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ABSTRACT

Graphs have been widely used to model sophisticated relationships between dif-
ferent entities due to their strong representative properties. Social networks,
traffic networks, and biological networks are among the applications that benefit
from being expressed as graphs. The cohesive subgraph is an essential structure
for understanding the organization of many real-world networks, and cohesive
subgraph detection is a crucial problem in network analysis. There are many
cohesive subgraph models, such as k-core, strongly connected component, and
maximum density subgraph.

Uncertain graph management and analysis have attracted much research at-
tention. Among them, computing k-cores in uncertain graphs (aka, (k,n)-cores)
is an important problem and has emerged in many applications. However, the
existing algorithms for computing (&, n)-cores heavily depend on the two input
parameters k and 7. In addition, computing and updating the 7-degree for each
vertex is the costliest component in the algorithm, and the cost is high.

To overcome these drawbacks, we propose an index-based solution for com-
puting (k,n)-cores. The index size is well-bounded by O(m), where m is the
number of edges in the graph. Based on the index, queries for any k£ and 7 can
be answered in optimal time. We propose an algorithm for index construction
with several different optimizations.

We also discuss the (k,n)-core computation when graphs cannot be entirely

stored in memory. We adopt the semi-external setting, which allows O(n) mem-



ory usage, where n is the number of vertices in the graph. This assumption is
reasonable in practice, and it has been widely adopted in massive graph analysis.
We design an index-based solution for I/O efficient (k,n)-core computation.

Given the frequent updates in many real-world graphs, detecting strongly
connected components (SCC) in dynamic graphs is a very complicated problem.
In the thesis, we study the fully dynamic depth-first search (DFS) problem in
directed graphs, which is a crucial basis of dynamic SCC detection. In the liter-
ature, most works focus on the dynamic DFS problem in undirected graphs and
directed acyclic graphs. However, their methods cannot easily be applied in the
case of general directed graphs. Motivated by this, we propose a framework and
corresponding algorithms for both edge insertion and deletion in general directed
graphs. We further give several optimizations to speed up the algorithms.

We conduct extensive experiments on several large real-world graphs to prac-

tically evaluate the performance of all proposed algorithms.
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