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Abstract—Unsupervised domain adaptation provides a variety
of methods to leverage the previously gained knowledge from a
labeled source domain to help complete a task from a similar
unlabeled target domain. Many existing methods focus on trans-
ferring knowledge across single source and single target domains,
while few studies deal with multi-source domain adaptation,
which is more realistic and challengeable. Existing multi-source
domain adaptation methods rarely consider the uncertainty of
the transformed knowledge resulting from limited information in
target domain. A fuzzy system allows imprecision and ambiguity
within transfer, thus it can deal with problems with uncertainty.
This work proposes a multi-source domain adaptation method
with fuzzy-rule based deep neural networks (MDAFuz). The pro-
posed method first extracts multi-view adapted features and pre-
trains source classifiers. Using the learned features and classifiers,
training samples are then split into multiple clusters, hence fuzzy
rules can be built to learn new classifiers. At the same time, the
cluster discriminator is trained to define the membership. Finally,
by measuring the similarities among source and target domains
using the pseudo target labels and a domain discriminator,
the target task is completed by combining all source classifiers
with regard to the learned weights. The experiment results on
real-world visual datasets show the superiority of the proposed
method.

I. INTRODUCTION

Traditional deep learning requires that the training and
testing data must be drawn from the same distribution, and
there is a large quantity of training data to learn the model.
However, these requirements cannot always be satisfied in
many applications due to the high cost or the privacy issue,
which means that the acquired labeled training data (source)
and the unlabeled testing data (target) probably follow dif-
ferent distributions. Thus, transfer learning gains increasing
attention in view of its capability to handle the dataset bias
problem [1]. Domain adaptation is attractive and well-explored
in transfer learning, including closed set [2], open-set [3],
[4] and partial domain adaptation [5]. A widely studied
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approach is feature-based domain adaptation, which aims at
handling domain shift in a latent feature space via reducing
discrepancy between the source and target domains. Maximum
mean discrepancy (MMD) [6] and Wasserstein distance [7]
are two popular and regularly used distribution measurements,
and adversarial training [8] captures considerable attention
by building a two-player network to make source and target
domains non-discriminatory.

According to the dimensions of the feature spaces of source
and target domains, the feature-based approach can be divided
into homogeneous and heterogeneous domain adaptation. In
homogeneous domain adaptation, the source and target feature
spaces have the same dimension. Structurally regularized deep
clustering proposes a source regularized method for unsu-
pervised domain adaption [9]. Motivated by the structural
similarity, it employs a deep clustering framework to learn
class centres of source and target domains, and generates
an auxiliary target distribution to help explore the intrin-
sic discrimination in the target domain by matching it to
the source distribution. Certainty-based attention for domain
adaptation identifies adaptable regions by building a Bayesian
discriminator [10]. The predominant areas that can benefit the
matching of source and target data are highlighted by the class
probabilities returned using a Bayesian classifier.

In heterogeneous domain adaptation, the source and target
domains have different feature space dimensions. Completely
heterogeneous transfer learning deals with domain adaptation
where both the feature and label spaces of the source and
target domains are different [11]. It discovers what and what
not to transfer by selecting a subset of source samples, and
the attention mechanism is employed to learn a set of weight
vectors and determine its correlation with target domain.
Deep matrix completion with adversarial kernel embedding
employs an adversarial manner to learn the distribution kernel
embedding in a latent feature space, and uses it to map
distributions and train the classifiers [12].

However, the mentioned studies rarely consider the inherent



phenomenon of uncertainty in knowledge transfer [13]. Since
target labels are inaccessible, there is a limit to the amount
of information with certainty that can be extracted, causing
a high level of uncertainty in the target domain. To address
this problem, fuzzy logic is introduced to transfer learning
[14]–[16]. Fuzzy multiple-source transfer learning deals with
regression tasks in both homogeneous and heterogeneous sce-
narios with multiples source domains [17]. It determines dom-
inant source domains which contain more suitable transferable
information for the given target domain by measuring the
distance between each source and target class centres. Multi-
source heterogeneous unsupervised domain adaptation extracts
shared information from multi-dimension spaces using a novel
shared-fuzzy-equivalence-relations neural network [18], and
then transforms the acquired shared fuzzy knowledge into
latent feature spaces to match the distribution discrepancy
among heterogeneous domains.

