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Abstract With the rapid development of Information Technology, there ex-
ist massive amounts of data available on the Internet, which result in a severe
information overload problem. Especially, it becomes more and more challeng-
ing but necessary to help users find the contents or services that they really
need. To address the problem mentioned above, recommender systems have
been developed to exploit user’s historical behavior data and provide personal-
ized services for promoting customer experiences in many fields, such as Point
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2 Dongjing Wang et al.

of Interest (POI) applications, multimedia services, and e-commerce websites.
Specifically, in POI recommendation, user’s next check-in behaviors depend on
both long- and short-term preferences. However, traditional recommendation
methods often ignore the dynamic changes of user’s short-term preferences
over time, which limits their performance. Besides, many existing methods
cannot fully exploit the complex correlations and transitions between POI in
check-ins sequences. In this paper, we propose an Attentive Sequential model
based on Graph Neural Network (ASGNN) for accurate next POI recommen-
dation. Specifically, ASGNN firstly models user’s check-in sequences as graphs
and then use Graph Neural Networks (GNN) to learn the informative low-
dimension latent feature vectors (embeddings) of POIs. Secondly, a personal-
ized hierarchical attention network is adopted to exploit complex correlations
between users and POIs in check-in sequences and capture user’s long- and
short-term preferences. Finally, we perform the next POI recommendation via
leveraging user’s long- and short-term preferences obtained from their behavior
sequences with ASGNN. Extensive experiments are conducted on three real-
world check-in datasets, and the results demonstrate that the proposed model
ASGNN outperforms baselines, including some state-of-the-art methods.

Keywords Recommender System · Sequential Recommendation · POI
Recommendation · Graph Neural Network · Attention

1 Introduction

Nowadays, with the rapid development of cloud computing, Internet of Things,
large amounts of web applications and services have emerged, which trigger the
explosive growth of online data and bring us into the big data era. In 2019, for
example, the scale of transacting users of Meituan Dianping (a China’s leading
shopping platform for locally found consumer products and retail services)
increased by 12.5%, and the number of service providers in Meituan Dianping,
including hotels, restaurants, travel agencies, reached over millions 1. Then, it
becomes more and more difficult for users to find contents or services that they
are interested in, which results in a severe “information overload” problem.

Recommender systems [23,30] have been proposed as an effective way to
address the “information overload” problem in many fields, such as POI ap-
plications [41], online music services [36] job suggestions [16], business pro-
cess management [7] and so on. However, as for existing recommendation ap-
proaches, it is still a challenging task to fully exploit such a large amount of se-
quential behavior data for improving recommendation performance in an effec-
tive and efficient way. Especially, traditional recommendation methods based
on machine learning require tedious manual feature engineering. Around 2015,
a wave of deep learning [19] swept across both industrial and academic area,
quickly causing an important technological transformation. Specifically, deep
learning can utilize low-level data and information to form denser higher-level

1 https://meituan.todayir.com/attachment/202003301717261783547356 en.pdf
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Attentive Sequential Model Based on Graph Neural Network 3

features and discover the distributed features of data. Therefore, with deep
learning, the massive amounts of online data can be utilized in a more effec-
tive way. Especially, a lot of implicit information can be effectively used to
improve the performance of personalized recommendations and alleviate the
cold start problem.
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Fig. 1 An example of two user’s check-in records for POIs around West Lake in Hangzhou.

As for POI recommendation, existing methods still face the following two
challenges.

– (1) How to fully exploit all user’s check-in behaviors? In many existing
methods, user’s behavior data are often modeled as sequences for recom-
mendations. However, user’s check-in behaviors generally contain many
useful features that haven’t been fully exploited. For example, as shown
in Figure 1 , the users may visit different POIs, such as stadium, mu-
seum, restaurant, and so on, which depends on their specific purpose or
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4 Dongjing Wang et al.

preference. Besides, user’s check-in sequences may become quite complex
especially when a large number of POIs are available, which makes it diffi-
cult to directly capture user’s sequential behavior patterns and preferences
from their check-in sequences.

– (2) How to capture and leverage user’s long- and short-term preferences
accurately? user’s check-in behaviors generally depend on both long- and
short-term preferences, which may play different roles in POI recommen-
dation. Specifically, user’s long-term preferences are relatively stable over
time. For example, in the scenario shown in Figure 1, the user1 has stable
long-term preferences. Specifically, user1 likes visiting tourist attractions,
coffee shops, and restaurants. Besides, user’s short-term interests tend to
change dynamically over time. For example, user2 (blue curve in Figure 1)
enjoy various kinds of POIs, and she/he may visit mall or bookstore for
shopping, or take part in outdoor activities, such as climbing or boat-
ing. Especially, the prediction/recommendation for user2’s next behavior
mainly depends more on her/his short-term preferences. In the example
mentioned above, the long- and short-term preferences of user1 and user2
have different effects on the recommendation tasks, so it is necessary to
capture both preferences and leverage them in an adaptive and effective
way.

