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ABSTRACT
Underwriting is an important process in insurance and is concerned
with accepting individuals into insurance policy with tolerable
claim risk. This process is tedious and labor intensive, which heav-
ily relies on underwriters’ domain knowledge and experience, thus
is labor-intensive and prone to error. Machine learning models are
recently applied to automate the underwriting process and thus to
ease the burden on the underwriters as well as improve underwrit-
ing accuracy. However, observational data used for underwriting
modelling is sparse and incomplete, due to the dynamic evolving na-
ture (e.g., upgrade) of business information systems. Simply apply-
ing traditional supervised learning methods e.g., logistic regression
or Gradient boosting on such highly incomplete data usually leads
to the unsatisfactory underwriting result, thus requiring practical
data imputation for training quality improvement. In this paper,
rather than choosing off-the-shelf solutions tackling the complex
data missing problem, we propose an innovative Generative Adver-
sarial Nets (GAN) framework that can capture the missing pattern
from a causal perspective. Specifically, we design a structural causal
model to learn the causal relations underlying the missing pattern
of data. Then, we devise a Causality-aware Generative network
(CaGen) using the learned causal relationship prior to generating
missing values, and correct the imputed values via the adversar-
ial learning. We also show that CaGen significantly improves the
underwriting prediction in real-world insurance applications.
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1 INTRODUCTION
Insurance fund is to create a pool of wealth such that an unfortunate
loss incurred by the few can be compensated by the wealth of the
many. Underwriting is an important process used by life insurer to
assess the risk posed by customer applicants and decide to cover
customers with the tolerable risk. For example, the risk in life
insurance can be considered as the likelihood of an injury, sickness,
disease, disability or mortality. A direct outcome of this process
is the decision to accept or decline a policy for a customer, and
if accepting, which additional restrictions they should apply, e.g.,
adding extra loading or exclusion of claim to protect insurers’ profit.

Figure 1: Due to system upgrades, the questionnaire may
change (e.g., △), split (e.g.,

⊕
= ⃝+), merge (e.g., □− = ⊟),

or remain unchanged (e.g., gray information). For example,
one question designed in 2020 isWhenwas heart disease first
diagnosed, but it has been split into two questions in 2021:
Have you been diagnosed as the heart disease and How long
have you been. Apparently, these two new questions of 2021
are not answered by customers of 2020, which results in the
missing values in the questionnaire matrix.

Observational data used for underwriting is obtained from appli-
cation questionnaires containing health, behavioral, and financial
attributes. Human underwriters make a underwriting decision by
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analyzing a large amount of data, which is labor intensive and prone
to error. With recent advances in machine learning, manual under-
writing in the insurance industry is desired to gradually transform
into an automated process benefiting all parties involved [1, 21].
Nevertheless, existing machine learning approaches fail to perform
satisfactory underwriting due to the sparse and incomplete data
resulted from business system upgrades. As illustrated in Figure 1,
since data used for underwriting are collected over years, some
questions keep unchanged and fully observed over time, while
other questions may change overtime due to the business system
upgrades on questionnaires. The evolution of questionnaires over
time leads to the sparsity and incompleteness issue of data, which
poses a significant challenge for automated underwriting by ma-
chine learning.

Motivation. While it looks like a typical missing data prob-
lem, there is an essential difference: the missing information of a
question is not simply absent at random (MCAR) or depends on
the observed variables (MAR) but drifted to other columns, i.e.,
information drift. However, existing imputation algorithms relying
the correlations between the missingness and the observed vari-
ables are required to assume the missing mechanism like MCAR or
MAR. It is important to note that the missingness in information
drift is more complicated than the scenario handled by existing
imputation, as it does not depend on the observed variables instead
unobserved ones. Because the old question(s) and new question(s)
are not both available for every applicant, their underlying corre-
lations can not be known from the observed data, leading to the
failure of traditional correlation based imputation methods.

Contributions. Without strict assumption of a pre-specified
missing mechanism, we aim to impute the missing data condi-
tioned on information drift from a causal principle. Concretely, we
consider generating a complete dataset conditioned on information
drift as a causal process, where the causal relationships between the
questions embedded in observations. By designing a novel causal
structure learning, we can be fully aware of the generating pat-
tern of observations, and then use this for the robust imputing
performance. Our contributions are in three-folds:

• Fundamentally different from previous studies, our CaGen
is the first deep learning method to impute missing data for
automated underwriting from a causal view.
• We design a structural causal model which is capable of
learning question-wise causal relations related to information
drift, producing customized data generating patterns.
• Our CaGen unifies structural causal model and GAN frame-
work, i.e., causality-aware generator and discriminator. Our
generator aware of the causality-customized generating pat-
tern, by playing an adversarial game with the discriminator,
can significantly boost the underwriting accuracy.

2 RELATEDWORK
This section reviews relatedwork from two perspectives: automated
insurance underwriting and missing data imputation.

