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literature regarding the detection of neuroinflammation using
doi: 10.1002/cti2.1318 cerebrospinal fluid (CSF) metabolomics in human cohort studies.

Studies of classic neuroinflammatory disorders such as encephalitis,
CNS infection and multiple sclerosis confirm the utility of CSF
metabolomics. Additionally, studies in neurodegeneration and
neuropsychiatry support the emerging potential of CSF
metabolomics to detect neuroinflammation in common CNS
diseases such as Alzheimer's disease and depression. We
demonstrate metabolites in the tryptophan-kynurenine pathway,
nitric oxide pathway, neopterin and major lipid species show
moderately consistent ability to differentiate patients with
neuroinflammation  from  controls. Integration of CSF
metabolomics into clinical practice is warranted to improve
recognition and treatment of neuroinflammation.
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INTRODUCTION injury, toxic (netak.)olltes or ‘degene'ratlon'. In the

case of acquired inflammation or infection, the
Neuroinflammation is inflammation of the central inflammatory response is driven by invading
nervous system (CNS) initiated in response to immune cells such as infiltrating lymphocytes or

either infection, autoimmunity, traumatic brain monocytes. In addition, inflammation can be
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CSF metabolomics of human neuroinflammation

mediated by resident immune cells of the brain
such as microglia, which can contribute to
neuronal damage or repair.

Encephalitis is inflammation of the brain as a
result of viral infection or an autoimmunity.
Meningitis is another dangerous inflammatory
condition of the meninges surrounding the brain
and is caused by invasive viruses and bacteria.’
The significant mortality and morbidity of
encephalitis and meningitis has directed great
attention to explore the pathophysiologic
mechanisms, and biomarkers for identification.??
In addition, there is increasing evidence that
inflammation occurs in common
neurodevelopmental diseases such as autism,
common neuropsychiatric diseases such as
depression, and common neurodegenerative
diseases such as Alzheimer's disease. As
inflammation is potentially modifiable, novel
methods to define brain inflammation are
needed.

CEREBROSPINAL FLUID AS A BIOFLUID
OF DIAGNOSTIC UTILITY FOR
METABOLOMICS

Cerebrospinal fluid (CSF) is the most useful
biofluid for analysing brain metabolism and
provides a valuable opportunity to detect

neuroinflammation in human CNS diseases.* The
information derived from CSF metabolomics can
offer insight into cellular processes, which can
further provide deeper understanding of
molecular mechanisms of diseases.>® CSF is the
closest biological biofluid to the brain and directly
reflects the pathophysiological alterations of the
CNS.> CSF is a colourless filtrated product of blood
plasma located in the subarachnoid spaces and
ventricles of the brain. The production of CSF
occurs mainly in the choroid plexus at a rate of
400-600 mL per day.” This is driven by a
combination of processes including active
transport and diffusion. CSF is mainly composed
of water and contains enzymes, metal ions or
salts, micronutrients, neurotransmitters, amino
acids, glucose, carbohydrates, short-chain fatty
acids, alcohols, peptides and low protein content.®
CSF is circulated within the cranial and spinal
arachnoid villus sites and absorbed through the
arachnoid villi and into the venous outflow
system. The analysis of CSF metabolites,
interpretation of metabolite data and subsequent
biochemical changes are fundamental to
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understand  neuroinflammatory = mechanisms,
identify biomarkers, enable prognosis of disease
developments and provide treatment strategies.
The workflow for CSF metabolomics analysis
involves three major steps: pre-analytical work,
analytical work and data processing.® The pre-
analytical stages require careful handling in the
collection, preprocessing and storage steps of CSF
to ensure the integrity of the samples before
chemical analysis. In the analytical stage, there are
multiple steps involved in CSF metabolite
extractions and data acquisition using analytical
technologies. The data processing stage in
metabolomics is composed of (i) feature
detection, (ii) retention time correction, (iii)
chemical shift (or chromatogram) alignment, (iv)
metabolite feature annotation and grouping and
(v) metabolite identification. Following data
processing, the data quality assessment, including
the signal intensity drift correction (within and
between batches) and data normalisation, is
required prior to statistical analysis. Multivariate
statistical methods (such as principal component
analysis and partial least squares discriminant

analysis) identify relationships between
metabolite  features and allow  sample
discrimination  or  classification.  Univariate

statistical methods (such as analysis of variance
and the Student’s t-test and the Kruskal-Wallis
test) assess the metabolite feature independently.