To address the problems mentioned above, we propose the Attentive Sequential
model based on Graph Neural Network (ASGNN) for next POI recommen-
dation, which consists of the following four steps. Firstly, we construct user’s
historical check-in data as directed graphs. Specifically, each check-in sequence
can be modeled as a directed graph, where the nodes include user nodes and
POI nodes, and the edges in the graph are divided into edges from user nodes
to POI nodes and edges between POI nodes. user’s check-in behaviors can be
very complex especially when there exist a lot of POIs. Most traditional meth-
ods model user’s behaviors as sequences and use a sliding window to capture
sequential information, which may miss some important features. Compared
with those strategies, the graph structure adopted in ASGNN can effectively
model user’s behavior patterns in a graph unified and localized way. Secondly,
we use GNN to model user’s preferences and POIs’ features by exploring rich
interactions/transitions between users and POIs. Specifically, a Gated Graph
Neural Network (GGNN) is adopted to embed nodes in the graph into low-
dimensional space and represent them as latent vectors (embeddings). Espe-
cially, GGNN can elegantly obtain user’s check-in behavior patterns by learn-
ing to propagate and borrow information from other nodes/edges in the graph.
Thirdly, we design a two-layer personalized hierarchical attention network to
obtain user’s personalized long- and short-term preferences for POIs and unify
them in an adaptive way. Especially, the two-tier attention structure explores
information from each record in the check-in sequences to capture user prefer-
ences and leverage long- and short-term preferences via assigning personalized
weights. Finally, ASGNN uses the softmax layer to predict user’s next behav-
iors and perform personalized recommendations for the target users.
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Attentive Sequential Model Based on Graph Neural Network 5

The main contributions of this work are summarized as follows:

– We propose a new model named ASGNN that represents user’s check-in
behaviors as graphs and use GNN to learn user’s behavior patterns and
their preferences in a graph localized way for next POI recommendation.

– We design a personalized hierarchical attention mechanism to capture
user’s long- and short-term preferences and leveraged them adapatively
for sequential recommendations.

– Extensive experiments are conducted on three real-world POI datasets, and
the results show that the proposed model ASGNN outperforms baselines,
including some state-of-the-art methods.

The remainder of this paper is organized as follows. We review existing re-
lated works in Section 2. Section 3 illustrates the key concepts and notations
used in this paper. Section 4 describes the proposed sequential POI recom-
mendation model. Detailed experimental results and analysis are presented in
Section 5. Finally, we conclude our work in Section 6.

2 Related Work

In this section, we describe the existing works on traditional and deep learning
based recommender systems, and also present related works on GNN and
attention mechanism that inspire this work.

2.1 Traditional recommendation methods

Traditional recommendation methods mainly include the following three cat-
egories: content-based methods, collaborative filtering methods, and hybrid
methods.

The main idea of content-based (CB) recommendation methods [27] is to
discover similar items based on the items users have already rated or interacted
with and then recommend them. CB methods mainly rely on content infor-
mation, such as user’s profile and items’ feature, instead of rating/interacting
records, so there is no data sparsity problem. However, it usually encounters
tedious feature engineering problems.

Collaborative filtering (CF) [9] recommendation methods are generally di-
vided into user-based CF, item-based CF, and model-based CF. Specifically,
user-based CF algorithms try to find a set of users (neighbors) who have sim-
ilar interests with the target user, and then recommend neighbors’ items that
are not interacted by the target user. For example, Jia et al. [15] propose a
user-based CF recommender system for tourist attraction recommendation,
which has three steps: representation of user (tourist) information, generation
of neighbor users (tourists) and the generation of attraction recommenda-
tions. Item-based collaborative filtering algorithm [32] measures the similarity
between items based on rating/interacting records, and generate a recommen-
dation list based on the similarity between candidate items and the target
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6 Dongjing Wang et al.

user’s historical behaviors. For example, Linden et al. [23] use item-to-item
CF method on Amazon for product recommendations. This method measures
the similarity between products based user’s purchasing or rating behaviors,
and recommends the products that are similar with the target user’s historical
records to them. Besides, there are many kinds of model-based CF algorithms,
and matrix factorization (MF) [18] technique is one of the most widely used
approaches. Specifically, MF is a latent factor model that transforms both
items and users into low-dimension latent space that characterizes items and
users with factors automatically inferred from user’s feedback. Lian et al. [22]
present a POI recommendation method named GeoMF, which exploits user’s
mobility records on location-based social networks (LBSNs) and models those
implicit feedback data with weighted matrix factorization for POI recommen-
dation.

