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Semi-supervised Adversarial Learning for
Attribute-Aware Photo Aesthetic Assessment

Yangyang Shu, Qian Li, Lingqiao Liu, and Guandong Xu

Abstract—Aesthetic attributes are crucial for aesthetics be-
cause they explicitly present some photo quality cues that a
human expert might use to evaluate a photo’s aesthetic quality.
However, annotating aesthetic attributes is a time-consuming,
costly, and error-prone task, which leads to the issue that photos
available are partially annotated with attributes. To alleviate this
issue, we propose a novel semi-supervised adversarial learning
method for photo aesthetic assessment from partially attribute-
annotated photos, which can greatly reduce the reliance on
manual attribute annotation. Specifically, the proposed method
consists of a score-attributes generator R, a photo generator G,
and a discriminator D. The score-attributes generator learns the
aesthetic score and attributes simultaneously to capture their
dependencies and construct better feature representations. The
photo generator reconstructs the photo by feeding aesthetic
attributes, score, and informative feature representation. A dis-
criminator is used to force the convergence of the features-
attributes-score tuples generated from the score-attributes gen-
erator, the photo generator, and the ground-truth distribution in
labeled data for training data. The proposed method significantly
outperforms the state of the art, increasing the Spearman rank-
order correlation coefficient (SRCC) from the existing best
reported of 0.726 to 0.761 on Aesthetic and attributes database and
0.756 to 0.774 on Aesthetic visual analysis database, respectively.

Index Terms—Semi-supervised adversarial learning, Aesthetic
attributes, Photo aesthetic assessment

I. INTRODUCTION

Photo Aesthetic Assessment (PAA) task aims to endow
computers with the ability of perceiving aesthetics as human
beings. The objective of this task is to automatically evaluate
how beautiful the photo is from an aesthetic perspective.
These assessments have many attractive applications, such as
personal photo album management, automatic photo editing
and photo retrieval. As a result, photo aesthetic assessment
has become an increasingly popular research topic in recent
years [1] [2] [3]. Although much progress has been achieved
at learning a aesthetic assessment model, it is still a very
challenging subjective task due to its heavy reliance on human
perception of the photos.

To address this challenge, exploiting high-level descriptive
aesthetic attributes has been an important channel for photo
aesthetic assessment. This is mainly because human will not
just give a high or low-quality judgment, or a numerical
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Fig. 1: Different aesthetic qualities w.r.t. different photo at-
tributes. The first and third rows include photos with high
aesthetic qualities. The second and fourth rows include photos
with low aesthetic qualities.

score but always describe many high-level descriptive aesthetic
attributes such as color [4], content [5], light [6], motion
blur [7], duotone [8], soft focus [9] of the photo. Figure 1
shows examples of how high-level attributes such as color,
content, light can affect aesthetic qualities. The first and third
rows include high-quality photos, whereas the second and
fourth rows indicate low-quality photos. In this example, high-
level aesthetic photos usually with harmonious color, abundant
content, good light, vivid color, etc., make them fascinating.
In the contrast, high-level attributes of disharmonious color,
boring content, poor lighting, dull color, etc., determine the
low aesthetic photos. Compared to aesthetic quality or score
that describes global photo aesthetics, high-level descriptive
aesthetic attributes represent subtle local photo aesthetics and
thus are crucial for photo aesthetic assessment.

Although fully attribute-annotated photos would be helpful
for photo aesthetic assessment, collecting this data is time-
consuming and error-prone. This results in incomplete and
insufficient aesthetic attributes on photo databases. Recently,
an increasing number of studies realizes the importance of
high-level attributes for photo aesthetic assessment and focus
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on exploiting the relations between attributes and aesthetics.
Unfortunately, only a small number of existing attribute-
annotated data is available due to the high labor cost. To reduce
the reliance on manual attributes annotation, it is crucial to
develop a method that only uses a small number of attribute-
annotated data to leverage dependencies between high-level
descriptive aesthetic attributes and aesthetics thoroughly.

Therefore, in this paper, we propose a semi-supervised
adversarial learning for the attribute-aware photo aesthetic
assessment method (SAGAN) to simultaneously learn the
attribute and aesthetic score. The idea of the approach is con-
structing two generator networks and a discriminator network.
Specifically, we first propose a score-attributes generator to
learn the aesthetic score and attributes simultaneously. Second,
we reconstruct photos by feeding the output of the score-
attributes generator and minimize the reconstruction loss for
all training data. Similarly, the aesthetic score and attributes
are obtained by using the output of the photo generator. Third,
we introduce a discriminator to align the joint distributions
of predicted aesthetic attributes, predicted aesthetic score
and the reconstructed photo features with the distribution of
ground-truth. Through adversarial training, the joint inher-
ent distribution in the ground truth is explored to further
regularize the predicted attributes and aesthetics. Therefore,
two generators leverage the partially available training data
to predict the attribute-scores and aesthetic-scores, while the
adversarial learning structure ensures the optimal network
parameter training.

The contributions of this paper are as follows:
• We propose a semi-supervised adversarial learning

method that can assess the photo aesthetics from par-
tially attribute-annotated photos to reduce the reliance on
aesthetic attributes annotation.

• We are the first to regard the generating processes of
score-attributes and the photo as dual tasks [10], which
generates informative feedback signals that benefit both
tasks.