Standardised CSF sample handling procedures
are imperative in the search for reliable
biomarkers. It has been reported that delayed
storage and blood contamination of CSF result in
changes in prostaglandin D-synthase peptides,
amino acids and metabolites.’® CSF samples are
recommended to be centrifuged immediately after
collection and stored at —80°C. The common
extraction methods for CSF metabolites such as
organic solvent-based precipitation, ultrafiltration,
dilution and solid-phase extraction have been
extensively  reviewed  elsewhere.""  The
physicochemical diversity of the CSF metabolome
requires the use of multiple instrumental analytical
methods and complementary data acquisition
modes in order to maximise the metabolome
coverage, facilitate metabolite identification and
overcome bias from individual techniques. Nuclear
magnetic resonance (NMR) "' and mass
spectrometry-based methods (such as liquid
chromatography and gas chromatography)'®22 are
principal technological platforms employed for
metabolomics. The unique strengths in NMR and
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mass spectrometry technologies have contributed
to the rapid growth of metabolomics and shown to
be highly complementary. The importance of
combining the analytical techniques for
metabolomics has been demonstrated in several
studies.?>%°

The advancement of analytical technologies has
led to the demand of different data analysis tools
required in the process of extracting relevant
information. Data  preprocessing  software
packages, metabolite databases and libraries
available for NMR and mass spectrometry (MS)
metabolomics research have expanded, with
increased dependence on the wusage of
metabolome repositories and querying
platforms.?® The strategies involved in molecular
feature extractions and metabolite annotations
have been previously reviewed.?”3° Advanced
statistical tools such as chemometrics have become
an essential tool for the extraction of valuable
metabolic signature information. Chemometrics
has developed into a well-established statistical
tool in areas such as multivariate calibration,
pattern recognition, multivariate statistical process
control and quantitative structure modelling.3'34

CEREBROSPINAL FLUID
METABOLOMICS: BIOMARKERS OF
NEUROINFLAMMATION

The identification of biomarkers is clinically useful
for an accurate diagnosis, prognosis and disease
management.>®> CSF metabolomics applications
that focus on biomarker discovery offer the
promise of earlier detection and improved
outcomes. In this review, we discuss three main
metabolic pathways reported in human studies of
CNS inflammation, specifically tryptophan-
kynurenine, nitric  oxide, neopterin and
sphingolipid-ceramide. However, there are a
number of other metabolites and pathways
associated with inflammatory processes, including
biogenic amines, amino acids, neurotransmitters,
carbohydrates and lipids. The research in these
areas is on a smaller scale, is less consistent and
has broader variation of metabolic network
coverage across independent studies, which are
not discussed in this review.

Tryptophan-Kynurenine pathway

The tryptophan-kynurenine metabolic pathway
commences with the conversion of tryptophan
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into  kynurenine (Figure 1), stimulated by
indoleamine 2,3-dioxygenase 1 (IDO-1), IDO-2 or
a relatively newly discovered IDO-related
enzyme.®® Kynurenine is further metabolised
by three main enzymes, kynurenine
aminotransferase, kynurenine 3-monooxygenase
and kynureninase dividing into three arms
generating its metabolites, kynurenic acid (KA),
3-hydroxykynurenine (3-HK) and anthranilic acid
(AA), respectively. 3-HK and AA can be converted
to 3-hydroxyanthranilic acid (3-HAA) and
afterwards interacted with 3-hydroxyanthranilic
acid oxygenase to produce quinolinic acid (QA)
and picolinic acid (PIC).

The kynurenine pathway is involved in
neuroinflammation because of activation of IDO
and related enzymes. The activation of IDO,
mainly by dendritic cells and macrophages, causes
the depletion of tryptophan and an imbalanced
formation of neuroprotective and neurotoxic
metabolites (Figure 1). The IDO gene expression is
regulated and responsive to interferons, which
accounts for the increased activity of IDO upon
neuroinflammation.

Tryptophan plays a key role in the regulation of
protein biosynthesis, immune tolerance, cell
growth and proliferation. The depletion of
tryptophan  causes disruption to  systemic
homeostasis and  psychoneuroimmunological
consequences and is observed in a range of CNS
diseases with neuroinflammatory mechanisms.
Moreover, accelerated breakdown of tryptophan
will affect serotonin levels and consequently
create vulnerability to neuropsychiatric and
neuropsychological diseases.

Human cohort studies (with controls) of the
tryptophan-kynurenine pathway as a biomarker
of inflammation in CSF are shown in Table 1. As
shown, the studies vary in the size of patient and
control cohorts (Table 1). The disease states are
separated into CNS infections such as encephalitis,
meningitis or other infections known to affect the

CNS (e.g. hepatitis C, HIV and malaria).
Subsequently, studies on MS, a recognised
neuroinflammatory  disorder  of proposed
autoimmune aetiology, are reported.