Hybrid recommendation is proposed to address the shortcomings of each
single recommendation method. Specifically, different recommendation strate-
gies can be combined in complementary ways to achieve better performance.
For example, Lekakos et al. [20] propose a hybrid movie recommendation ap-
proach based on content-based and collaborative filtering. Albadvi et al. [1]
propose a online retail store recommendation technique, which extracts user’s
preferences in each product category separately and provides personalized rec-
ommendations based on various kinds of features, such as product taxonomy,
attributes of product categories, and so on.

2.2 Deep learning based recommendation methods

Deep learning techniques can solve the problem of tedious manual feature prob-
lems in traditional machine learning by automatically discovering distributed
high-level features, and they have widely applied in image recognition, natural
language processing, recommender system and so on.

Specifically, deep learning can be used to capture the features of users
or items. For example, Covington et al. [6] propose a content-based video
recommendation algorithm based on deep learning. The method’s main idea is
to find the top-n videos that are similar with the user preference vector with
deep neural network. Elkahky et al. [8] propose a Multi-View Deep Neural
Network (MVDN) model, which maps user/item entities to the same hidden
space by deep neural network to generates recommendations based on the
matching degree between users and items in hidden space.

In the area of collaborative filtering based recommender systems, Ma et
al. [24] propose stacked autoencoders (SAE) POI recommendation approach,
which combines collaborative filtering strategy with autoencoders to capture
the complex features in check-in data. Hidasi et al. [11] adopt recurrent neural
networks (RNN) to mine user’s dynamic preferences in their historical behav-
ior sequences for session-based recommendations. Jannach et al. [14] combine
the K-nearest neighbor algorithm with RNN to enhances the scalability of
recommendation model. Tang et al. [35] propose a Convolutional Sequence
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Attentive Sequential Model Based on Graph Neural Network 7

Embedding Recommendation Model (Caser), which embeds a sequence of re-
cent items into an “image” in time and latent space and uses a convolutional
filter to learn the sequence patterns as local image features.

Deep learning is also widely applied in hybrid recommender systems. For
example, Zhao et al. [46] design a spatio-temporal gated network (STGN)
to incorporate both spatio and temporal information and capture both the
long- and short-term preferences for accurate sequential POIs recommenda-
tion. Hsieh et al. [12] use collaborative metric learning to model the similarity
between entities in data and then perform recommendation task. Bansal et
al. [3] propose a recurrent neural network based method that uses GRU to
learn a vector representation of text content for text recommendation.

2.3 Graph neural network

With the proliferation of graph-structured data, such as social network graphs,
many research works on GNN have emerged. Especially, GNN and its variants,
such as Graph Convolutional Network (GCN) and Graph Recurrent Networks
(GRN), have been widely used in many tasks, including prediction and rec-
ommendation. For example, Scarselli et al. [33] propose a GNN based model
with information propagation mechanism. Specifically, each node in the graph
updates its state by exchanging information until all nodes reach some sta-
ble value. Wang et al. [39] represent the interaction data between users and
POIs as higher-order connection graphs and learn user’s personalized prefer-
ences for POIs from the complex and nonlinear interactions in graphs. Berg et
al. [4] propose a graph self-encoder framework based on the user-item bipar-
tite graph, which solves the problem of score prediction in recommendation
systems from the perspective of link prediction. Ying et al. [43] develop a
data-efficient GCN algorithm named PinSage for web-scale recommender sys-
tems. Specifically, PinSage combines random walks and graph convolutions
to generate embeddings of nodes that incorporate both graph structure and
node feature information in an efficient way. Li et al. [21] propose the GGNN,
which uses the Gate Recurrent Units (GRU) [5] in the propagation step. It
unrolls the recurrent neural network for a fixed number of T steps and back-
propagates through time to compute gradients. GGNN is also applied in the
session recommendation field. For example, Wu et al. [40] adop GGNN for
session-based recommendations, which uses an attention network to model
user’s global preference and current interests.

Besides, graph attention networks, which combines GNN with attention
networks, are proposed and applied in recommender systems. For example,
Song et al. [34] propose a dynamic graph attention neural network based rec-
ommender system for online communities, which model user’s dynamic behav-
iors and context-dependent social influence with recurrent neural network and
graph-attention neural network separately for social recommendation. Wang
et al. [38] propose a Knowledge Graph Attention Network (KGAT) to link
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8 Dongjing Wang et al.

user-item instances together by attributes and fuse user-item and knowledge
graph to form a unified network structure for recommendation.