Automated Underwriting. Automation of the underwriting
process can assist in a number of ways and benefit all parties in-
volved [25]. The current underwriting completion time frame of

weeks can be reduced significantly with the assistance of auto-
mated decision making tools [1, 2]. In some instances rule-based
expert systems have been crafted to identify and process these sim-
ple applications but they are complex and cumbersome to update
in light of new information [22]. In addition, the use of machine
learning and pattern recognition tools can assist the underwriter
in increasing their knowledge base and identifying these complex
relationships. Linear and non-linear relationships between features
are found by advanced machine learning algorithms, such as ensem-
ble methods, neural network [14, 15], support vector machine, and
random forest. The use of machine learning and pattern recognition
tools can assist the underwriter in increasing their knowledge base
and identifying these complex relationships [5, 19].

Data Imputation. Methods for imputing missing data range
from replacing missing values by the column average to complex
imputations based on various statistical models. Successful statis-
tical models for data imputation can be categorized as discrimi-
nate [9, 13? ] or generative [8, 26]. Discriminative methods include
MICE [4], MissForest [20], k-nearest neighbors (KNN), and matrix
completion [10, 12, 17]. A drawback of NN methods is that their
performance depends on 𝑘 . For example, KNN impute typically
performs well when 𝑘 is between 5 and 10, but the performance de-
teriorates for larger values of 𝑘 . Alternatively, generative methods
for imputation include MIDA (Multiple Imputation with Denois-
ing Autoencoders) [8], GAIN (Generative Adversarial Imputation
Nets) [26], and MIWAE (Missing Data Importance-Weighted Autoen-
coder) [16]. Most of approaches for data imputation are based on [7]
that makes assumptions about the underlying distribution and fails
to generalize well for data of mixed modalities. Statistical methods
for data imputation often provide useful theoretical properties but
exhibit notable shortcomings: (1) they tend to make strong assump-
tions about the data distribution; (2) they fail to exploit the causal
interactions between multiple observations and features, which
limits their the ability to learn from samples with missing data
across different distributions.

3 PROBLEM DEFINITION
In this section, we firstly introduce the problem formulation and no-
tations. We have a dataset {(X, 𝑌 )} drawn from the questionnaires
of life insurance application. The questionnaire covers a large range
of information about each applicant including family and medical
history, occupation details, finances as well as leisure activities.
Let X := [𝒙1, · · · , 𝒙𝑛] be a collection set of samples, each sample
𝒙𝑖 ∈ R𝑑 consists of the applicant’s binary responses to 𝑑 questions
{𝒗1, · · · , 𝒗𝑑 }. An exclusion outcome 𝑦𝑖 ∈ 𝑌 indicating the presence
of particular exclusions for individual from making a specific claim
due to information 𝒙𝑖 gathered from the applicants questionnaire.

Recall that applicants can not provide answers to all 𝑑 questions
{𝒗1, · · · , 𝒗𝑑 } due to the system updates. Among them, 𝑛𝑜 questions
are fixed over time leading to 𝑛𝑜 fully observed features denoted
as {𝒗𝑜 }, and 𝑑 − 𝑛𝑜 questions changing as the system updates are
partially observed features denoted as {𝒗𝑝 }. In other words, 𝑉𝑝 is
the set of feature variables that are missing in at least one appli-
cant record. In the missing data problem, we know exactly which
entries in each sample are missing. Therefore, we can represent an
incomplete data case as a pair of a partially-observed data vector



Figure 2: Overall architecture of our method for data imputation, including causal structure learning and generative network.
The solid lines and dash lines are the inputs and backpropogations, respectively. The causal structure learning is to discover the
underlying causality between fully observed {𝒗𝑜 } and partial {𝒗𝑝 }, then the results are as the input of generative network for
causality-aware imputation. Finally, the imputed data generated by our method will be applied for automated underwriting.

𝒙 𝑗 ∈ R𝑑 and a corresponding mask 𝒎 𝑗 ∈ {0, 1}𝑑 indicating which
entries in 𝒙 𝑗 are observed.

Based on the above descriptions, we consider two tasks: (1) fea-
ture imputation, where the goal is to predict the missing feature
values 𝒙 𝑗 at 𝒎 𝑗 = 0 for downstream processing. (2) downstream
exclusion prediction, where the goal is to predict exclusion outcome
𝑦 for a new applicant.

4 CAUSALITY-BASED ADVERSARIAL
IMPUTATION

The overall framework of our data imputation framework is illus-
trated in Figure 2. We first give a brief overview of the proposed
method, and then introduce three elements of the model in detail.
At last, we introduce the causality adversarial learning to train the
model in an end-to-end manner for imputation.

4.1 Overview
To systematically study the data imputation of underwriting task,
we leverage causal learning to express the causal mechanism from
partially observed data to latent cause confounder, and design a
novel causality-aware GAN generator into the whole adversarial
learning model as a competitor. The structure of our approach is
illustrated in Figure 2. It includes three elements: a causal learning
network, a causality-aware generator and a discriminator.

4.2 Causal Structural Learning
4.2.1 Motivation. Our fundamental step is to discovers the causal
graph underneath the observed underwriting data with missing
values. Using causal knowledge in causal graph, we can deduce the
generating process of the whole dataset and impute the missing
values via the observed values. This section exploits the idea that
how to construct the causal graph from the observed data.

From a causal perspective, we argue that the dependencies among
observed features are partially or completely due to the interac-
tions among their corresponding latent confounders [6, 11]. Such

a latent factor is defined as a confounder in causal inference, with
the definition as below.