Furthermore, Table 1 shows studies of diseases
where inflammation is increasingly described, such
as in neurodegeneration and mental health,
followed by other entities with possible
inflammatory associations. As seen in Table 1,
there are general trends that inflammation results
in decreased tryptophan, elevated kynurenine or
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Figure 1. Major pathways involved in neurological diseases with confirmed or suspected neuroinflammation — tryptophan-kynurenine pathway
(right above), nitric oxide pathway (left bottom), neopterin (right bottom) and sphingolipid—ceramide pathway (left above). Trends are highlighted
in red (representing statistically elevated in patients with neuroinflammation compared with controls) and blue (representing statistically decreased
in patients with neuroinflammation compared with controls). Neopterin is the most valuable inflammatory metabolite in the GTP-
tetrahydrobiopterin metabolism; therefore, the full pathway is not shown. 3-HAO, 3-hydroxyanthranilic acid oxygenase; ADMA, asymmetric

dimethylarginine; CerS, ceramide synthase; DEGS, dihydroceramide desaturase; GTPCH |, guanosine triphosphate cyclohydrolase I; IDO,

indoleamine 2,3-dioxygenase; IFN-y, interferon-gamma;

KAT, kynurenine aminotransferase;

KMO, kynurenine monooxygenase; KSR,

ketosphinganine reductase; KYNU, kynureninase; NO, nitric oxide; NOS, nitric oxide synthase; SMases, sphingomyelinases; SPT, serine

palmitoyltransferase; TDO, tryptophan 2,3-dioxygenase.

kynurenic acid, with elevated kynurenine/
tryptophan ratio (or decreased tryptophan/
kynurenine ratio). Quinolinic acid was almost
universally elevated, and picolinic acid was
generally reduced when measured. The analysis of
CSF metabolites in the tryptophan-kynurenine
pathway therefore holds promises as
inflammatory biomarkers in the early diagnosis
and prognosis of neurological pathologies and
provides insights into their pathophysiology. As
recently reviewed, it should be highlighted that
inflammation induced by activation of IDO and
tryptophan 2,3-dioxygenase (TDO) is often
inferred as a result of changes in metabolite
ratios, rather than actual measurement of
the IDO/TDO enzyme protein or activation
status.3’38

The development of inflammatory-mediated
neuropathology is associated with the changes of
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quinolinic acid levels.>*® Quinolinic acid is an
important metabolite inducing immunosuppression
and has been hypothesised to induce toxicity in
brain cells*® and interaction with glutamate
neurotoxicity.*  Further studies in common
neurological diseases with possible inflammatory
mechanisms such as neurodegeneration,
neuropsychiatry and neurodevelopmental disorders
are therefore warranted.

Nitric oxide pathway

The conversion of arginine to nitric oxide and
citrulline is stimulated by nitric oxide synthase
(NOS). In the body, there are three isoforms of
NOS, whereby inducible NOS (iNOS) is extensively
involved in the pathophysiology of inflammation
and responsible for the production of nitric
oxide.*** iNOS is expressed in microglia cells,
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astrocytes, neurons in CNS, macrophages,
endothelial cells at BBB, dendritic cells and
neutrophils. The inhibition of iINOS occurs by the
endogenous production of asymmetric
dimethylarginine.  Nitric oxide is further
metabolised to reactive nitrogen species,

including nitrate and nitrite. Citrulline is recycled
to form arginine by argininosuccinate and
argininosuccinate lyase, known as the citrulline-
nitric oxide cycle. Conversely, arginine can be
hydrolysed to produce orthinine via arginase and
subsequently converted to citrulline by ornithine
transcarbamylase.

Nitric oxide is a critical gaseous molecule
involved in neurotransmission, defence
mechanisms, and acute and chronic

inflammation.*? The nitric oxide pathway plays a
critical role in the regulation of immunoprotective
activities defending the body against infectious
organisms. However, failure of immune regulation
and overactivation of inflammatory pathways can
result in disease states. The altered concentrations
of CSF metabolites in the nitric oxide pathway
have been implicated in a wide range of human
diseases associated with inflammation as
summarised in Table 2. A variation of analytical
platforms, untargeted or targeted approaches and
study cohorts have been used (Table 2), and the
cohort studies are subgrouped in the same way as
Table 1. As shown in Table 2, asymmetric
dimethylarginine, orthinine, nitrite and nitrate
levels in CSF are generally increased in diseases
with confirmed or suspected CNS inflammation.
However, it should be noted that the studies
differ in methodology and differ in the measured
or reported metabolites. Figure 1 depicts the
metabolites that are generally elevated or
decreased. As is the case for the tryptophan-
kynurenine pathway, the activation of iNOS is
generally inferred by measuring the pre- and
post-metabolites, rather than actually measuring
iNOS.