2.4 Attention mechanism

Attention mechanism allows models to focus on important information in a
large amount of data, significantly improving their efficiency and effectiveness,
and it has been applied in may fileds. For example, Mnih et al. [26] combine
the attention mechanism with RNN model for image classification. Besides,
Bahdanau et al. [2] apply the attention mechanism to machine translation in
the NLP field. Attention mechanism is also applied in recommendation tasks
to improve the performance. Ying et al. [42] propose a recommendation model
based on hierarchical attention network. Specifically, the first attention layer is
used to capture the user’s long-term preferences, and the second attention layer
is used to couple the user’s long- and short-term preferences and output user’s
preference representation. Besides, Huang et al. [13] propose an attention-
based spatio-temporal long and short-term memory (ATST-LSTM) network
for next POI recommendation. Especially, the attention mechanism in ATST-
LSTM enables it to focus on the relevant historical check-in records in a check-
in sequence for better performance.

3 Preliminary

In this section, we introduce the sequential POI recommendation problem
studied in this paper, and also present the definitions of key concepts. The
main symbols and their explanation are given in Table 1.

Table 1 Symbols used in this work

Symbol Description
G = (V,E) POI check-in sequence graph
V = (U,L) vertex set
E edge set
e ∈ E an edge
U user set
u ∈ U a user
L POI set
l ∈ L a POI

v ∈ Rd A d-dimension embedding vector

Su Check-in sequence for user u.
A adjacency matrix
Rm m-dimensional Euclidean space
� matrix corresponding element point multiplication
σ sigmoid function
φ ReLU activation function

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Attentive Sequential Model Based on Graph Neural Network 9

In our sequential recommender system, the main goal is to predict which
POI a user will visit next based on her/his historical check-in data. Formally,
let L = {l1, l2, . . . , lm} denotes the set of POIs in all check-ins sequences.
Each user u’s check-in records can be represented by a time-stamped sequence
Su = [lu,1, lu,2, . . . , lu,n], where lu,i ∈ L denotes the u’s i-th check-in record in
Su. The task of the sequential POI recommender system is to predict the u’s
next check-in behavior lu,n+1 given her/his historical check-in sequence Su.
Specifically, each POI in the candidate set is ranked according to its score ŷ,
and top ranked POIs will be recommended to the target user. The definitions
of key concepts are given as follows:

Definition 1. POI Check-in Sequence Graph. POI check-in sequence
Graph is defined as G = (V,E), where V = (U,L) represents the vertex set,
and U and L are user set and POI set, respectively. E represents the set of all
edges, including user-POI edges and POI-POI edges.

Definition 2. User-POI Interaction Edge. User-POI interaction edge
E(u,li) indicates that user u has interacted with POI li. Specifically, user-
POI edges encode user’s preferences and POIs’ latent features. For exam-
ple, two users share similar preferences for POIs if they have checked in the
same/similar POIs.

Definition 3. POI-POI Transition Edge. POI-POI transition edges are
defined as E(li,lj), which represents that user u visited POI lj after visiting
POI li. The edges between POIs indicate user’s check-in behavior patterns
that may be important for POI prediction/recommendation. For example, the
edges with higher weights mean that there are frequent transition between the
corresponding POIs.

Definition 4. Sequential POI Recommendation. Given a user u ∈ U
and her/his sequence Su before time t, we need to predict the POI l ∈ L for
which that user will check in at t.

4 Proposed Model

As shown in Figure 2, the proposed model ASGNN consists of four main steps:
1) POI check-in sequence graph construction, 2) feature representation learn-
ing, 3) long/short-term preference capturing, and 4) POI recommendation.

4.1 POI check-in sequence graph construction

Instead of modeling check-in behaviors as sequences directly like many existing
methods, ASGNN firstly constructs POI check-in sequence graph to represent
user’s behavior data, and the reason is two-fold. Firstly, we do not need to
truncate user’s behavior sequences into fixed length since graph structure can
represent the whole behavior sequence. Therefore, ASGNN can reserve more
sequential information that is important for tasks of prediction and recom-
mendation. Secondly, user’s check-in behaviors are represented in a graph lo-
calized way for effective preferences/features propagation. Besides, the weights
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10 Dongjing Wang et al.
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Fig. 2 The framework of ASGNN consists of four main components: 1) POI check-in se-
quence graph construction, 2) feature representation learning, 3) long/short-term preference
capturing, and 4) POI recommendation.

of edges in graph structure indicate the check-in counts of users on POIs. In
this way, we can capture user’s behavior patterns in a more effective way for
better recommendation.

Specifically, we model each check-in sequence S as a directed graphG (V,E).
V = (U,L) represents the vertex set, where U is user set, and L is POI set.
Besides, E represents the set of edges, including user-POI edges and POI-POI
edges. Each user-POI edge e = (u, l) indicates the check-ins between user u
and POI l, and every POI-POI edge elu,i−1,lu,i

indicates that the user u has
visited the POI li after li−1 in sequence Su. Since POIs may be checked in by
users repeatedly, we assign a normalized weighted value to each edge. Specifi-
cally, the check-in count of POI/user node is divided by the out-degree of its
starting node.