Definition 1 (Confounder). Variable 𝒖 is a confounder of 𝒗𝑖 and
𝒗 𝑗 if their causal structure is:

𝒗𝑖 ← 𝒖 → 𝒗 𝑗 (1)

𝒖 is called hidden confounder if 𝒖 ∉ 𝒗

(a) (b)

Figure 3: An example of confounder in underwriting data,
where cerebral is split into blood sugar and blood pressure
due to questionnaire updates: (a) Gene as a unobserved con-
founder is a common cause (indicated by blue arrows) of par-
tially observed cerebral and blood sugar and blood pressure.
(b) Fully observed family disease can provide proxy informa-
tion (indicated by a grey arrow) to infer confounder Gene.

According to Definition 1, we assume there are a set of con-
founders that drive both the generating process of the observed
features in the insurance data. Figure 3 gives a typical confounder
example in real-life insurance applications, where the latent variable
Gene causes a set of features (including cerebral, blood pressure
and blood sugar). If we can estimate the unobserved confounder
(e.g., Gene) from the proxy variable (e.g., family disease), then
we can use the estimated confounder to infer the missing values



of its resulting features like blood pressure, blood sugar. Conse-
quently, the identification of the structural causal model about how
variables of interest interacting with each other through causal
links provides a causal evidence to generate the missing values.

This motivates us to propose a causal modeling framework that
captures these latent confounding variables, and utilizes the causal
information in recovering missing data. The discovery of causal
structure over the insurance data consists of two parts: 1) identifi-
cation of the correlated features sharing one latent confounder. 2)
estimation of the latent confounder used to infer the missing data.

4.2.2 Identification of Causal Skeleton. Our goal in this subsection
is to infer structural confounder model that learns the causal re-
lationships among variables in feature set V to best describes the
generating procedure of observations.

Following the causality analysis theory [18, 24], we assume that
latent confounder U is the always parent node of the features ({𝒗𝑜 },
{𝒗𝑝 }). With the assumption of the predefined causal direction, con-
structing the structural causal model becomes a easy task as it only
requires to find the correlated features sharing the confounder. For
example, as shown in Figure 4, 𝒗𝑜1 representing the family disease
is a fully observed feature. Suppose we observe that two partially
observed features 𝒗𝑝1 and 𝒗𝑝2 are highly correlated to 𝒗𝑜1 , then we
can infer that 𝒗𝑜1 , 𝒗𝑝1 and 𝒗𝑝2 are within one structural confounder
model. In particular, 𝒗𝑜1 is fully observed and can be used as the
proxy variable to estimate the confounder U1. With the estimated
U1 as the parent node, the missing values in the children nodes like
𝒗𝑝1 and 𝒗𝑝2 can be recovered as well.

Identifying the causal structure is transformed into finding the
correlations among 𝒗𝑜 and 𝒗𝑝 to identify the nodes within one
structural confounder model. A nature way to exploit correlations
is computing the adjacency matrix A = [𝑎𝑖 𝑗 ] ∈ R𝑛𝑜×(𝑑−𝑛𝑜 ) . We
compute adjacency matrix 𝐴 from a similarity matrix S of {𝒗𝑝 }
and {𝒗𝑜 }, where the entry S𝑖, 𝑗 representing the distance between
𝒗𝑖 ∈ {𝒗𝑜 } and 𝒗 𝑗 ∈ {𝒗𝑝 }. The computation of distance is computed
pairwise for all covariates using the Euclidean distance, which
allows to use non-missing elements of both covariate vectors as
follows.

S𝑖 𝑗 = 𝑑𝑖𝑠
(
𝒗𝑖 , 𝒗 𝑗

)
=

[
1
𝑛𝑖 𝑗

𝑑∑
𝑘=1

��𝒗𝑖𝑘 − 𝒗 𝑗𝑘 ��2 (𝑰 𝑖𝑘 𝑰 𝑗𝑘 )]1/2

(2)

where we have indicator 𝑰 𝑖𝑘 = 1 if 𝒗𝑖𝑘 is observed, and 𝑛𝑖 𝑗 =∑𝑑
𝑘=1 𝑰 𝑖𝑘 𝑰 𝑗𝑘 denotes the number of observed components both

in 𝒗𝑖 and 𝒗 𝑗 . The distance results S after the pruning step by a
threshold will be used as adjacency matrix

A𝑖 𝑗 =

{
1, S𝑖 𝑗 > 𝜏

0, otherwise. (3)

for skeleton of the structural confounder model. If the entry S𝑖 𝑗 in
the distance matrix is above this threshold 𝜏 , we claim that fully
observed feature 𝒗𝑖 and partially observed 𝒗 𝑗 are connected and
within the same structural confounder model. Note that threshold
𝜏 is defined as a percentile that is computed on each row of S.

