptake or decreased elimina-

tion in subsets of follicular cells could underlie this variability. Future studies of autometallo-

graphy combined with immunohistochemistry for a range of transporters of mercury both

into and out of cells [29, 30] would be needed to see if variability in these cellular transporters

underlies the patchy presence of mercury in follicular cells.

Toxic heavy metals such as mercury could trigger a variety of thyroid disorders since mer-

cury can initiate pathways leading to genetic mutations [31, 32], autoimmune reactions [33],

and oxygen free radical production [34, 35], mechanisms suspected to underlie the pathogene-

sis of thyroid cancers [36], autoimmune thyroiditis [37], and hypothyroidism [38]. Mercury

has genotoxic properties that could promote the formation of cancer-causing mutations [31,

32]. Mouse thyroid stem cells contain the mercury transporter ABCG2/BCRP, which suggests

thyroid stem cells (though not follicular cells that lack ABCG2/BCRP) have adapted to mercury

uptake and make efforts to rid themselves of this metal [39, 40]. Mercury is a known promoter

of autoimmune reactions [33, 41], so when the amount of mercury in thyroid follicular cells

reaches a critical level in people with a genetic predisposition to autoimmunity, autoimmune

shows an example of one complete follicle. The open arrow shows cells at one edge of a follicle. (B) Mercury is present in most

follicular cells. (C) Cadmium is present in scattered follicular cells. Scale = counts per second (proportional to abundance). T:

sample identity number (see Table 1).

https://doi.org/10.1371/journal.pone.0246748.g003

PLOS ONE Mercury in the thyroid

PLOS ONE | https://doi.org/10.1371/journal.pone.0246748 February 9, 2021 8 / 16

https://doi.org/10.1371/journal.pone.0246748.g003
https://doi.org/10.1371/journal.pone.0246748


thyroiditis could result [42, 43]. Some cases of hypothyroidism are thought to arise from sub-

clinical autoimmune thyroiditis [38], and the generation of oxygen free radicals by mercury

[35] is a further mechanism by which this metal could contribute to thyroid underactivity [44].

Fig 4. LA-ICP-MS of AMG-positive thyroid samples. Phosphorus images show the cellularity of the samples. (A) Follicular cells contain

mercury, cadmium, lead, iron, and nickel (T40). (B) Follicular cells contain mercury, cadmium and iron (T86). (C) Follicular cells contain

mercury, cadmium and iron (T91). Small discrete red dots, eg, in the lead image in B, are from surface contamination. An artefactual nickel

edge effect is seen in C. Scale = counts per second (proportional to abundance). T: sample identity number (see Table 1).

https://doi.org/10.1371/journal.pone.0246748.g004
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Evidence for a link between thyroid follicular cell mercury and oxidative stress could be sought

by combining autometallography with a histochemical marker of nucleic acid oxidative damage

[45]. A link between autoimmune thyroiditis and thyroid cancer has been noted by several

researchers, with the proposal that the cancer may arise from the chronic inflammation of the

thyroiditis [46, 47]; our finding of mercury in follicular cells suggests that mercury toxicity

underlying both disorders could be another reason these two disorders often co-exist.

Increases over time in the incidence of thyroid cancer, autoimmune thyroiditis, and hypo-

thyroidism have been reported [1, 13–17]. The amount of mercury in the global atmosphere

has increased since 1950 [48], mostly due to the burning of coal [49]. Atmospheric mercury

enters water and then seafood, especially in predatory fish where tissue mercury levels are ris-

ing [50]. Fish consumption is the commonest cause of human mercury exposure [51], and our

finding that mercury is often present in thyroid cells suggests this metal is a candidate to

explain the increasing incidence of a variety of thyroid disorders.

Of the non-mercury metals found in the thyroid, cadmium was most common, being pres-

ent in the follicular cells of all LA-ICP-MS samples. Cadmium is a known genotoxin that has

been implicated in thyroid cancer [52] and has endocrine-disrupting activities that could inter-

fere with thyroid function [8]. Cigarette smoke is a major source of cadmium exposure in

humans, but smoking appears to reduce rather than increase the risk of thyroid cancer [1],

with contradictory evidence concerning its role as a risk factor for autoimmune thyroiditis [3,

42, 53] and hypothyroidism [3, 7, 53]. Although from our LA-ICP-MS images it appears likely

that mercury and cadmium are co-located in some follicular cells, we cannot be sure this is the

case since the spot size for LA-ICP-MS is 50 μm, which is larger than a typical cuboidal follicu-

lar cell (about 10 μm, see Fig 1F). Other metals detected in the thyroid on LA-ICP-MS were

lead, iron, nickel and silver. Studies of the association of human thyroid hormones and lead

exposure have given inconsistent results [7] and a meta-analysis has not provided evidence

that occupational lead exposure affects thyroid function [54]. However, lead may recruit anti-

bodies that attack the thyroid [55], and could play a part in autoimmune thyroiditis [56] and

colloid goitre [57]. Iron is an essential metal but in large quantities, such as found in hemo-

chromatosis, it may cause hypothyroidism with antithyroid antibodies [58]. A systemic allergy

to nickel could result in an autoimmune reaction in people who have nickel in their thyroid

cells [59]. Silver nanoparticles can induce oxidative stress in cells [60]. Finally, all these metals

could interact with mercury to enhance thyroid cellular toxicity [24].