4.2 Feature representation learning

After the construction of POI check-in sequence graph, we can learn the low
dimensional vector representation (embedding) of POI and user through GNN.
Each POI lu,i ∈ L and user u ∈ U are embedded in a latent feature space,
and the node vector v ∈ Rd represents a latent feature/preference vector (em-
bedding) of a POI or user, where d is the dimension. The learned embeddings
can capture the intrinsic features of POIs, and represent user’s preferences for
POIs. Especially, it avoids the problem that Markov’s decision process requires
a vast number of states.

In vanilla GNN, it is computationally inefficient to update the hidden states
of all nodes iteratively. We use a GNN’s variant inspired by RNN [31,5], namely
GGNN, with gate mechanism to diminish the restrictions of the vanilla GNN
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Fig. 3 An example of graph and the connection matrix Au1

model and improve the effectiveness of the long-term information propagation
across the graph. In this way, user’s check-in data can be exploited in a more
effective way to capture user’s long-term preferences more accurately.

Formally, the update function for the embedding vi of each node on graph
GV,E is defined as follows.

at
s,i = Au

i ·
[
vt−1
1 , . . . ,vt−1

n

]T
H + b, (1)

zts,i = σ
(
Wza

t
s,i + Uzv

t−1
i

)
, (2)

rts,i = σ
(
Wra

t
s,i + Urv

t−1
i

)
(3)

ṽl
t = tanh

(
Woa

t
s,i + Uo

(
rts,i � vt−1

i

))
, (4)

vt
i =

(
1− zts,i

)
� vt−1

i + zts,i � ṽt
l . (5)

As shown in the Figure 3, the connection matrix Au ∈ Rn×2n is defined
as the concatenation of two adjacency matrices Au,in and Au,out, which de-
termines how the nodes in the graph communicate with each other.

Specifically, Equation (1) defines the propagation process of information,
such as user’s behavior patterns or preferences, on incoming and outgoing
edges between nodes in a graph localized way. Especially, at

s,i ∈ Rd×2d con-
tains the activation information of the incoming and outgoing edges, and the
adjacency matrix Au ∈ Rn×2n defines the degree to which the nodes in the
graph are connected to each other. Moreover, each element Au

i,j represents the
weighted value of the edge between node li and lj . An example of graph and
the connection matrix Au are shown in Figure 3. Au

i ∈ R1×2n are two columns
of blocks in Au corresponding to node ls,i.

[
vt−1
1 , . . . ,vt−1

n

]
are embeddings of

POIs before t in the sequence S. Besides, H ∈ Rd×2d is the weighted matrix,
and b is the bias term.

Equation (2) and Equation (3) describe the calculation process of update
gate zts,i and reset gate rts,i, respectively. Specifically, σ is the logistic sigmoid
function, and Wz, Uz, Wr and Ur are trainable weight matrices that are
learned in the optimization process. According to Equation (4), the candidate
state is constructed based on the previous state, the current state, and the
reset gate. Specifically, tanh is the hyperbolic tangent activation function,
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12 Dongjing Wang et al.

Wo and Uo are weight matrices which are optimized in the training process.
Moreover, Equation (5) defines how to update the state of each node based on
the previous hidden state and the candidate state with updating gate.

4.3 Long/Short-term preference capturing

Many existing recommendation methods [40,10] use attention mechanism to
capture both short- and long-term preferences and combine them together.
However, they often ignore user’s personalized requirements and behavior pat-
terns, and generally add up different preferences in a linear way. Especially,
user’s long- and short-term preferences may play different roles in the predic-
tion/recommendation tasks, but they are generally assigned with the same or
fixed weights in those methods.

In ASGNN, we design a personalized hierarchical attention network to ob-
tain user’s long- and short-term preferences and combine them adaptively.
Specifically, the two-layer attention mechanism can capture important infor-
mation, such as user’s preferences accurately by assigning different weights to
the check-in records in behavior sequences. Similarly, user’s long- and short-
term preferences are leveraged in an adaptive way for better recommendation.
For user u, her/his check-in sequence is denoted as Su = [lu,1, lu,2, . . . , lu,n],
where n is the number of records in sequence. Specifically, u’s long-term be-
haviors lu,1, . . . , lu,n−1 indicate her/his long-term preferences. Formally, u’s
long-term preference is defined as:

hl
i = φ (Wlvi + bl) , (6)

αl
u,i =

exp
(
v>u hl

i

)∑
i∈Su

exp
(
v>u hl

i

) , (7)

pl
u =

∑
i∈Su

αl
u,ivi, (8)

where Wl and bl are model parameters, and φ is the ReLU activation function.
Specifically, we first feed the dense low-dimensional embedding of each item
i ∈ Su through a multi-layer perceptron (MLP) to get the hidden representa-
tion hl

i based on Equation (6). Then we put the embedding vu of user u as the
context vector and calculate the attention score αl

u,i as the normalized simi-

larity between hl
i and u with the softmax function according to Equation (7),

which characterizes the importance of item li for user u. Finally, u’s long-
term preference pl

u is calculated as the weighted sum of the POI embedding
according to the attention scores in Equation (8).
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Besides, u’s short-term preference can be inferred from her/his last (most
recent) check-in behavior lu,n ∈ Su, and it can be formally defined as:

hs
i = φ (Wsvi + bs) , (9)

αs
u,i =

exp
(
v>u hs

i

)∑
i∈Su

exp (v>u hs
i )
, (10)

ps
u =

∑
i∈Su

αs
u,ivi, (11)

where Wsand bs are model parameters, αs
u,i is the attention score, and ps

u is
the representation of u’s short-term preference.