The aforementioned existing fuzzy transfer learning meth-
ods focus on shallow neural networks. In this paper, we
propose a multi-source domain adaptation method which adds
fuzzy rules to deep neural networks. In the proposed method, a
pre-trained network is used first to extract multi-view features
of the source and target data by adapting multi-level domain
distributions. Then the fuzzy sets and fuzzy rules are built
based on the extracted features and the similarities predicted
by the pre-trained classifiers to construct new source classi-
fiers. Finally, all source classifiers are combined using fuzzy
membership returned by a learned domain discriminator to
complete the target task. Our main contributions are as follows:
• We propose a multi-source domain adaptation method

with a fuzzy system, which applies fuzzy logic into
very deep neural networks. It differs from previous fuzzy
transfer learning which focuses on shallow models;

• We use a similarity estimation strategy to group source
samples that contain similar information into multiple
clusters and build the fuzzy rules. A cluster discriminator
is learned to split samples according to the information
level which rarely has been considered as a factor affect-
ing performance;

• We develop a fuzzy combination rule for conjoining
source classifiers to predict target labels. This is the first
study to employ fuzzy membership to define the source
contribution to the target task.

The remainder of this paper is designed as follows: Sec-
tion II details the proposed method. Section III presents the
experiment results and analyses on real-world visual datasets.
Conclusion and future work are given in section IV.

II. THE PROPOSED METHOD

In this paper, we deal with homogeneous unsupervised
multi-source domain adaptation. The proposed method is
detailed as follows: first, it employs a deep network to extract
transferrable features in latent feature spaces and pre-trains
source classifiers. Both domain-level and class-level distribu-
tions are considered to match the source and target domains.
Then, the pre-trained classifiers estimate the similarity of

a source sample belonging to a category. By dividing the
estimated similarities into different groups, training samples in
each source domain are split into multiple clusters, thus fuzzy
rules are built to learn new source classifiers. Finally, all source
classifiers are combined to complete the target task. In order to
learn the combination weights, fuzzy membership is estimated
using the domain discriminator. The whole framework is
shown in Fig. 1.

Fig. 1. The procedure of the proposed method.

A. Transferrable Feature Extraction and Source Classifier
Pre-training

In this section, we pre-train the source classifiers and
collect the transferrable features using our previous study
[19]. Given multiple source domains {Dsk}Kk=1 following
distributions {Psk}Kk=1, where the kth source domain Dsk =
{(xisk ,y

i
sk
)}nsk
i=1, and the target domain Dt = {xjt}

nt
j=1 follow-

ing distribution Pt, xsk ,xt ∈ X represent samples, ysk ∈ Y
indicates corresponding label of xsk , nsk , nt indicate the num-
ber of samples in the kth source domain and target domain,
respectively. With regard to the structural risk minimization
principle [20], the learning processing of each source classifier
Psk can be written as:

Psk = argmin
Psk
∈H

(xsk
,ysk

)∼Dsk

L(Psk(φk(xsk)),ysk) + λR. (1)

L is the error between the predicted outputs and source labels,
where cross-entropy loss is used to calculate the error:

L = − 1

nsk

nsk∑
i=1

yisk log(Psk(φk(xsk)).

φk is the feature extraction operation, R indicates the regu-
larization term, H represents reproducing kernel Hilbert space
and λ is an optimal trade-off parameter. During training, nsk
is replaced with the batch size. This operation applies to other
equations in this paper.

In our setting, source classifiers are trained to be used on
target data. To provide the cross-domain ability of the learned
classifiers, here we adapt the distributions between each source
and target domains, hence the extracted features of the source
and target domains will follow similar distributions, meaning
the classifiers can be applied to both of them.