• We conduct extensive experiments to demonstrate the
superiority of the proposed semi-supervised adversarial
learning method compared to the state-of-the-art on two
benchmark databases.

II. RELATED WORK

In this Section, we focus on several works that utilize
attributes for photo aesthetic assessment. We divide these
works into three categories: low-level attributes, deep features,
and high-level attributes. A comprehensive survey related
to photo aesthetic assessment can be found in [11]–[13].
Furthermore, we discuss recent studies on semi-supervised
adversarial learning.

A. Low-Level Attributes

In early researches, low-level attributes are extensively
studied for aesthetic assessment. For example, Lowe [14]
presents an engineering feature approach to transform image
data into scale-invariant coordinates relative to local features.
These features are shown to provide robust matching across a

substantial range of affine distortion, change in 3D viewpoint,
addition of noise, and change in illumination. Ke et al. [4]
propose three distinguishing factors, simplicity, realism, and
basic photographic technique, making a photo high-quality
or low-quality. Then, the spatial distribution of edges, color
distribution, hue count, blur, contrast, and brightness are
designed. Luo et al. [15] propose to use the subject region
from a photo, then formulated clarity contrast feature, lighting
feature, simplicity feature, and composition geometry feature
based on the subject and background division. However, low-
level features focus more on local hints instead of the global
and contextual modeling of a photo. Therefore, they can not
totally capture high-level attributes, which is the unavoidable
weakness of engineering feature approaches.

B. Deep Features

With the development and application, deep features, ex-
tracted by deep convolutional neural networks, can capture the
comprehensive understanding of the input photo. Lu et al. [16]
use a novel double-column deep convolutional neural network
to enable automatic feature learning. The proposed deep
network unified the feature learning and classifier training,
which helps to extract both global and local features of images.
Kao et al. [17] find that semantic recognition task is vital
for aesthetic quality prediction. Thus they cast the aesthetic
prediction as the main task and captured the relations between
semantic recognition task and aesthetic quality prediction via
the proposed multi-task deep learning framework. Cui et al.
[18] find that aesthetic perceiving is coupled with semantic
understanding. Thus they develop a novel network framework,
semantic-aware hybrid network (SANE), to harvest the in-
formation from object categorization and scene recognition
via this network to improve the performance of aesthetic
prediction. For their methods, attributes as input are needed in
training. During testing, the attributes are still typically firstly
predicted by the model or captured by database. This is usually
complex and hardly satisfied in reality.

C. High-Level Attributes

1) Fully attribute-annotated photos: Several researchers
have leveraged aesthetic attributes to facilitate photo aesthetic
assessment. For example, Malu et al. [19] propose a novel
multi-task deep convolution neural network (DCNN), which
jointly learns high-level attributes along with the overall
aesthetic score. In Malu’s method, all aesthetic attributes are
needed in their designed multi-task deep convolution neural
network (DCNN). They develop a visualization technique
to understand the internal representation of these attributes
and qualitatively analyze the diverse and complex association
with these different attributes. Shu et al. [20] proposes sup-
port vector regression with variational privileged information
model and uses high-level descriptive attributes as privileged
information to involve the learning process of their proposed
method. In their method, all attributes are needed in the
training phase, which provides the guidance of predicting the
slack variable of support vector regression.
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2) Partially attribute-annotated photos: Some studies focus
on photo aesthetic from partially attribute-annotated samples.
Pan et al. [21] propose a multi-task adversarial learning
method to simultaneously learn aesthetic attributes and aes-
thetic score. Their method uses the available attributes as a
target to help the network construct better feature representa-
tions for aesthetic assessment. Kong et al. [1] add a branch
to predict the aesthetic attributes upon the penultimate layer
of the original network. It is helpful only when attribute
annotations are available. Then, the final aesthetic score is
given based on the features of the aesthetic attributes and
content. Although aesthetic attributes can be partially missing
in these works, they still require a large amount of aesthetic
attributes, and increasing the number of aesthetic attributes is
definitely beneficial for photo aesthetic assessment.

D. Semi-Supervised Adversarial Learning

Recent years have seen a few works incorporating adver-
sarial learning with semi-supervised learning. Lai et al [22]
propose a generative adversarial network for learning optical
flow in a semi-supervised manner where an adversarial loss
was served as guidance for estimating optical flow from
both labeled and unlabeled datasets to learn the structural
patterns of the flow warp error. Miyato et al. [23] propose a
virtual adversarial loss function without label information and
applied this loss function into their proposed regularization
method, which applies to semi-supervised learning. Wang et
al. [24] propose a novel generative adversarial framework
named CRGAN to solve the collaborative ranking problem.
They use the pairwise rating comparison between different
items as pairwise comparison setting. A discriminator is used
to effectively enlarge the score difference between pairwise
score comparison of items. The proposed method applied in
partial pairwise preference annotation is considerable. Dong
et al. [25] propose a margin generative adversarial network
(MarginGAN) with three players, i.e. a generator, a discrim-
inator and a classifier for semi-supervised learning. Their
proposed network generate some pseudo labels, which are
used for generated and unlabeled examples in training to make
semi-supervised learning meet a variety of practical needs.
All the above studies leverage adversarial learning for better
input data or representations for semi-supervised learning, but
ignore the informative feedback signals among different tasks.
We are the first to exploit the feedback signals between the
score-attributes generating task and the photo generating task.
The proposed method explores the dependencies among photo
features, aesthetic attributes and aesthetic score via adversarial
learning and forces the joint distributions of the embedded set
from the score-attributes generator and the photo generator to
the ground-truth distribution.