Then, we can combine the user’s long-term preferences with short-term
preferences in an adaptive way to obtain her/his personalized preference pu,
which is formally defined as:

pu = βlp
l
u + βsp

s
u, (12)

where βl is the weight of long-term user preference, and βs is the weight of
short-term user preference.

4.4 POI recommendation

Finally, we can use the softmax layer to calculate the possibility (score) that
the target user u interacts with the candidate POI li based on u’s preference
pu and li’s feature vi, and perform next POI recommendation. Formally, the
score ẑu,i for each candidate POI li ∈ L is calculated as follows:

ˆzu,i = pT
uvi. (13)

Then we can apply a softmax function to calculate the normalized output
vector ŷ:

ŷ = softmax(ẑ), (14)

where ẑ denotes the recommendation scores over all candidate POIs and ŷ
denotes the probability of POIs being interacted by the target user next.

For each POI Check-in Sequence Graph, the loss function can be written
as follows by using cross-entropy:

L(ŷ) = −
m∑
i=1

yi log (ŷi) + (1− yi) log (1− ŷi) , (15)

where y denotes the one-hot encoding vector of the ground truth item.
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5 Experiments

In this section, we evaluate the performance of the proposed model ASGNN on
three real-world datasets. Specifically, the experiments are designed to answer
the following five research questions:

– RQ1: Does the proposed model ASGNN outperform state-of-the-art base-
lines in sequential POI recommendation tasks?

– RQ2: What are the effects of the key components in the ASGNN archi-
tecture, and can they effectively capture key features for improving the
performance of recommendation?

– RQ3: How does the dimension of embedding in ASGNN influence the
recommendation results?

– RQ4: How do ASGNN and baselines perform on datasets with different
sparsity?

– RQ5: Does ASGNN learned the POI embedding effectively?

5.1 Experimental designs

5.1.1 Datasets

We evaluate the proposed model ASGNN on three real-world datasets as fol-
lows:

– Gowalla2 is a LBSN website that allows users to share locations by checking-
ins. Specifically, if user u visits POI l at time t, there will be a tuple record
(u, l, t) ∈ Su, where Su is u’s sequential behavior sequence. Specifically, we
filtered out POIs with less than five occurrences and remove users who only
have one interaction record. The final Gowalla dataset contains 307,376
check-ins by 6,533 users to 23,329 POIs.

– FourSquare3 is a location platform based on user’s geographical infor-
mation. It encourages mobile phone users to share their current location
with others. Specifically, we remove POIs whose frequency less than five
and retained user’s behavioral sequences with more than one POI. The
final Foursquare dataset contains 128,147 records between 1,809 users and
5,514 POIs.

– Brightkite4 was once a location-based social networking service provider
where users shared their locations by checking-in. Specifically, we remove
POIs whose frequency less than two and retained user’s behavioral se-
quences with more than one POI. The final Foursquare dataset contains
40,040 records between 1,932 users and 6,056 POIs.

In each dataset, we randomly select 80% of all check-in records as the train-
ing set and use the remaining 20% as the test set. The statistical information
for all datasets is shown in Table 2.

2 https://snap.stanford.edu/data/loc-gowalla.html
3 https://sites.google.com/site/yangdingqi/home/foursquare-dataset
4 https://snap.stanford.edu/data/loc-brightkite.html
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Table 2 Complete statistics of the dataset

Dataset Gowalla Foursquare Brightkite
user 6,533 1,809 1,932
POI 23,329 5,514 6,056

check-in record 307,376 128,147 40,040
time range 04/2012-09/2013 02/2009-10/2010 04/2008-10/2010

5.1.2 Baseline methods

In this section, we compare the proposed model ASGNN with seven baselines,
including some traditional recommendation algorithms and several state-of-
the-art methods based on deep learning techniques, such as GNN and attention
mechanism.

– POP method ranks candidate items based on their popularity and then
recommends the top ranked items to the target users.

– BPR [28] is a classic recommendation algorithm that optimizes the pair-
wise rank loss on implicit feedback data for top-n recommendation.

– FPMC [29] combines matrix factorization with Markov chains to model
user’s sequential behaviors for recommendation.