To collect features for adapting domain distributions, for kth
source domain, the feature extraction operation φk contains
shared feature extraction φ and specific multi-view feature



extraction φck and φdk . Employing a pre-trained deep neural
network structure, the formula of shared feature extraction is:

f isk = φ(xisk ,θ),f
j
t = φ(xjt ,θ),

i = 1, 2, . . . , nsk , j = 1, 2, . . . , nt, k = 1, 2, . . . ,K,

θ represents the parameter of deep network φ.
To represent data from different aspects, the shared features

are then divided into common view and diverse view features.
Corresponding feature extraction can be expressed as:

f icsk
= φck(f

i
sk
,θck),f

j
ctk

= φck(f
j
t ,θck),

f idsk
= φdk(f

i
sk
,θdk),f

j
dtk

= φdk(f
j
t ,θdk),

i = 1, 2, . . . , nsk , j = 1, 2, . . . , nt, k = 1, 2, . . . ,K,

θck ,θdk are the corresponding parameters of φck , φdk . Fea-
tures for adaptation and classification can then be written as
Fsk = [fcsk ;fdtk ], Ftk = [fctk ;fdtk ].

MMD is used to minimize the discrepancy between the
source and target distributions [6]. Both domain-level and
class-level distributions are considered. Domain-level match-
ing can be expressed as:

Ld =MMD(H,Psk ,Pt)
= sup
ψ∈H

(EFsk
∼Psk

ψ(Fsk)− EFtk
∼Pt

ψ(Ftk)).

Employing the same strategy proposed in [21], MMD can be
calculated as:

MMD(H,Psk ,Pt) =∥∥∥∥∥∥ 1

nsk

nsk∑
i=1

ψ(F isk)−
1

nt

nt∑
j=1

ψ(F jtk)

∥∥∥∥∥∥
2

H

,

ψ is a nonlinear function transforming the extracted features
into RKHS with a universal kernel.

Class-level matching minimizes the discrepancy between
the same classes and maximizes it among different classes.
Since misalignment often occurs to boundary samples, we
only enlarge the distance between the nearest two classes
with the highest probability during training, which can reduce
computational complexity. The class-level matching can be
written as:

Lc =
1

C

C∑
r=1

MMD(H,Prsk ,P
r
t )−(α

2
(MMD(H,Prs1sk

,Prs2sk
)+

MMD(H,Prt1t ,Prt2t ))
)
,

C is the number of classes, s1, s2 and t1, t2 are indices of the
nearest class in the source and target domains. The solution
of MMD is:

MMD(H,P?1∗1 ,P
?2
∗2 ) =∥∥∥∥∥∥ 1

n?1∗1

n
?1
∗1∑
i=1

ψ(p?1∗1 · F
?1
∗1 )−

1

n?2∗2

n
?2
∗2∑

j=1

ψ(p?2∗2 · F
?2
∗2 )

∥∥∥∥∥∥
2

H

,

∗ and ? denote the subscript and superscript in Lc, p is the
probability of a sample belonging to a class.

The similarity and diversity among source domains should
also be taken into account. We use the common view features
to represent similarity and the diverse view features to indicate
diversity, then the source domain adaptation can be expressed
by minimizing the similarity and maximizing the diversity:

Ls =
2

K(K − 1)

K−1∑
k1=1

K∑
k2=k1+1

(MMD(H,Pcsk1
,Pcsk2

)−MMD(H,Pdsk1
,Pdsk2

)),

where
MMD(H,P ·sk1

,P ·sk2
) =∥∥∥∥∥∥ 1

nsk1

nsk1∑
i=1

ψ(f i·sk1

)− 1

nsk2

nsk2∑
j=1

ψ(f j·sk2

)

∥∥∥∥∥∥
2

H

,

symbol · represents superscript c or d.
Cross-domain constraint is applied to ensure that multiple

source classifiers return the same labels of the same target
samples:

Lcro =
2

K(K − 1)

K−1∑
k1=1

K∑
k2=k1+1( 1

nt

nt∑
j=1

∣∣Psk1

(
F jtk1

)
− Psk2

(
F jtk2

)∣∣). (2)

The source classifier in equation (1) can be re-written as:

Psk = argmin
Psk
∈H

(xsk
,ysk

)∼Dsk

L(Psk(φk(xsk)),ysk)

+ λ1Ld + λ2Lc + λ3Ls + λ4Lcro.