Neopterin

Neopterin is regarded as a valuable early
biochemical marker of the cellular immune
response during inflammation** and is sometimes
used in clinical settings.*®> Guanosine triphosphate
(GTP) is converted to 7,8-dihydroneopterin
triphosphate via the actions of GTP cyclohydrolase
| (Figure 1). The activation of T cells induces the
enzymatic activity of GTP cyclohydrolase | via
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Australian and New Zealand Society for Immunology, Inc.

CSF metabolomics of human neuroinflammation

pro-inflammatory cytokines such as y-interferon,
leading to the production of neopterin by
macrophages and dendritic cells. Neopterin is a
direct product generated in the immune
activation of y-interferon able to be detected at
low concentrations and practical for clinical
assays.*®

The reported human cohort studies of CSF
neopterin as a biomarker of inflammation are
outlined in Table 3. The disease states have been
classified into CNS infections including HIV,
encephalitis, meningitis or other infections
affecting the brain (e.g. HTLV-1, HAT). Moreover,
studies investigated in MS, neurodegeneration,
CNS tumors and autism are reported. CSF
neopterin was found to be predominantly
elevated in neurological diseases  with
inflammatory mechanisms. A strong correlation
between elevated neopterin and the kynurenine/
tryptophan ratio has also been reported.*"*®
Therefore, CSF neopterin serves as a strong
inflammatory biomarker for practitioners.

Lipids

Lipids are present in high concentrations in the
CNS and play important roles in the cellular
structure, cell signalling and energy storage.
Sphingomyelin, ceramide, phosphatidylcholine,
cholesterol and sulphatides are the most
abundant lipid classes in the CNS.*® Sphingolipids
are crucial in the regulation of cellular processes
including cell proliferation, apoptosis, autophagy
and inflammatory responses. Ceramide is involved
in oxidative stress, stimulation of apoptosis and
inflammatory  processes.  Phosphatidylcholines
ensure the balance between cell proliferation and
death and are key substrates to modulate
inflammation and release fatty acids such as
linoleic acid and arachidonic acid.

The de novo synthesis of the sphingolipid—
ceramide  pathway commences with the
condensation of serine and palmitoyl-CoA by
serine palmitoyltransferase and further reduced
by  ketosphinganine  reductase to form
sphinganine (Figure 1). Sphinganine is acetylated
by ceramide synthase to form dihydroceramide
and subsequently converted to ceramide through
dihydroceramide desaturase. Alternatively,
sphingomyelin is hydrolysed by sphingomyelinases
to form ceramide.

The dysregulation of sphingolipids, ceramide,
phospholipids and oxylipins has been reported in
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Table 4. Continued.

© 2021 The Authors. Clinical & Translational Inmunology published by John Wiley & Sons Australia, Ltd on behalf of
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Findings

Ref

PC  Other

Cer

SM

Analytical platform

Description of control group

Disease cohort

Other

136
137

0 I PE

Y
"

LC-MS/MS untargeted

Non-post-operative delirium (n = 30)

Post-operative delirium (n = 40)

FIA-MS/MS targeted

8)

Idiopathic oculomotor nerve palsy (n = 8); brainstem or

normal pressure hydrocephalus (n

=23)

Progressive multifocal leucoencephalopathy (n

Guillain-Barré syndrome (n = 86)

138

T LPC

NMR, GC-TOF/MS,

LC-MS/MS
untargeted

| acetate

spinal cord ischaemia (n = 5); idiopathic brachial

;

plexopathy (n = 1); Wernicke encephalopathy (n
Vernet's syndrome (n = 1); motor neuron disease

1); nutrition

1); pineal gland tumor

(n = 1); diabetic polyneuropathy (n

deficiency syndrome (n

(n=1)

Cohorts are separated into subgroups (e.g. encephalitis). Trepresents statistically elevated metabolite in patients compared with controls, | represents statistically decreased metabolite in patients

compared with controls, <> reports no statistical difference between groups, and blank represents ‘not reported or not measured’. Ratios are represented by x/y (e.g. SM/Cer).