– HRM [37] represents each user or item as a feature vector in contin-
uous space, and employs a two-layer model to learn the hybrid prefer-
ence/feature representations of users and items from transaction data for
next-basket recommendation.

– CPAM [44] combines skip-gram based POI embedding model with lo-
gistic matrix factorization to incorporate both context influence and user
preference for POI recommendation.

– SHAN [42] uses a hierarchical attention network for behavior sequence
modeling and recommendations

– SRGNN [40] is a session-based recommendation method that uses the
GNN to model user’s behavior data and learn vector representations of
users and items for recommendation.

5.1.3 Evaluation metrics

The proposed model ASGNN was evaluated with two metrics, i.e. recall and
Mean Reciprocal Rank (MRR).

– Recall is defined as

Recall@n =
#(hit)

#(testcase)
(16)

where #(hit) is the number of ground truth items that appear in the
recommended list and #(testcase) is the number of all testcases. Especially,
recall is widely used to evaluate the quality of the recommendation results.
To be precise, it is the ratio of the number of user-interacted POIs to the
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total number of POIs in the recommendation results. A larger recall value
indicates better recommendation result.

– MRR is a ranking evaluation metric which is the average of the recipro-
cal ranks of the target POIs in a recommendation list. Formally, MRR is
defined as

MRR@n =
1

#(all)
×
∑ 1

ranki
(17)

where ranki denotes the rank position of the i-th test target POI in the
recommendation list. If ranki > n, 1

ranki
= 0. Specifically, the MRR is

the average of the reciprocal degree of the target POIs, and it mainly
measures the ranking order of items in recommendation list. Especially, a
larger MRR value means better result.

5.1.4 Implementation details

All trainable parameters are initialized using a Gaussian distribution with a
mean of 0 and a standard deviation of 0.1, and they are optimized in small
batches using Adam optimizer [17]. Besides, we set the learning rate to 0.001,
the batch size to 100, number of epochs to 30. All experiments are performed
on a server with Intel(R) Xeon(R) Silver 4108 CPU, GeForce RTX 2080Ti,
128GB memory, and running Ubuntu 18.04, python 3.6, TensorFlow 1.15.

5.2 Comparison with baselines (RQ1)

We firstly compare the proposed model ASGNN with the baselines mentioned
above to evaluate ASGNN’s performance in detail. The experimental results
on Gowalla and Foursquare and Brightkite datasets are shown in Figure 4(a)
and 4(b),and 4(c), separately.

As shown in the experimental results, POP and BPR do not perform well
on the all three datasets, with their recall@20 values under 1% in most cases.
Specifically, the performance gap between those two methods and other base-
lines is quite large. The reason is that the BPR method is based on the inter-
action data between users and POIs and it ignores the sequential information
in the check-in data. The POP method only considers the popularity of the
POI, so it has the lowest performance on all three datasets. Especially, user’s
check-in sequences contain information and features that are important for
improving POI recommendation, such as user’s behavior patterns as well as
the correlations between POIs in check-in sequences.

FPMC and CPAM incorporate the sequential information in user’s check-
in sequences, and they are more effective than POP and BPR algorithms. For
example, as shown in Figure 4(a) and 4(b), and 4(c),the recall@20 for FPMC
and CPAM algorithms range from 2% to 6% on Gowalla Dataset. Specifically,
FPMC algorithm combines matrix factorization with Markov chains to cap-
ture user’s long-term preference and sequential information in POI check-in
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(a) Gowalla dataset
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(b) Foursquare dataset
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(c) Brightkite dataset

Fig. 4 Performance comparison between ASGNN and baselines

data. Besides, CPAM can capture the contextual influence between POIs in
check-in sequences and combine it with user’s preferences for POI recommen-
dation. However, FPMC and CPAM do not explicitly learn user’s short-term
preferences or combine them with user’s long-term preferences, so their perfor-
mance is not as good as the proposed model ASGNN, which shows both long-
and short-term preferences captured by ASGNN are important for accurate
recommendation.

Compared with FPMC which combines user’s general tastes and sequen-
tial behavior in a linear way, HRM, SHAN, and SRGNN capture and combine
user’s long- and short-term preferences in a more effective way, so they achieve
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better results. For example, the recall@20 of HRM and SHAN algorithms are
between 7% and 8% on Gowalla Dataset, respectively, and the recall@20 for
the SRGNN algorithms reached 17.41% on Gowalla dataset. Specifically, HRM
uses a two-layer model to construct hybrid preference/feature representations
(embeddings) of users and items from check-in sequences with average or max-
imum pooling strategies, so it perform well on POI recommendation task.
Besides, SHAN algorithm adopts a hierarchical attention network to capture
user’s long- and short-term preferences from behavior sequences and combines
them together for better results. Similarly, the SRGNN algorithm can learn
and combine user’s long- and short-term preferences with GNN.