4.2.3 Confouder Learning. Having identifying the skeleton includ-
ing feature variables as children nodes, we now discuss the how to

Algorithm 1 Causal Structural Learning
Input: fully observed features {𝒗𝑜𝑖 }

𝑛𝑜
𝑖=1, partially observed features

{𝒗𝑝 𝑗
}𝑛𝑝
𝑗=1, a threshold 𝜏

Compute distance matrix S by Eq. (2)
if S𝑖 𝑗 > 𝜏 then

Connect 𝒗𝑜𝑖 with 𝒗𝑝 𝑗
by an edge

end if
Iterative connecting generates 𝑛𝑢 seperate causal sketelons {G𝑖 }1≤𝑖≤𝑛𝑢
for each G𝑖 do

Initialize 𝒖𝑖 as a 𝑑-dimensional random vector
for each 𝒗𝑝 , 𝒗𝑜 in G𝑖 do

Set 𝒖𝑖 as the parent of 𝒗𝑝 and 𝒗𝑜
Add directed edges 𝒖𝑖 → 𝒗𝑝 and 𝒖𝑖 → 𝒗𝑜
Remove the edges between 𝒗𝑜 and 𝒗𝑝

end for
for K-steps do

Update \ and 𝒖𝑖 using stochastic gradient descent for (5)
end for

end for
return causal graphs and confounders {G𝑖 , 𝒖𝑖 }1≤𝑖≤𝑛𝑢

estimate their corresponding parent confounders from the proxy
variables. The increasing availability of fully observed features as
proxy variables enables unobserved confounders to be inferred.
For example, it may be difficult to obtain Gen directly, and fully
observed features such as family disease can be considered as
proxy variables instead to replace or infer the latent Gene.

Consider the common scenario where there are 𝑛𝑢 latent con-
founders 𝒖𝑜 ∈ U that influence 𝑛𝑜 fully observed features (𝒗𝑖 ∈
V𝑜 , 1 ≤ 𝑖 ≤ 𝑛𝑜 ). We initialize a set of 𝑛-dimensional random vectors
{𝒖1, · · · , 𝒖𝑛𝑢 }, the 𝑖-th fully observed feature 𝒗𝑖 conditioned on its
cause 𝑢𝑜=𝑝𝑎 (𝑖) can be represented by

𝒗𝑖=1...𝑛𝑜 = 𝑓\ (𝒖𝑜=𝑝𝑎 (𝑖) ) (4)

where 𝑜 = 𝑝𝑎(𝑖) represents a parent (or cause) of 𝑖 and 𝑓\ (·) : U →
V is a neural network parametrized by \ . Using the structure iden-
tified in Eq. (4), the confounder learning task then turns into finding
a meaningful organization of 𝒖𝑜 , such that they can be mapped to
their target observed features. Rather than using autoencoders [3],
which is a pair of neural networks formed by an encoder and a de-
coder, we produce the latent confounder 𝒖 by a parametric encoder
𝑓\ , but learned freely in a non-parametric manner. Particularly, we
seek to jointly learn the parameters \ and the optimal confounder
𝒖𝑜=𝑝𝑎 (𝑖) for each fully observed feature 𝒗𝑖 , by solving:

min
\ ∈Θ

1
𝑛𝑜

𝑛𝑜∑
𝑖=1

[
min

𝒖𝑜=𝑝𝑎 (𝑖 )
L𝐶

(
𝑓\

(
𝒖𝑜=𝑝𝑎 (𝑖)

)
, 𝒗𝑖

)]
(5)

4.2.4 Optimization. For any choice of differentiable generator, the
objective (5) is differentiable with respect to 𝒖, and 𝜽 . Therefore,
we will learn 𝒖 and 𝜽 by Stochastic Gradient Descent (SGD). The
gradient of (5) with respect to 𝒖 canbe obtained by backpropagating
the gradients through the generator function. We project each 𝒖
back to the confounder spaceU after each update. We initialize 𝒖
by sampling them from a Gaussian distribution.



(a) (b)

Figure 4: Causal learning process: (a) identifying causal sketelon by connecting fully observed feature (family disease) with
partially observed features (cerebral, blood sugar, blood pressure) (b) constructing structural causal model with an estimated
confounder 𝒖.

4.3 Adversarial Learning on Causal Structure
In this section, we develop the GAN based framework that utilizes
the causal information underlying the causal structure model to
impute the missing values.

4.3.1 Causality-based Generator for Imputation. The structural
confounder model in Figure 4 depicts how children variables are
generated by their parental confounder variables, which reveals
the generation of observations in underwriting scenario. Based on
causal structure model in Figure 4, we wish to design a causality-
aware generator 𝐺 to impute the missing values.

Based on the causal graph output by Algorithm 1, we wish to
learn weights that quantify the dependency between confounders
and feature variables. Hence, we design a novel generator 𝐺 to
learn𝑊 and further recover partially observed features in obser-
vations. In particularly, 𝑔𝑊 generates �̃�𝑖 , i.e., 𝑖-th feature variable
with missing values, by a function of its parent 𝒖𝑜=𝑝𝑎 (𝑖) , a weight
𝑊𝑜,𝑖 and a noise variable 𝜖𝑖 :

�̃�𝑖 = 𝑔𝑊 (𝒖𝑜=𝑝𝑎 (𝑖) ) (6)

Based on the mask 𝑰 indicating the missing position of 𝒗𝑖 , the
imputed data 𝒗 (𝑖) for the 𝑖-th data can be expressed as

𝒗𝑖 = 𝑰 ⊙ 𝒗𝑖 + (1 − 𝑰 ) ⊙ 𝒗𝑖 (7)

That is, the vector obtained by taking the partial observation 𝒗𝑖 and
replacing each missing value with the corresponding value of 𝒗𝑖 .