B. Fuzzy-rule based Classification

The Takagi–Sugeno fuzzy model is a popular fuzzy archi-
tecture. For data pair (x,y), the rule is:

if x is Am, then y is Pm(x),m = 1, 2, · · · ,M. (3)

Am is the fuzzy set of the mth rule, Pm is the corresponding
output function. The output of the fuzzy system is expressed
as:

y =

M∑
m=1

pm · Pm(x) (4)

pm is the membership of data belonging to a set.
In the classification task, the classifier can identify an item

in different views, for example, front view, partial view, rotate
view and so on. It cannot distinguish the different views of the
item but only “remembers” its features during learning. The
information level of the same item in different views is actually
different, and samples with the same level information are
more similar to each other compared with those with different
level information. Hence, according to the information level,
to construct a fuzzy model for classification, we divide the
samples into multiple groups to learn the multiple classifiers



of each source domain, which is expected to benefit the
classification.

Using the estimated similarity to represent the information
level contained in a sample, the similarity of each sample
belonging to the class in kth source domain can be estimated
by the pre-trained classifier:

psk = max(Psk(Fsk)), psk ∈ [0, 1]

Divide the closed interval [0, 1] into M sub-intervals,
[0, a1), · · · , [ak−1, ak), · · · , [aM−1, 1], the source samples
are split into different clusters according to the value of the
estimated similarity. For the mth cluster, a classifier Pskm

is
trained by minimizing the cross-entropy loss:

Lm = − 1

nskm

nskm∑
i=1

yisk log(Pskm
(Fsk)).

nskm
is the number of cluster samples.

A cluster discriminator is trained using samples from each
cluster to estimate the membership of new inputs. The cluster
discriminator of the kth source domain Pck is parameterized
by:

LPc = −
1

nsk

nsk∑
i=1

yick log(Pck(Fsk)).

yck is cluster label. The membership vector is:

pck = Pck(Fsk).

The fuzzy model for each source domain in equation (3)-(4)
can be re-written as:

if Fsk is Am, then ysk is Pskm
(Fsk),m = 1, 2, · · · ,M.

The prediction of kth source domain is expressed as:

ysk = pTck · Psk(Fsk) = p
T
ck
·

Psk1
(Fsk)
· · ·

PskM
(Fsk)

 ,
cross-entropy loss of Psk is:

LP = − 1

nsk

nsk∑
i=1

yisk log(p
T
ck
· Psk(Fsk)).

As in equation (2), the cross-domain constraint for learning
source classifiers in the proposed fuzzy model is re-written
as:

Lcrof =
2

K(K − 1)

K−1∑
k1=1

K∑
k2=k1+1( 1

nt

nt∑
j=1

∣∣pTck1
· Psk1

(F jtk1
)− pTck2

· Psk2
(F jtk2

)
∣∣).

The total loss of learning the fuzzy rule-based source classifier
is:

Psk = argmin
Psk
∈H

(xsk
,ysk

)∼Dsk

M∑
m=1

Lm + γ1LP + γ2Lcrof .

C. Target Task Completion

To complete the target task, all source classifiers are com-
bined to predict the target labels, which can be expressed as
a fuzzy model:

if Ft is Dsk , then yt is pTck · Psk(Ft), k = 1, 2, · · · ,K.

The final prediction of the target data is:

yt = p
T
d ·

 pTc1 · Ps1(Ft)· · ·
pTcK · PsK (Ft)

 ,
pd is the membership vector, indicating the probability of the
target samples belonging to a source domain.

To define the membership, pseudo label-based and feature-
based strategies are used to determine the combination rule.
First, source classifiers directly pseudo label the target data,
noting the number of target samples which obtain the same
results from multiple source classifiers in each batch as nc,
batch size as nb, the frequency of nc = nb is ac, and a
threshold a is defined to identify if there is a significant
difference among the predictions. If ac > a, which means
multiple source domains contribute similarly to the target
domain, the averaged combination is then used, the element
value of pd is 1

K , if ac ≤ a, a domain discriminator is used
to estimate the element values.