III. PROBLEM STATEMENT

Denote a set of triples T = {xi, ai, yi}Ni=1 where feature
vector xi ∈ Rd, aesthetic attributes ai ∈ Rd∗ and aesthetic
score yi ∈ R. d and d∗ are the dimensions of features and
aesthetic attributes, respectively. N is the number of attribute-
annotated training samples. Each aesthetic attribute can be

either continuous (ai,k ∈ R) or binary (ai,k ∈ {0, 1}), k
represents aesthetic attribute index. C = {xj , yj}Mj=1 contains
M training samples without attributes annotation. S = T ∪C
denotes M+N dimensions training set containing all training
samples. Let A = {xi, yi} store all features and corresponding
aesthetic scores in T , and B = {ai, yi} store all aesthetic
attribute vectors in T and their corresponding aesthetic scores.
V = A ∪ C stores all training feature vectors and their
corresponding aesthetic scores. Given the training set S, our
goal is to jointly learn score-attributes generator R and photo
generator G network where R network: Rd → Rd∗+1 outputs
the predicted aesthetic attributes and score simultaneously
from feature vector, whereas G network: RdR+d∗+1 → Rd
outputs the generated feature vector from features representa-
tion xR, attributes and score. dR is the dimension of xR from
R network and formulated by “Decoding” network. Hence,
we can exploit the relations between score-attributes generator
R and photo generator G network to complement the missing
attributes labels and improve the performance of two networks.

IV. METHODOLOGY

The framework of the proposed method is summarized in
Figure 2. Specifically, through the score-attributes generator
R, we get the predicted aesthetic attributes and aesthetic score
{â, ŷ}. Similarly, we sample data {a, y} from B along with
random noise z ∼ pz(z) as the input of photo generator G,
then we get the generated feature vector x̂

′
. The predicted

aesthetic attributes and score {â, ŷ} along with the penultimate
layer features xR of score-attributes generator R are input into
the photo generator G, and the output x̂ is the reconstruction
of x. Similarly, the generated feature x̂

′
is input into score-

attributes generator R, and the output of {â′ , ŷ′} is the recon-
struction of a and y. Decoding network is used to strengthen
the penultimate layer features xR holding the information
of photo features and promote G to generate better feature
representations. Thus, we consider three kinds of losses in the
following subsections. Then, we give the learning objective
functions and optimization.

A. Adversarial Loss

As shown in Figure 2, the discriminator D tries to dis-
tinguish the tuples {x, â, ŷ} and {x̂′ , a, y} from the ground
truth distribution of {x, a, y} embedded in the training data.
{x, â, ŷ} and {x̂′ , a, y} are generated by score-attributes gen-
erator R and photo generator G, respectively to “fool” D,
{x, a, y} are sampled from set T . Under the competing
process among score-attribute generator, photo generator and
discriminator, the score-attributes generator R network will
be expected to output predictions, which minimize the error.
Specifically, the adversarial loss of discriminator is shown in
Eq. 1.

`Dadv =− E(x,a,y)∼T logD(x, a, y)

− αE(x,y)∼V log(1−D(x, â, ŷ))

− (1− α)E(a,y)∼B,z∼pz(z) log(1−D(x̂
′
, a, y)).

(1)

where α ∈ [0, 1] is a trade-off between the distribution of the
pseudo-tuples generated from R and G network.
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Fig. 2: The framework of the proposed semi-supervised adversarial learning.

B. Supervised Loss

Supervised loss contributes to the capacity of the network to
predict the commonly occurring range. As shown in Figure 2,
we use the supervised loss in the generated attributes and
score {â, ŷ} in R network. Supervised losses are also used
in the generated features x̃ and x̂

′
in decoding network and

G network respectively. We define them as:

`Rsl = E(x,a,y)∼TL({a, y}, {â, ŷ}), (2)

`Decodingsl = E(x,y)∼V L(x, x̃), (3)

`Gsl = E(a,y)∼BL(x, x̂
′
), (4)

where the loss function can be either squared error or binary
cross entropy relying on the target variable is continuous or
binary. The formulations of squared error and binary cross
entropy are L(y, ŷ) = (y− ŷ)2 and L(y, ŷ) = −y log ŷ− (1−
y) log(1− ŷ), respectively.

C. Reconstruction Loss

We introduce the reconstruction loss and hope that the G
network and R network can reconstruct photo information,
aesthetic attributes and aesthetic score. The reconstruction
losses for network G and R are shown in the following:

`Grl = E(x,y)∼V,z∼pz(z)L(x, x̂), (5)

`Rrl = E(a,y)∼BL({a, y}, {â
′
, ŷ
′
}), (6)

where the loss function L is squared error or binary cross
entropy depending on the continuous or binary type of target
variable.

D. The Learning Objectives of Each Network

We give the objective functions of D, R and G networks,
respectively.

1) Gradient descent on D network:

min θD [−E(x,a,y)∼T logD(x, a, y)

− αE(x,y)∼V log(1−D(x, â, ŷ))

− (1− α)E(a,y)∼B,z∼pz(z) log(1−D(x̂
′
, a, y))].