10-HDA, 10-hydroxydecanoic acid; 13-HODE, 13-hydroxyoctadecadienoic acid; 15(S)-HETE, 15-(S)-hydroxyeicosatetraenoic acid; 3-OHB, 3-hydroxybutyrate; 9-HODE, 9-hydroxyoctadecadienoic
acid; ARA, arachidonic acid; Cer, ceramide; DhCer, dihydroceramide; DLGA, dihomo-y-linolenic acid; LPC, lysophosphatidylcholine; PC, phosphatidylcholines; PE, phosphatidylethanolamine; PGE2,

prostaglandin E2; S1P, sphingosine-1-phosphate; SM, sphingomyelins.

CSF metabolomics of human neuroinflammation

the ethical issues concerning the collection of CSF
from ’'healthy’ individuals. Furthermore, variation
in sample collection, preparation, analytical
instrumentation and data processing can
influence the set of observed metabolic changes
within a study.®® The optimisation of the
experimental design for metabolomics studies is
key to ensure standardisation and improve
reproducibility of CSF metabolic biomarkers across

studies. Data acquisition is a core area of
metabolomics  experiments, and  analytical
instrumentations are constantly undergoing

advancements for improved detection consistency,
sensitivity of metabolite detections at lower levels
and simplified data analysis tools. However,
challenges lie in the scanning speed and
sensitivity of detection, resulting in limited high
quality and quantity of metabolomics data for
validation of potential metabolite biomarker
identities.  Preliminary metabolomics studies
predominantly used untargeted approaches and
produced semi-quantitative data generally using
an internal standard for normalisation, but to
successfully translate the research data, there is a
growing demand for quantitative metabolomics-
driven methods. The current lack of quantitative
metabolomics data poses challenges in defining
reference ranges and determining abnormal
values that are important for the translation to a
clinical setting.

The ultimate method for developing
metabolomics analysis would be to explore the
metabolome with minimal platforms; however, to
date there is no single platform able to cover the
full metabolome.®' Further challenges in global
metabolomics lie in the identification of
metabolites and biological variation in human
biofluids.>?> A bottleneck in metabolomics studies
is accurate metabolite annotation to perform

biological interpretations.®*>* Over the last
decade, metabolite databases and libraries
available for metabolomics research have

significantly expanded. The human metabolome
database (http://www.hmdb.ca) and CSF
metabolome database  (https://www.csfmetab
olome.ca) are currently the most comprehensive
databases consisting of chemical, clinical,
molecular biology and biochemistry data to
support the interpretation of metabolomics
data.>® Chemical and spectral data repositories

such as METLIN (http://metlin.scripps.edu),
ChemSpider (http://www.chemspider.com), NIST
mass spectral library (http:/chemdata.nist.gov)

2021 | Vol. 10 | e1318
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Table 5. Summary of types of information found in metabolite
databases and libraries used for metabolomics

Database Information found in the database

Chemical data

Clinical data

Molecular biology data
Biochemistry data
Chemical data

Clinical data

Molecular biology data
Biochemistry data
METLIN Spectral data
ChemSpider Chemical data

NIST Spectral data

mzCloud Spectral data

Human metabolome
database

Cerebrospinal fluid
metabolome database

and mzCloud (https://www.mzcloud.org) are
popular avenues used as the benchmark for
metabolite identification (Table 5). However,
owing to the size of the metabolome, the
spectral information stored in databases is limited
by the availability of pure standards. Moreover,
from a bioinformatics point of view, the
evaluation for the similarity of spectra matches
cannot be fully automated; therefore, visual
inspection is mandatory and should not rely on
scores only.

Finally, there is a paucity of studies that
measure multiple metabolites in unison, in order
to see whether there is correlation or key
differences in tryptophan—kynurenine, nitric oxide
and neopterin metabolites in different disease
states. Given the importance of defining
potentially damaging and reversible inflammatory
mechanisms in common disorders such as
neurodegeneration, neuropsychiatry and
neurodevelopment, such large studies are vital to
provide diagnostic biomarkers in vivo.

CONCLUSION

Metabolomics is rapidly moving in an exciting
direction, demonstrating great potential in
diagnostic and treatment knowledge of diseases
affecting the CNS. There is increasing evidence
that the changes in metabolites involved in the
tryptophan-kynurenine pathway, nitric oxide
pathway and neopterin are strongly associated in
a wide range of human CNS diseases with
neuroinflammation mechanisms. Such metabolic
CSF neuroinflammation biomarkers should be
integrated into clinical practice.
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