Table 2. Potentially toxic metals found by LA-ICP-MS in six human thyroid glands.

ID Site Hg Cd Pb Fe Ni Ag Cr Al Bi Au

T40 Follicular + + + + + - - - - -

Background - - - - - + - - - -

T86 Follicular + + - + - - - - - -

Background - - - - - - - - - -

T91 Follicular + + - - - - - - - -

Background - + - + - - - - - -

T97 Follicular - + - + - - - - - -

Background - + - + - - - - - -

T45 Follicular - + + + - - - - - -

Background - + - - - - - - - -

T70 Follicular - + + + - - - - - -

Background - - - - - + - - - -

Follicular: follicular epithelial cells, ID: sample identification number,—not detected, + detected.

https://doi.org/10.1371/journal.pone.0246748.t002
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Human exposure to environmental toxic metals is common, so it is likely that other risk

factors are needed to interact with metal toxicants before thyroid cells are damaged. Several

metabolic processes act to protect cells from metal toxicants, and genetic variants affecting

Fig 5. LA-ICP-MS of AMG-negative thyroid samples. Phosphorus images show the cellularity of the samples. (A) Cadmium

lead and iron are present in follicular cells (T97). (B) Cadmium, lead and iron (sporadically) are present in follicular cells (T45).

(C) Follicular cells contain cadmium, lead, iron and nickel (T70). Scale = counts per second (proportional to abundance). T:

sample identity number (see Table 1).

https://doi.org/10.1371/journal.pone.0246748.g005
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proteins in these pathways have been identified that could increase susceptibility to metals

such as mercury [11]. Selenium detoxifies cellular mercury, and low selenium levels have been

implicated in thyroid autoimmunity, cancer, and colloid goitre [56, 57, 61, 62]. However, we

have no evidence from our study that follicular intracellular selenium levels were low, since

LA-ICP-MS is not a sensitive method of detecting selenium and no histological methods are

available to detect this element.

This study has several limitations. (1) Our forensic/coronial autopsy series provided thyroid

samples from people over a wide range of ages and from varied clinic pathological conditions.

However, no autopsy series can precisely replicate prevalence data from a living human popu-

lation. (2) We did not have enough clinical information to know if any of the people in our

study had clinical thyroid disease. Future prospective elemental studies of thyroid tissue from

people with clinical data, thyroid function studies and thyroid autoantibodies would be needed

to correlate individual thyroid disorders with metal content of the thyroid gland. (3) Prospec-

tive in vivo biochemical and genomic studies will be needed to examine the roles of selenium

deficiency and genetic susceptibilities as susceptibility factors for metal toxicity in the thyroid.

(4) Nobody in our study population had thyroid cancer. A future study looking at the heavy

metal content of structurally normal thyroid tissue adjacent to thyroid cancers, as has been

undertaken for breast cancer and mercury [28], will be needed to determine whether genotoxic

metals are more commonly found in thyroid tissue from people with, compared to those with-

out, thyroid cancer. (5) We were unable to determine why mercury enters thyroid follicular

cells selectively. The presence of sulfhydryl groups and metallothionein in thyroid cells, which

bind metals such as mercury and cadmium, could be one factor in the accumulation and per-

sistence of these metals in thyroid cells. Future studies on toxic metals in the thyroid and their

relationship to the thyroid content of sulfhydryl groups and to metallothionein expression

could provide more information on this issue. (6) Autometallography can detect only inor-

ganic mercury, but since this appears to be the proximate toxic form of mercury in cells [63] it

is the most important form to identify.

In conclusion, mercury is found commonly in follicular cells of the human thyroid, the pro-

portion of people having mercury in their thyroid follicular cells increases with aging, and

other toxic metals such as cadmium are found often in the thyroid. Many toxic metals have

damaging actions which may contribute to the pathogenesis of thyroid cancer, autoimmune

thyroiditis, and hypothyroidism. Most effects of toxic metals on the human thyroid remain

hypothetical (S1 Fig), so future prospective experiments correlating the presence of toxic met-

als in the thyroid with specific thyroid disorders will be needed to shed further light on the role

toxic metals such as mercury play in thyroid diseases.

Supporting information

S1 Fig. Hypothetical pathway indicating how mercury and other toxic metals could

increase the risk of thyroid disorders. Human exposure to mercury from (1) consumption of

marine or freshwater fish, crustaceans and molluscs, (2) occupations, or (3) dental amalgam

fillings results in inorganic or methylmercury being deposited in thyroid follicular cells. Meth-

ylmercury is slowly converted into inorganic mercury in cells. The toxicity of mercury could

be enhanced by genetically susceptibilities, selenium deficiency, or the presence of other toxic

metals. After bioaccumulation, critical intracellular level of mercury could produce genetic

mutations triggering cancer, autoimmune reactions causing thyroiditis and hypothyroidism,

and oxidative damage contributing further to hypothyroidism.

(TIF)
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