(7)

2) Gradient descent on R network:

min θR [−E(x,y)∼V log(D(x, â, ŷ))

+ λsrE(x,a,y)∼TL({a, y}, {â, ŷ})
+ λrrE(a,y)∼BL({a, y}, {â

′
, ŷ
′
})]

(8)

where λsr and λrr are weights of supervised loss and re-
construction loss respectively, in order to balance the tradeoff
among losses.

3) Gradient descent on G network:

min θG [−E(a,y)∼B,z∼pz(z) log(D(x̂
′
, a, y))

+ λsgE(a,y)∼BL(x, x̂
′
)

+ λrgE(x,y)∼V,z∼pz(z)L(x, x̂)]

(9)

where λsg and λrg are weights of supervised loss and recon-
struction loss respectively.

The optimization of the proposed objective function is
similar to the original GAN framework [26]. We outline the
proposed algorithm in Algorithm 1.

V. EXPERIMENTS

To evaluate the effectiveness of the proposed method, we
compare our method with the state-of-the-art methods on two
benchmark databases of photo aesthetic assessment.
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Algorithm 1 The training of semi-supervised adversarial learning of attributes in aesthetic assessment

Require: training sample T , V and B, hyper parameters α, λsr, λrr, λsg , and λrg , batch size c; the number of steps of updating
discriminator network K1, the number of steps of updating generator networks K2, the number of training iterations K.

Ensure: score-attributes generator R and photo generator G.
Randomly initialize model parameters θD, θR and θG respectively;
for K iterations do

for K1 steps do
Sample a mini-batch of c training data {xi, ai, yi}ci=1 from T , sample a mini-batch of c training data {xi, yi}ci=1 from
V , sample a mini-batch of c training data {ai, yi}ci=1 from B.
Update discriminator D by gradient descent:

∇θD [−
1

c

c∑
i=1

((logD(x, a, y) + α log(1−D(x, â, ŷ)) + (1− α) log(1−D(x̂
′
, a, y)))]

end for
for K2 steps do

Sample a mini-batch of c training data {xi, yi}ci=1 from V , c1 (c1 ≤ c) samples of {xi, yi}ci=1 originally annotated
with aesthetic attributes are used to construct {xi, ai, yi}c1i=1.
Update score-attribute generator R by gradient descent:

∇θR [−
1

c

c∑
i=1

log(D(x, â, ŷ)) +
λsr
c1

c1∑
i=1

L({a, y}, {â, ŷ}) + λrr
c1

c1∑
i=1

L({a, y}, {â
′
, ŷ
′
})]

Sample a mini-batch of c training data {ai, yi}ci=1 from B, sample a mini-batch of c training data {xi, yi}ci=1 from V .
Update photo generator G by gradient descent:

∇θG [−
1

c

c∑
i=1

log(D(x̂
′
, a, y)) +

λsg
c

c∑
i=1

L(x, x̂
′
) +

λrg
c

c∑
i=1

L(x, x̂)]

end for
end for

TABLE I: Attribute annotations on the AADB and AVA
database.

Attribute (AADB) Number Attribute (AVA) Number
Balancing elements 10,000 Complementary 949

Color Harmony 10,000 Duotones 1,301
Content 10,000 HDR 396

Depth of Field 10,000 Photo Grain 840
Light 10,000 Light on White 1,199

Motion Blur 10,000 Long Exposure 845
Object 10,000 Macro 1,698

Repetition 10,000 Motion Blur 609
Rule of Thirds 10,000 Negative Blur 959

Symmetry 10,000 Rule of Thirds 1,031
Vivid Color 10,000 Shallow DoF 710

- - Silhouettes 1,389
- - Soft Focus 1,479
- - Vanishing Point 674

A. Experimental Conditions

1) Datasets: In our experiments, we use two publicly
available photo aesthetics databases: Aesthetics and Attributes
database (AADB) [1] and Aesthetics Visual Analysis database
(AVA) [27]. AADB database contains 10,000 photographic
images from the Flickr website [1]. Aesthetic quality scores
are continuous values in the interval of [0, 1]. The AADB
database provides 11 attributes that are continuous values
including balancing element, content, color harmony, depth

of field, lighting, motion blur, object emphasis, rule of third,
vivid color, repetition and symmetry. The official split of
the AADB database is 8,500 images for training, 500 images
for validation and the remaining 1,000 images for testing.
The AVA database contains aesthetic quality scores in the
interval [1, 10] and 14 style attributes in a small portion of
photos (14,000/250,000), i.e., complementary, duotones, HDR,
photo grain, light on white, long exposure, macro, motion
blur, negative photo, rule of third shallow DOF, silhouettes,
soft focus and vanishing point. These attributes are binary
with discrete values of 0 or 1. Moreover, the AVA database
is split into training set (230,000 samples) and testing set
(20,000 samples). The official split of the AVA database does
not include a validation set, and thus we have to construct
the validation set by ourselves. We randomly sample 20,000
photos from the training set as the validation set, and the
remaining 210,000 photos for training. The detailed attributes
annotations on the AADB and AVA databases are listed in
Table I.