Recall that each record 𝒙 consists of an applicant’s responses
to questions/features {𝒗1, · · · , 𝒗𝑑 }, that is, 𝒗𝑖 is the 𝑖-th column of
original data matrix X. By replacing all partially observed 𝒗𝑖 in X
with 𝒗𝑖 imputed by Eq. (7), we can generate an imputed data X̂. In
the following, we use the notation x̂ ∈ R𝑑 as one imputed record
by generator 𝑔𝑊 , i.e., one row of X̂.

4.3.2 Discriminator. As in the GAN framework, we introduce a
discriminator, 𝐷 , that will be used as an adversary to train 𝐺 . The
discriminator 𝐷 of the GAN architecture receives �̂� , and instead
of trying to determine if each component from the output of the
generator is either completely real or completely fake, the model
attempts to distinguish if every component is either original (ob-
served) or imputed (fake). In other words, the discriminator needs
to be trained to maximize the probability of predicting the mask �̂�
of �̂� . Let 𝒛 = (𝑧1, · · · , 𝑧𝑑 ) ∈ {0, 1}𝑑 and we define a hint vector

𝒉 = 𝒛 ⊙ �̂� + 0.5(1 − 𝒛) . (8)

The hint vector 𝒉 reveals partial information about the missingness
of the original sample. Conditional on �̂� and 𝒉, the optimal discrim-
inator 𝐷 : X ×H → [0, 1]𝑑 outputs a 𝑑-dimensional vector. The
𝑘-th component of 𝐷 is the probability of 𝑘-th component of 𝒙 was
observed, and can be represented by

𝐷 (�̂�, h) = 𝑝𝑘 (�̂�𝑘 = 1|�̂�,𝒉) = 𝑝 (�̂�, h, �̂�𝑘 = 1)
𝑝 (�̂�, h, �̂�𝑘 = 1) + 𝑝 (�̂�, h, �̂�𝑘 = 0)

(9)
where �̂�𝑘 is 𝑘-th component of mask �̂�.

4.3.3 Objective Function. The overall procedure is to impute all
samples {𝒙 𝑗 }1≤ 𝑗≤𝑛 by simultaneously training a causality-aware
generator 𝐺 and a discriminator 𝐷 . Hence, the overall loss is de-
fined as the sum of discriminator loss L𝐷 , generator loss L𝐺 and
reconstructed loss Lrec.

Particularly, 𝐺 imputes the partially observed features of 𝒙 by
Eq. (7) to reconstruct the imputed 𝑥 . The discriminator𝐷 tries guess
for every component of 𝑥 if its variable value is either original
or imputed. Namely, for every newly imputed 𝑥 , 𝐷 is trained to
maximize �̆� = [𝑝1, · · · , 𝑝𝑛] by computing 𝑝𝑘 in Eq. (9), i.e., the
probability of correctly predicting the mask of �̂� . Given the mask
𝒎 of original 𝒙 , the discriminator loss L𝐷 is defined as

L𝐷 (𝒎, �̆�, 𝒛) =
∑

𝑘 :𝒛𝑘=0

[
𝑚𝑘 log(𝑝𝑘 ) + (1 −𝑚𝑘 ) log(1 − 𝑝𝑘 )

]
(10)

where𝑚𝑘 is the 𝑘-th component 𝒎 and 𝑝𝑘 is in Eq. (9). Note that
the outputs of discriminator 𝐷 that depend on generator 𝐺 are
samples (i.e., indexed by 𝑘) corresponding to 𝒛𝑘 = 0. We design
the discriminator loss (10) and optimize the discriminator 𝐷 with a
fixed generator 𝐺 using mini-batches of size 𝑘𝐷 to produce such
kinds of outputs. For such a mini-batch, the discriminator 𝐷 with
parameters \𝐷 is trained to optimize:

max
𝐷

𝑘𝐷∑
𝑗=1
L𝐷 (m𝑗 , �̆� 𝑗 , z𝑗 ) (11)

𝐺 in fact outputs a value for the entire data vector including
the observed components and missing components. We apply two
loss functions L𝐺 and Lrec to the missing components and the
observed components, respectively. For the missing component
indicating by𝑚𝑘 = 0, generator 𝐺 outputs the 𝑘-th component of
𝒙 , denoted as 𝑥𝑘 . The probability that recognizing 𝑥𝑘 as observable
one (𝑚𝑘 = 1) by𝐷 is 𝑝𝑘 .𝐷 aims to minimize 𝑝𝑘 since it is simulated



Algorithm 2 CaGen: Causal-Aware Generative Imputation

Input: observed dataset {x𝑗 ,m𝑗 }𝑛𝑗=1 with 𝑛𝑝 partially features {𝒗𝑖 }
𝑛𝑝

𝑖=1,
causal graphs {G𝑗 , 𝒖 𝑗 }1≤ 𝑗≤𝑛𝑢 , random binary vectors {𝒛 𝑗 ∈
{0, 1}𝑑 }𝑛

𝑗=1, noise vectors {e𝑗 }𝑛𝑗=1
while not converge do

Step 1: Discriminator optimization
Draw 𝑘𝐷 samples from the dataset {x𝑗 ,m𝑗 }𝑛𝑗=1
Draw 𝑘𝐷 i.i.d. samples from {z𝑗 }𝑛𝑗=1, {e𝑗 }𝑛𝑗=1