We collected the shared features {fsk}Kk=1 and ft, the
domain discriminator Pd is controlled by:

LPd = −
1

ns

ns∑
i=1

yid log(Pd(fs)).

yd is domain label, fs =
K⋃
k=1

{fsk}, ns =
∑K
k=1 nsk . The

membership vector is:

pd = Pd(ft),pd = [pd1 , · · · , pdK ]T .

The combination rule of target classifier can be formulated as:

yt =

{
1
K

∑K
k=1(p

T
ck
· Psk(Ft)), if ac > a,∑K

k=1 pdk · (pTck · Psk(Ft)), if ac ≤ a,
k = 1, 2, · · · ,K.

III. EXPERIMENTS

A. Datasets and Parameter Setting

The proposed method is evaluated on real-world visual
datasets ImageCLEF-DA and Office-31.

ImageCLEF-DA is a balanced dataset containing 1800
images collected from 12 categories, where every category
contains 50 images. It has three image libraries: Caltech-
256 (C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012
(P), and each library is regarded as a domain. We test the
proposed model by building three tasks: I, C → P ; I, P → C;
C,P → I .

Office-31 is an unbalanced dataset containing 4110 images
collected from 31 categories, and the number of images in
every category is different. It has three libraries: Amazon



(A), Webcam (W) and DSLR (D). Amazon has 2817 images,
Webcam has 795 images, and DSLR has 498 images taken
by different devices. Regarding each library as a domain, we
test the proposed model by building three tasks: A,W → D;
A,D →W ; D,W → A.
ResNet50 is employed as the backbone φ, multi-view

feature extraction networks φck , φdk contain three convolu-
tional layers and reduce the dimension of the shared features
from 2048 to 256, batch size nb = 32; learning rate η
is η = η0

(1+10ε)0.75 , η0 = 0.01, ε is the training progress
changing linearly from 0 to 1, the momentum is 0.9 and weight
decay is 5e − 4. The trade-off parameter α = 0.01, λ∗, γ∗
follow existing work [22], that is 2

1+exp(−10ε) − 1, threshold
a = 0.5. To reduce the experimental complexity, ac of each
task is calculated using the pre-trained source classifiers rather
than fuzzy source classifiers, and directly applies to target
classification. ac of tasks I, C → P , I, P → C, C,P → I
from ImageCLEF-DA and A,D →W from Office-31 is larger
than 0.5, while that of tasks A,W → D and D,W → A is
smaller than 0.5.

The comparison methods are as follows and single source
domain adaptation methods include:
• DAN: Deep adaptation network [23];
• RevGrad: Reverse gradient [24];
• D-CORAL: Correlation alignment for domain adaptation

[25];
• MRAN: Multi-representation adaptation network [26];
• MDDA: Manifold dynamic distribution adaptation [27];
• DDAN: Dynamic distribution adaptation network [27].

Multi-source domain adaptation methods include:
• DCTN: Deep cocktail network [28];
• MFSAN: Multiple feature spaces adaptation network

[22];
• DFRE: Distribution fusion and relationship extraction

network [29].

B. Comparison and Analysis

All experiments are repeated for three times and the results
are averaged accuracy. Tables I and II show the results
on ImageCLEF-DA and Office-31 respectively. Here “Single
Best” means the result is the best performance of a single
source domain; “Source Combine” means combining all the
source domains as one; “Multi-Source” means the results of
the multiple source domains.

It can be seen the proposed method achieves the high-
est performance on most tasks. Generally, multi-source do-
main adaptation outperforms single source domain adaptation.
Knowledge transfer with considering domain shift is superior
to which simply mixes all source training samples. Sometimes,
single source domain adaptation performs best, for example,
tasks I, C → P using MDDA and A,W → D using DDAN,
which means when combining all source classifiers or mix-
ing source samples following different distributions, negative
transfer may occurr. We will investigate this as future work to
avoid negative transfer when combining source domains.

TABLE I
COMPARISON OF CLASSIFICATION ACCURACY (%) ON IMAGECLEF-DA.