2) Implementation Details: We implement our method us-
ing the PyTorch framework. In our experiments, photos are
resized to 224×224 on both databases. We normalize the
aesthetic score and continuous attributes to the interval [0,
1]. ResNet-152 [28] is used as the architecture to extract the
feature representations. The pre-trained weights of ResNet-152
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on Imagenet are used for initialization. Then 2048D feature
representations are extracted from this pre-trained architecture.
Score-attributes generator R, photo generator G, discriminator
D and decoding network are parameterized by four-layer feed
forward networks. The size of two hidden layers in score-
attributes generator R are 512, 128 respectively. The last
layer is the output layer with sigmoid activation and the
size of the last layer is determined by the specific method
and database, which are 12 and 15 on the AADB and AVA
databases, respectively. For photo generator G and decoding
network, the size of two hidden layer are both 128 and 512.
The last layer of theses two networks is the the 2048D feature
representations. For the discriminator, we also use the two
hidden layers in a neural network with the size of 512, 128,
respectively. Adam [29] optimizer with a mini-batch size of
64 is used to optimize R, G, D and decoding network in our
experiments. Other hyper parameters, such as learning rate,
training step K1, K2, and weight coefficients λsr, λrr, λsg ,
λrg are determined by a validation set.

3) Evaluation Metrics: The Spearman Rank-order Corre-
lation Coefficient (SRCC) [1], Pearson Linear Correlation
Coefficient (PLCC) [3] and accuracy [1] are used as metric
evaluation. For all metrics, the larger the better.

4) Baselines: Firstly, we compare our method to attribute-
aware methods. We choose the following eight popular meth-
ods for comparison. For a fair comparison, we re-implement
RA-DCNN method by changing AlexNet [1] with ResNet
framework. Among these methods, DCNN is supervised meth-
ods and the others are semi-supervised methods.

• Ranking and attribute deep convolutional rating
network(RA-DCNN) includes additional activation
layers in their proposed ranking network to encode
informative attributes. Their methods regard prediction
task as a source of side-information to regularize the
weights of the network [1].

• Attribute-aware deep convolution neural network
(DCNN) [19] jointly learns aesthetic attributes and
aesthetic score simultaneously to learn the inherent
representation of these attribute, and qualitatively
analyze the diverse and complex association with these
different attributes for aesthetic assessment.

• Adversarial deep convolutional rating network
(ATTGAN) [21] proposes using deep rating network as a
generator outputting attributes and score simultaneously.
ATTGAN uses a discriminator to distinguish the
generative attributes, score and ground truth by
regularizing the distributions of high-level attributes and
score.

• multi-task deep learning (MTDL) [30] proposes to use
the personality features that are learned to modulate the
aesthetic attributes. These attributes are used to predict
the optimal generic photo aesthetics scores.

• Privileged information deep convolutional network (PI-
DCNN) [31] uses attribute loss function, which ex-
plores the domain knowledge of the photo-based and
photography-based attributes to improve the performance
of aesthetic assessment.

• Support vector regression with variational privileged

information(v-SVR+) [20] integrates aesthetic attributes
as privileged information to predict the slack variable of
support vector regression further regularizing the learn-
ing process and improving the learning performance of
aesthetic prediction.

• Deep chatterjee’s machine (DCM) [32] first learns aes-
thetic attributes via a parallel supervised pathway. Then
they associate and transform those attributes into the
overall aesthetic quality assessment.

• A multi-task framework (MTRLCNN) [17] is proposed to
capture the correlations between semantic recognition and
aesthetic quality prediction via incorporating the inter-
task relationship learning.

Secondly, we compare our method to attribute-unaware meth-
ods. We choose the following seven popular methods for
comparison.

• Squared earth mover’s distance (Square-EMD) [33] is
used to define loss functions for convolutional neural
network training. They transform aesthetic database into
a classification database, and leverage these relations
between different classes via the squared earth mover’s
distance.

• A unified probabilistic formulation (AUPF) [34] uses an
effective loss function to capture the inherent relation
among binary classification, average score regression and
score distribution prediction.

• Composition-aware network(CAN) [35] leverages the im-
age composition information as the mutual dependency
among its local regions to boost the performance of
aesthetics.

• Convolutional ordinal regression forest (CORF) [36] ob-
tains precise and stable global ordinal relationships via
integrating ordinal regression and differentiable decision
trees with a CNN for photo aesthetic assessment.

• Neural image assessment (NIMA) model [37] uses con-
volutional neural network to predict the distribution of
human opinion scores which capture the high correlations
between photo score and human perception.

• Gated peripheral-foveal convolutional neural networks
(GPF-CNN) [38] encodes the holistic information to
provide the attended regions, then extracts fine-grained
features on these key regions.

• Multi-level spatially pooled features (MLSP) [3] are
extracted from convolutional blocks to efficiently support
full resolution images on variable input sizes.

5) Experiment Design: The number of attributes-annotated
photos on the AADB and AVA database is 10,000 and 14,000,
respectively. We randomly exclude attributes-annotated photos
with four ratios, i.e., 10%, 20%, 30% and 40%. The proposed
method employs aesthetic attributes as privileged informa-
tion [39] to improve the learning performance of aesthetic
assessment tasks. We compare the proposed method to a
method that does not output aesthetic attributes in R network,
referred to as SGAN. Besides, we compare the proposed
method with another method that removes G network in our
method, referred to as SAGAN-.
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TABLE II: Within database experimental results of semi-supervised learning for aesthetic assessment with four missing rates
of attribute-annotated photos on the AADB and AVA databases.