Construct data matrix X𝐷 for {x𝑗 }𝑘𝐷𝑗=1
Construct the imputed matrix X̂𝐷 by imputing {𝒗𝑖 }

𝑛𝑝

𝑖=1 via Eq. (7)
for 𝑗 = 1, · · · , 𝑘𝐷 do

Set �̂�𝒋 = X̂𝐷 [ 𝑗, :]
h𝑗 = z𝑗 ⊙ m𝑗 + 0.5(1 − z𝑗 )
Compute 𝐷 (x̂𝑗 , h𝑗 ) by Eq. (9)

end for
Update 𝐷 via optimizing (11).
Step 2: Generator optimization
Draw 𝑘𝐺 samples from the dataset {x𝑗 ,m𝑗 }𝑛𝑗=1
Draw 𝑘𝐺 i.i.d. samples from {z𝑗 }𝑛𝑗=1, {e𝑗 }𝑛𝑗=1

Construct data matrix X𝐺 for {x𝑗 }𝑘𝐺𝑗=1
Construct the imputed matrix X̂𝐺 by imputing {𝒗𝑖 }

𝑛𝑝

𝑖=1 via Eq. (7)
for 𝑗 = 1, · · · , 𝑘𝐺 do

𝒉 𝑗 = 𝒛 𝑗 ⊙𝒎 𝑗 + 0.5(1 − 𝒛 𝑗 )
Set �̂�𝒋 = �̂�𝐺 [ 𝑗, :]
Fixed 𝐷 by computing 𝐷 (x̂𝑗 , h𝑗 ) via Eq. (9)

end for
Update𝐺 via optimizing (14)

end while

by 𝐺 . Generator 𝐺 aims to fool 𝐷 , then 𝐺 will maximize 𝑝𝑘 , i.e.,
minimize − log(𝑝𝑘 ). Therefore, the loss L𝐺 needs to ensure that
the imputed values for missing components (𝑚𝑘 = 0) successfully
fool the discriminator (as defined by the minimax game), i.e.,

L𝐺 (m, �̆�, z) = −
∑

𝑘 :𝑧𝑘=0
(1 −𝑚𝑘 ) log (𝑝𝑘 ) (12)

In addition, we define a reconstruction loss function Lrec to
ensure that the values outputted by 𝐺 are close to the non-missing
components. We consider the well-established cross entropy to
calculate the reconstruction error for 𝑥𝑘 , i.e., 𝑘-th observed compo-
nents of 𝒙 :

Lrec (𝒙, �̂�, 𝒎) =
𝑑∑

𝑘=1
𝑚𝑘 (−𝑥𝑘 log (𝑥𝑘 )) (13)

We optimize the generator𝐺 using the newly updated discriminator
𝐷 with mini-batches of size 𝑘𝐺 . Regarding the loss function of the
generator, we have

min
𝐺

𝑘𝐺∑
𝑗=1
L𝐺 (m𝑗 , �̆� 𝑗 , z𝑗 ) + 𝛼Lrec (𝒙 𝑗 , �̂� 𝑗 ) (14)

5 EXPERIMENTS
In this section, we report extensive experiments conducted on a
large-scale industrial dataset to evaluate the effectiveness of the
proposed data imputation methods for automated underwriting.

5.1 Dataset and Preprocessing
Before we present the comparison results of baseline imputation
methods, we first analyze the characteristics of the dataset used
in the experiment. The datasets in this paper are from a leading
life insurance company in Australia, which consists of 10-years
of longitudinal application records of 119K applicants. As can be
seen in Figure 5, the response rates to questions are considerably
low, most applicants fill out less than 10 percent of the entire ques-
tionnaire, due to the information drift of the questionnaire. This
results in sparse feature vectors for the majority of applicants. Sim-
ilar to the sparse feature vectors, the data exhibits the sparsity in
relation to the application of exclusions, resulting in extreme class
imbalances when predicting exclusions. Though there are over one
thousand different exclusions applied in the data set, many of them
are extremely rare occurred, and thus removed in experiments. Con-
sequently, we keep the most 53 frequently exclusions of diseases
along with 149 features condensing the applicant’s medical and
lifestyle information filled in the questionnaire 1.

Figure 5: Histogram of records in each class (i.e. exclusion)
in descending order.