Standards Method I, C-P I, P-C P, C-I Avg

ResNet 74.8 91.5 83.9 83.4
DAN 75.0 93.3 86.2 84.8

Single D-CORAL 76.9 93.6 88.5 86.3
best RevGard 75.0 96.2 87.0 86.1

MRAN 78.8 95.0 93.5 89.1
MDDA 79.8 95.7 92.0 89.2
DDAN 78.0 94.0 91.0 87.7

Source DAN 77.6 93.3 92.2 87.7
Combine D-CORAL 77.1 93.6 91.7 87.5

RevGard 77.9 93.7 91.8 87.8

DCTN 75.0 95.7 90.3 87.0
Multi- MFSAN 79.1 95.4 93.6 89.4
Source DFRE 79.5 95.8 93.7 89.7

MDAFuz 79.4 96.3 94.5 90.1

TABLE II
COMPARISON OF CLASSIFICATION ACCURACY (%) ON OFFICE-31.

Standards Method A, W-D A, D-W W, D-A Avg

ResNet 99.3 96.7 62.5 86.2
DAN 99.5 96.8 66.7 87.7

Single D-CORAL 99.7 98.0 65.3 87.7
best RevGard 99.1 96.9 68.2 88.1

MRAN 99.8 96.9 70.9 89.2
MDDA 99.2 97.1 73.2 89.8
DDAN 100.0 96.7 65.3 87.3

Source DAN 99.6 97.8 67.6 88.3
Combine D-CORAL 99.3 98.0 67.1 88.1

RevGard 99.7 98.1 67.6 88.5

DCTN 99.3 98.2 64.2 87.2
Multi- MFSAN 99.5 98.5 72.7 90.2
Source DFRE 99.6 98.7 73.1 90.5

MDAFuz 99.7 99.0 74.0 90.9

Tables III and IV show the performance without and with
a fuzzy system, “S” means single source domain, “M” means
multi-source domain. Source order is the same as described,
for example, S1 is A in task A,W → D. It indicates that
for many tasks, both single source and multi-source domain
adaptation, the performance with fuzzy rules is better than
that without fuzzy rules. For some tasks like A,W → D, the
accuracy without fuzzy rules is higher. The reason for this
is that source domains show different levels of correlation
with the target domain, and for some weakly connected
source samples, transferrable information from each cluster
is not enough for learning the target task, in other words, the
auxiliary among training samples may be lost. We will try to
solve this in the future.

IV. CONCLUSION AND FUTURE STUDY

In this paper, we propose a fuzzy system based method
for multi-source domain adaptation. A pre-trained model is
employed to extract the adapted features of the source and
target domains, and the pre-trained source classifiers are used
to develop a similarity estimation strategy, which divides train-
ing samples from each source domain into multiple clusters to
construct fuzzy rules. Using the extracted features and fuzzy
rules, new source classifiers are learned. To predict target



TABLE III
COMPARISON OF CLASSIFICATION ACCURACY (%) ON IMAGECLEF-DA

WITHOUT AND WITH FUZZY RULES.

Standards I, C-P I, P-C P, C-I Avg

Without S1 78.8 95.4 93.2
89.2fuzzy S2 79.0 95.2 93.3

M 79.1 95.7 93.4 89.4

With S1 78.9 96.5 94.3
89.8fuzzy S2 78.7 95.7 94.8

M 79.4 96.3 94.5 90.1

TABLE IV
COMPARISON OF CLASSIFICATION ACCURACY (%) ON OFFICE-31

WITHOUT AND WITH FUZZY RULES.

Standards A, W-D A, D-W W, D-A Avg

Without S1 96.3 97.9 73.0
89.8fuzzy S2 99.8 98.4 73.6

M 98.9 98.6 73.3 90.3

With S1 95.5 98.2 73.0
89.9fuzzy S2 99.7 99.0 74.2

M 99.7 99.0 74.0 90.9

labels, the combination rule is defined with regard to the
pseudo target labels and a domain discriminator, which are
employed to measure the similarity among source and target
domains. The experiment results and analysis on real-world
visual datasets show that the proposed method outperforms
the other comparison methods.

In future studies, we expect to avoid the negative transfer
when combining source domains. Selecting source samples or
domains that show strong correlation with the target domain
is worth trying to achieve this. In addition, we also aim at
enhancing the auxiliary among multiple clusters to facilitate
information transfer among both data and tasks.
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