Database Methods 10% 20% 30% 40%
SRCC Accuracy PLCC SRCC Accuracy PLCC SRCC Accuracy PLCC SRCC Accuracy PLCC

AADB

v-SVR+ 0.684 79.62% 0.676 0.662 77.55% 0.667 0.638 75.43% 0.640 0.620 74.09% 0.629
RA-DCNN 0.665 77.54% 0.658 0.643 75.88% 0.644 0.621 74.64% 0.627 0.603 72.18% 0.597
PI-DCNN 0.689 79.96% 0.686 0.674 78.02% 0.672 0.633 76.25% 0.628 0.602 72.68% 0.616
ATTGAN 0.687 78.42% 0.692 0.674 77.65% 0.678 0.646 74.83% 0.652 0.605 72.11% 0.611

SGAN 0.686 78.88% 0.683 0.664 76.52% 0.674 0.643 74.40% 0.655 0.635 73.69% 0.639
SAGAN- 0.692 79.52% 0.702 0.677 78.13% 0.682 0.653 76.04% 0.660 0.648 75.52% 0.647
SAGAN 0.747 81.47% 0.752 0.722 80.56% 0.737 0.703 79.94% 0.714 0.695 79.18% 0.705

AVA

v-SVR+ 0.677 78.52% 0.665 0.662 76.43% 0.668 0.642 72.28% 0.651 0.582 68.84% 0.574
RA-DCNN 0.547 74.62% 0.558 0.556 72.15% 0.534 0.538 70.11% 0.526 0.529 68.42% 0.517
PI-DCNN 0.663 77.62% 0.676 0.638 73.48% 0.652 0.619 71.47% 0.628 0.592 69.93% 0.604
ATTGAN 0.628 76.44% 0.642 0.608 74.18% 0.617 0.596 72.26% 0.604 0.587 70.04% 0.593

SGAN 0.628 75.42% 0.635 0.614 73.71% 0.624 0.598 72.63% 0.605 0.584 69.18% 0.592
SAGAN- 0.633 76.42% 0.638 0.614 74.68% 0.621 0.601 72.13% 0.598 0.587 70.07% 0.592
SAGAN 0.750 82.16% 0.758 0.734 81.03% 0.742 0.717 80.66% 0.722 0.695 79.42% 0.704

TABLE III: Comparison to state-of-the-art attribute-aware methods on the AADB and AVA database. Among these methods,
DCNN is supervised methods, while the others are semi-supervised methods.

Model AADB Model AVA
SRCC Accuracy PLCC SRCC Accuracy PLCC

RA-DCNN 0.678 78.62% 0.685 RA-DCNN 0.558 77.03% 0.563
DCNN 0.689 - - DCM - 78.08% -
MTDL 0.680 - - MTRLCNN - 79.08% -

ATTGAN 0.704 79.94% 0.708 ATTGAN 0.631 77.23% 0.655
PI-DCNN 0.705 81.05% 0.698 PI-DCNN 0.658 76.2% 0.672
SAGAN 0.761 83.04% 0.766 SAGAN 0.774 83.72% 0.788

B. Results of Within-Database Experiments

1) Analyses of Four Missing Rates: Table II demonstrates
the within-database experimental results of semi-supervised
attribute learning on the AADB and AVA databases. Among
these methods, (i) v-SVR+ is the work using attributes on
support vector regression; (ii) ATTGAN, SGAN and SAGAN-
are the works of GAN variations; (iii) RA-DCNN and PI-
DCNN are the works applying attributes on deep convolutional
neural network.

From Table II, we make the following observations: First,
compared to v-SVR+, RA-DCNN, PI-DCNN and ATTGAN,
the proposed SAGAN has the best performance. For example,
with the 40% missing rate, the performance of SAGAN
are 7.5%/5.1%/7.6%, 9.2%/7.0%/10.8%, 9.3%/6.5%/8.9%
and 9.0%/7.1%/13.9% higher SRCC/Accuracy/PLCC than v-
SVR+, RA-DCNN, PI-DCNN and ATTGAN on the AADB
database. Similarly significant improvement can be found on
the AVA database. This demonstrates the superiority of the
proposed method due to more attributes generated in SAGAN.
Second, SAGAN performs better in all scenarios compared to
SGAN that does not output aesthetic attributes on R network.
The reason is that SAGAN learns the aesthetic attributes
and score simultaneously to capture their dependencies and
extract better feature representations. Third, when the missing
rate varies from 10% to 40%, the gap performance between
SAGAN and the other methods is becoming large. This is
because the proposed method can generate more representative
aesthetic attributes after missing, which is more beneficial
for photo aesthetic assessment. Fourth, compared to SAGAN-
that removes photo generator G from our method, SAGAN
has a better performance in all scenarios. This is attributed
to the fact that photo generator G leveraged to reconstruct

the generated feature vector is important improvement for our
proposed method.