5.2 Setup
Baseline methods. Our CaGen algorithm is compared against
seven baseline methods in two categories: 1) discriminative meth-
ods including MICE(Multiple Imputation by Chained Equations) [4],
missForest [20], k-nearest neighbors (KNN) [23], Matrix Comple-
tion [9, 13, 17], and 2) generative methods including MIDA (Mul-
tiple Imputation with Denoising Autoencoders) [8], GAIN (Genera-
tive Adversarial Imputation Nets) [26], and MIWAE (Missing Data
Importance-Weighted Autoencoder) [16]. Since there is no ground-
truth for missing values of underwriting data in practice, we turn
to evaluate the imputation performance by the underwriting pre-
diction accuracy on the imputed dataset. Following existing under-
writing work in insurance sector, we use the Logistic Regression
and Gradient Boosting Classifier as the underwriting predictors on
the imputed data.
Implementation. All models are trained with 80% of the original
data and the rest 20% is used to evaluate the performance of the
imputation methods. For kNN, Matrix, MICE and missForest, we

1The data used in this research does not involve any Personal Identifiable Information
(PII). A sample dataset from the real dataset will be released for research purposes.



use the implementation from the library fancy impute 2, for GAIN,
MIDA, we implement with Pytorch, and implement MIWAE with
Tensorflow. We implement our method using Tensorflow with the
Adam optimizer. Particularly, we implement 𝑓\ in Eq. (5) using a
multilayer perceptron (MLP) with 1-dimension latent space and
128 hidden neurons. For the downstream underwriting prediction
task, we use the same settings of logistic regression classifier and
Gradient Boosting Classifier for all imputed methods.
Hyper-parameter tuning. We set 𝑘 = 5, 10, 20 in kNN and rank
𝑟 = 50, 100, 1000 in matrix completion with the maximum number
of iteration of 1000. The parameters of the other compared methods
were set as what were used by their authors. We perform a grid
search over trade-off parameter 𝛼1, 𝛼2 ∈ [10, 50, 100, 200], batch
size 𝑠 ∈ [32, 64, 128, 512, 1024], and learning rate [ ∈ [1𝑒 − 6, 1𝑒 −
5, 1𝑒 − 4, 1𝑒 − 3, 1𝑒 − 2], resulting in the optimal values 𝛼1 = 500,
𝛼1 = 100, 𝑠 = 124 and [ = 1𝑒 − 4. The maximum epoch is set as
10000, and an early stopping strategy is performed. For the logistic
regression classifier, we use the maximum epoch as 10000. For the
Gradient Boosting Classifier, we use 1000 estimators with maximum
depth at 5 and learning rate at 0.1.
Metrics. To make a complete comparison with the previous work
on imputation, we report the results of our proposed model on a
variety of metrics, including macro- and micro-averaged F1, Preci-
sion, Recall and AUC (area under the ROC curve). A macro-average
computes the metric independently for each class and then take the
average (hence treating all classes equally), while a micro-average
computes a simple average over all classes.

5.3 Results
In this section, our goal is to classify the data after imputation into
different correct classes in terms of exclusions.

5.3.1 Causality analysis. We further explore the correlations be-
tween fully observed features and partially observed features pro-
duced by Eq. (2) of causal sketelon identification. The result is
shown as heatmap in Figure 6 (a) where the fully observed features
with thresholds above 𝜏 in Eq. (3) are demonstrated. Each cell is
colored from dark green to yellow where dark green indicating the
observed feature is high relevant to the partially observed feature.
For example, the heatmap shows that the fully observed Asthma-
Childhood (2nd column) is correlated to partially observed features
includingRespiratory (2nd row) andAsthma (22th row).Asthma-
Childhood indicates that persons developing Asthma or Respi-
ratory disease are more likely attributed to a genetic cause rather
than environment causes. In other words, Asthma-Childhood
provides proxy information to estimate confounder (i.e., genetic
cause) that is not explicitly shown. The estimated confounder as
the cause of partially features (e.g.,Asthma andRespiratory) thus
can be further used to impute the missing values for these partially
features.

Figure 6 (b) is the heatmap generated by traditional correlation
analysis, where 51 observed features that are highly correlated. This
figure indicates that traditional correlation analysis tends to pro-
duce spurious relationships that lead to unstable imputation results
across different distributions. For example, Asthma-Childhood is

2https://pypi.org/project/fancyimpute/

(a) 𝑥-axis: partially observed features, 𝑦-axis: fully observed fea-
tures.

(b) 𝑥-axis and 𝑦-axis: fully observed features.

Figure 6: Heatmaps of features.

highly correlated with Asthma-Prescription. Traditional correla-
tion analysis are more likely to deduce thatAsthma-Prescription
is also correlated with Asthma so as to impute the corresponding
missing values. However, Asthma-Prescription is the result (not
the cause/parent node) of Asthma, which thus can not reveal the
true generating process of Asthmawith a causal explanation. Con-
cretely, if an applicant doesn’t haveAsthma-Prescription, we can
not guarantee that this applicant has been cured of Asthma.

5.3.2 Underwriting prediction. We report the following perfor-
mance averaged over 10 random repetitions with 5-cross valida-
tions. Table 1 reports comparison performance of all methods in
terms of eight metrics. Note that our underwriting data is highly
imbalanced where the distribution of records across class labels is
not equal as shown in Figure 5. As can be seen from the table, the
micro-average results are preferable than macro-average results
for the class imbalance problem. More importantly, our method
significantly outperforms each baseline on average. Our method
outperforms the best baseline method (i.e. MIDA) in underwriting



Table 1: Underwriting prediction on the real-world dataset imputed by eight methods.