2) Comparison of the Predicted Photo Examples: Figure 3
and Figure 4 show the predicted aesthetic scores of our meth-
ods compared to two attribute-aware methods (RA-DCNN and
ATTGAN) and ground truth. We select some photos from
the testing set of the AADB and AVA databases, respectively.
Generally, we observe that our method has a lower prediction
error compared to RA-DCNN and ATTGAN. The slight gap
between our predicted scores and ground truth indicates that
our trained models can accurately predict aesthetic scores.

3) Comparison to State-of-the-art Attribute-Aware Meth-
ods: To further evaluate the performance of the proposed
method, we compare the proposed semi-supervised attributes
learning method to related attribute-aware methods shown in
Table III. From Table III, we find that on the AADB and
AVA database, the proposed SAGAN method has the best
performance w.r.t. the highest SRCC, accuracy and PLCC
than the other methods. Compare to these methods using the
same number of attributes that both databases provide, the
proposed SAGAN method benefits both the score-attributes
generator and photo generator tasks via generating informative
signals. Compared to state-of-the-art attribute-aware methods
that heavily rely on manual attributes annotation, the proposed
method uses only partially attribute-annotated photos and
achieves the best performance of aesthetic prediction.

4) Comparison to State-of-the-art Attribute-Unaware Meth-
ods: To further demonstrate the importance of high-level
attributes in aesthetic assessment, we compare our method to
state-of-the-art attribute-unaware methods shown in Table IV.
As we can see from Table IV, the proposed method using high-
level attribute in the aesthetic rating network achieves the best
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0.78/0.87/0.93/0.95

0.65/0.68/0.72/0.75

0.52/0.44/0.28/0.25

0.88/0.92/0.97/1.00

0.91/0.97/0.95/0.950.69/0.71/0.73/0.75 0.07/0.34/0.16/0.2

0.20/0.14/0.09/0.10

0.25/0.28/0.32/0.35

Fig. 3: Examples of predicted aesthetic scores on the AADB database: RA-DCNN/ATTGAN/Ours/Ground truth. The left two
columns are images with high aesthetic scores and the remaining columns are images with low aesthetic scores.

5.95/6.21/6.49/6.51 6.12/6.34/6.71/6.68

4.06/4.76/4.67/4.62

2.72/3.36/3.68/3.834.88/6.14/5.58/5.54 5.42/5.83/6.01/6.00 4.57/4.34/3.74/3.85 3.32/3.48/4.14/4.29

Fig. 4: Examples of predicted aesthetic scores on the AVA database: RA-DCNN/ATTGAN/Ours/Ground truth. The left two
columns are images with high aesthetic scores and the remaining columns are images with low aesthetic scores.

TABLE IV: Comparison to state-of-the-art attribute-unaware
methods on the AADB and AVA databases.

Model AADB Model AVA
SRCC SRCC Accuracy PLCC

Square-EMD 0.689 NIMA 0.612 - 0.636
AUPF 0.726 GPF-CNN 0.690 81.81% 0.704
CAN 0.710 MLSP 0.756 81.72% 0.757

CORF 0.677 CORF 0.671 - 0.665
Ours 0.761 Ours 0.774 83.72% 0.788

performance w.r.t. the highest SRCC, accuracy and PLCC than
the other methods, which demonstrates that exploiting high-
level aesthetic attribute can significantly benefit aesthetic as-
sessment task and our proposed method successfully leverages
the correlation between aesthetic attributes and aesthetic score.

C. Results of Cross-Database Experiments

1) Analyses of Four Missing Rates: The cross-database
experimental results of semi-supervised adversarial learning
for attribute-aware photo aesthetic assessment task on the
AADB and AVA databases are shown in Table V. From
Table V, we find: First, when the methods are trained on
the AADB database and tested on the AVA database, the pro-
posed SAGAN achieves the best performance in the different
missing rates of attributes. For example, with the 40% miss-
ing rate, the performance of SAGAN are 8.8%/7.8%/7.6%,
13.7%/9.15%/12.8%, 7.5%/4.8%/6.1% and 6.8%/3.4%/5.4%
higher SRCC/Accuracy/PLCC than the method of v-SVR+,
RA-DCNN, PI-DCNN and ATTGAN. Second, the SGAN
perform better than RA-DCNN in all cases. Although SGAN
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TABLE V: Cross-database evaluation of semi-supervised learning for aesthetic assessment with four missing rates of attribute-
annotated photos.

Database Methods 10% 20% 30% 40%
SRCC Accuracy PLCC SRCC Accuracy PLCC SRCC Accuracy PLCC SRCC Accuracy PLCC

From
AADB

to
AVA

v-SVR+ 0.254 59.88% 0.261 0.232 58.43% 0.248 0.206 55.42% 0.217 0.192 53.39% 0.202
RA-DCNN 0.182 57.09% 0.197 0.173 55.62% 0.179 0.154 53.37% 0.162 0.143 52.03% 0.150
PI-DCNN 0.274 60.57% 0.271 0.253 59.98% 0.248 0.221 57.72% 0.236 0.205 56.43% 0.217
ATTGAN 0.263 60.02% 0.270 0.241 59.34% 0.254 0.226 58.52% 0.238 0.217 57.79% 0.224

SGAN 0.243 58.77% 0.250 0.232 56.40% 0.244 0.225 55.38% 0.228 0.210 55.02% 0.214
SAGAN- 0.259 59.63% 0.263 0.234 58.02% 0.240 0.225 57.36% 0.232 0.209 56.48% 0.205
SAGAN 0.327 68.82% 0.334 0.306 66.47% 0.312 0.288 62.32% 0.285 0.280 61.18% 0.278

From
AVA

to
AADB

v-SVR+ 0.486 68.94% 0.498 0.463 66.43% 0.471 0.445 64.12% 0.450 0.417 62.39% 0.412
RA-DCNN 0.332 67.54% 0.340 0.313 64.39% 0.311 0.298 60.12% 0.304 0.283 59.33% 0.293
PI-DCNN 0.493 69.42% 0.502 0.477 67.99% 0.480 0.442 64.33% 0.447 0.394 63.50% 0.405
ATTGAN 0.506 70.62% 0.511 0.488 68.54% 0.492 0.463 66.12% 0.268 0.432 63.12% 0.444

SGAN 0.492 69.11% 0.498 0.477 68.12% 0.482 0.453 66.53% 0.451 0.442 64.88% 0.437
SAGAN- 0.502 70.58% 0.506 0.487 69.02% 0.492 0.465 67.66% 0.472 0.450 65.32% 0.448
SAGAN 0.583 74.43% 0.601 0.565 72.12% 0.577 0.554 70.05% 0.561 0.547 69.32% 0.552

is not assisted by attributes in R network, it takes advantage of
the competition between photo synthesis and aesthetic score
assessment, hence still achieves the better performance than
RA-DCNN. Third, compared to the method of SAGAN- that
removes photo generator G, the method of SAGAN perform
better, which demonstrate photo generator plays an important
roles in regularizing the score-attributes generator. A similar
conclusion can be found on the AVA database.

TABLE VI: Cross-database evaluation of SRCC reported on
current studies. Among these four methods, RA-DCNN and
SAGAN are semi-supervised methods while NIMA and AUPF
are attribute-unaware methods.

Model From AADB to AVA From AVA to AADB
NIMA 0.2950 0.4732
AUPF 0.3225 0.5176

RA-DCNN 0.1566 0.3191
SAGAN 0.3462 0.6052

2) Comparison to the State-of-the-art Methods: Table VI
shows the related cross-database experimental results on the
AADB and AVA databases. Compared to current studies on
cross database, the proposed method has a better performance
when training on the AADB testing on the AVA and training on
the AVA testing on the AADB. This demonstrates that the pro-
posed method further explores the adaptation of different photo
groups and photo collections. Note that cross-database perfor-
mance is worse than within-database performance because the
AADB database contains photos with different distributions of
visual characteristics compared to the AVA database. Photos on
the AVA database are professionally photographed or heavily
edited; while many photos in the AADB database are related
to many daily life. Thus, the generalization of the proposed
method should be further improved in the future work.

D. Ablation Study

1) Analysis of Adversarial Learning: This section aims to
evaluate how the proposed adversarial learning is effective for
aesthetic score and attributes generation. Note that our method
without the adversarial learning turns into the remaining R
network and G network. We compare the remaining networks
with our original method, and visualize their squared errors of

Fig. 5: Visualization of squared error between predicted results
and ground truth with 40% missing rate of attributes on the
AADB database. Digit 0−11 in x-axis represents score and
11 attributes, respectively.

predictions and ground truth on the AADB database with 40%
missing rate. In Figure 5, we depict 0-11 columns in the x-axis
corresponding to the results of one score and 11 attributes. The
orange points in each column represent their squared errors.
The boxes behind the orange points depict the ranges of their
corresponding values. Compared with the top figure, the box
height in the bottom figure becomes lower and orange points
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are more merged when the generative network and adversarial
network are involved in our method. This indicates that the
adversarial learning in our method can be used to explore the
dependencies among photo features, aesthetic attributes and
aesthetic score, which thus can improve the performance of
photo aesthetic prediction.

Fig. 6: Our performance with respect to feature reconstruction
(λrg) and score-attributes reconstruction (λrr) on the AVA
database.

2) Evaluation of Reconstruction Loss: As elaborated in
Section IV-C, reconstruction loss is designed in the process of
feature generation and score-attributes generation. It is vital
to help the G network to restore photo features and help R
network to generate photo attributes and score. To explore
the impact of reconstruction loss, we conduct experiments by
setting different values of λrg and λrr. Take the AVA database
for example, our experimental performances w.r.t λrg and λrr
are shown in Figure 6. When λrg varies, we set λrr = 0
and vice versa. From Figure 6, the SRCC curves significantly
increase then decline followed by the change of λrg and λrr.
Thus, we can find the optimal value of λrg and λrr.

VI. CONCLUSION

In this paper, we propose a semi-supervised learning method
from partially attribute-annotated photos with the aim of
reducing the reliance on manual attributes annotation for
aesthetic assessment. An adversarial training framework is pro-
posed to explore the joint distribution among photo features,
aesthetic attributes and aesthetic score. Aesthetic attributes are
used as privileged information to construct a better score-
attribute generator and a photo generator. Supervised losses
are used for the proposed networks predicting on commonly
occurring range. Reconstruction losses are designed for regu-
larizing the score-attributes generation and photo generation.
Experimental results on the AADB and AVA databases demon-
strate that the proposed method successfully leverages the
inherent connections between aesthetic attributes and aesthet-
ics through semi-supervised attributes learning and adversarial
training process, and thus achieves the superior performance.
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