Logistic Regression Gradient Boosting Classifier
GAIN Matrix KNN MICE missforest MIDA MIWAE Ours GAIN Matrix KNN MICE missforest MIDA MIWAE Ours

AUC Marco 0.600 0.617 0.618 0.617 0.533 0.621 0.500 0.702 0.636 0.679 0.682 0.681 0.555 0.681 0.500 0.716
Micro 0.805 0.821 0.823 0.823 0.734 0.823 0.854 0.875 0.807 0.824 0.824 0.824 0.732 0.823 0.843 0.891

F1 Marco 0.293 0.324 0.326 0.324 0.140 0.329 0.092 0.375 0.369 0.448 0.456 0.454 0.201 0.456 0.091 0.481
Micro 0.664 0.687 0.69 0.689 0.550 0.690 0.627 0.716 0.664 0.686 0.685 0.686 0.542 0.685 0.619 0.733

Precision Marco 0.409 0.430 0.429 0.434 0.275 0.433 0.070 0.452 0.482 0.544 0.546 0.544 0.328 0.548 0.070 0.582
Micro 0.692 0.705 0.707 0.706 0.613 0.707 0.525 0.722 0.686 0.695 0.694 0.695 0.594 0.695 0.526 0.758

Recall Marco 0.251 0.285 0.287 0.285 0.125 0.292 0.133 0.315 0.322 0.408 0.415 0.413 0.171 0.412 0.129 0.439
Micro 0.638 0.67 0.674 0.673 0.499 0.673 0.778 0.814 0.644 0.677 0.677 0.678 0.498 0.675 0.753 0.786

(a) Gradient Boosting Classifier. (b) Logistic Regression.

(c) Gradient Boosting Classifier. (d) Logistic Regression.

Figure 7: Underwriting prediction under different samples.

(a) Gradient Boosting Classifier. (b) Logistic Regression.

(c) Gradient Boosting Classifier. (d) Logistic Regression.

Figure 8: Underwriting prediction under different features.

prediction by 8% in terms of AUC and 10% in terms of F1. In par-
ticular, our method beats the other GAN-based method (i.e. GAIN)
on all the metrics. Compared with GAN-based method, which uses
an MLP as the generative model, the causality-aware generator

designed in our method is able to explicitly model the observation
generating process for imputing missing feature values. This fur-
ther validates the effectiveness of the proposed causality-aware
generator. Furthermore, MIWAE achieves the worst performance.
We can also see that auto-encoder algorithms are not suitable for
such data.

Robustness against different samples and features.We choose
four generative methods including MIDA, GAIN and MIWAE as the
baselines (with Micro settings) to present the imputation perfor-
mance under different settings of samples and features. In Figure 7
and Figure 8, as expected, the performance of every model degrades
when the proportion of training samples decreases (consequently
discarding useful information in the observational data). Interest-
ingly, comparing traditional generative baselines and our method,
we can see that considering causal relationships will have a pos-
itive effect on the performance of data imputation, thus on the
performance of underwriting.

(a) Gradient Boosting Classifier. (b) Logistic Regression.

(c) Gradient Boosting Classifier. (d) Logistic Regression.

Figure 9: Underwriting prediction on new observations.

Generalization on new observations.We further investigate
the generalization capability of our method. Concretely, previous
comparison results are produced by first imputing all missing val-
ues and then spliting the imputed data into training and testing.
This section adopts a different setting by first spliting the original
data into training and testing, and then examines whether a trained
imputation model can successfully achieve superior prediction per-
formance on new observations with missing values.



Figure 9 shows the performance of five baseline methods summa-
rized in boxplots, excluding MIDA and MIWAE. Since the lengths
of all boxes are small, to present more information of boxplots, we
fixed the range of 𝑦-axis approximately at [0.63, 0.76]. This leads
to the exclusion of MIDA and MIWAE, as MIDA and MIWAE per-
form below the average range. We can see that applying Gradient
Boosting classifier on our imputed data yields average 10% higher
prediction accuracy on compared with baselines without being
retrained, indicating that our imputed model generalizes well to
unseen observations. Interestingly, MIWAE performs nearly the
best among the baselines in previous subsections, whereas performs
below the average for new observations. This is mainly because
test data in this subsection are new observations without imputa-
tion, it may have distributions different from the training dataset.
Similarly, baseline methods merely handle correlations rather than
causality, and thus have difficulties transferring the correlations
knowledge in the training data to new missing data with a different
distribution. In contrast, our model does not have the issues since
the proposed causality-aware generator can identify causality un-
derlying observations to learn the cause variables (i.e., confounder)
of the unobserved features.

6 CONCLUSIONS AND FUTUREWORK
In this work, we tackled the learning problem of incomplete data for
automated underwriting task. We find that the ignorance of causal
relationships may produce bias in the generation of features and the
outcome, and hence complicate the data imputation process. This
motivates us to propose a causality-aware GAN framework to gen-
erate high quality missing data for underwriting task. Specifically,
we first design a causal learning module to uncover the underlying
causal graph resulting in missing data pattern of underwriting ob-
servations. Then, we design a causality-aware generative network
for GAN to initialize the missing values following the causal rela-
tionships, and followed by an iterative process of updating imputed
values via an adversarial learning. Numerical experiments with real
world datasets show that our method significantly outperforms
state-of-the-art imputation techniques. Future work will construct
the complete causal graph on the non-stationary answers with the
assistance of insurance prior knowledge among a large-scale set of
variables.
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