Moreover, the proposed model ASGNN still outperform those three base-
lines, and the reason is that the long- and short-term preferences may play
different roles for each user in POI recommendation. Especially, ASGNN can
accurately model and capture both preferences with GNN and leverage them
via a two-layer personalized hierarchical attention network in a more effective
and adaptive way for better recommendation performance.

At the same time, we notice that the performance of ASGNN and all
baselines on the Foursquare and Gowalla dataset are not as good as the results
on the Brightkite dataset. For example, the recall@20 for the FPMC algorithms
reached 13.18% on Brightkite dataset, compared with 4.69% on the Foursquare
dataset. One reason is the users in Brightkite dataset tend to have repeated
check-in behaviors on the same POI, while the users in Foursquare and Gowalla
dataset usually like exploring different POIs. Moreover, the proposed model
ASGNN still maintains the best results, which shows that ASGNN is more
adaptive to datasets with different behavior patterns and size. Furthermore,
we design experiments on datasets with different sparsity in section 5.5.

5.3 Ablation experiment (RQ2)

In this section, we evaluate the proposed model ASGNN against its two vari-
ants, ASGNN (no user) and ASGNN (single attention). Specifically, ASGNN
(no user) does not incorporate user’s personalized preferences into attention
mechanism. Besides, compared with ASGNN, ASGNN (single attention) uses
single layer attention network instead of hierarchical personalized attention
network to capture user’s preferences. The results are shown in Figure 5, and
we have the following two observations.

Firstly, we can see that ASGNN performs better than its two variants on
all three dataset, i.e., Gowalla, Foursquare and Brightkite. The results show
that the ASGNN (single attention) method has the lowest performance on
all three datasets. Specifically, compared with ASGNN, ASGNN (single at-
tention) only uses the single-layer attention network and cannot accurately
capture user preferences. Moreover, the linear combination strategy in AS-
GNN (single attention) ignores that long- and short-term preferences may
play different roles in recommendation for each user, which also influences the
performance. The results show that the Personalized Hierarchical Attention

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Attentive Sequential Model Based on Graph Neural Network 19

5 10 15 20
N

0

5

10

15

20

Re
ca

ll
@N

(%
)

5 10 15 20
N

0

2

4

6

8

10

MR
R@

N
(%

)

ASGNN(single attention) ASGNN(no user) ASGNN

(a) Gowalla dataset
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(b) Foursquare dataset
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Fig. 5 Results of ablation experiments. ASGNN (no user) refers to removing the per-
sonalized recommendation module, and ASGNN (single attention) refers to removing the
Hierarchical Attention network.

Network (PHAN) in ASGNN can accurately capture user’s preferences and
leverage them adaptively for improving the recommendation performance.

Secondly, we observe that ASGNN (no user) performs better than ASGNN
(single attention) on all three dataset, although it is not as effective as ASGNN.
The reason is that ASGNN (single attention) does not explicitly incorporate
user’s preferences, and it cannot provide personalized recommendation results
for different users especially when they have the same or similar check-in se-
quences. Therefore, the PHAN component of ASGNN plays a very important
role in improving the recommendation performance.
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In conclusion, the key component of ASGNN, i.e., Personalized Hierarchical
Attention Network, enables it effectively capture user’s personalized long- and
short-term preferences, and leverage them in an adaptive way for accurate
recommendation.

5.4 Dimension analysis (RQ3)

The dimension of the embeddings influences the model’s ability of fitting and
modeling datasets. Generally, ASGNN with higher dimensional embeddings
can depict more useful information of users and POIs, and may have bet-
ter performance in recommendation task. On the other hand, embeddings
with higher dimension may influence the model’s efficiency and cause prob-
lem of overfitting. Therefore, we set different dimensions in embedding layers,
which increases from 10 to 100, to investigate how the dimension influences
recommendation performance. The experimental results on Gowalla dataset,
Foursquare dataset and Brightkite datasets are shown in Figure 6(a) and 6(b),
and 6(c),respectively.

We can observe that the recall@20 and MRR@20 increase for all three
datasets as the embedding dimension varies from 10 to 80. The reason is that
embeddings with higher dimension can capture more important information
for POI recommendation task at the cost of more computation resources and
time. Besides, ASGNN with a low dimension (such as 50) achieves a good
performance as well. The reason is that the attention mechanism and GNN
improve ASGNN’s capacity of capturing relevant features of users and POIs
adaptively. ASGNN performs the best on three datasets when the dimension
reaches around 80. Moreover, we can see that the recall@10 even decreases
slightly on Foursquare dataset when the dimension reaches 100, which may be
caused by the over-fitting problem that weakens the generalization ability of
ASGNN. Therefore, in subsequent experiments, we set the dimension of the
embedding as 80.

5.5 Influence of data sparsity (RQ4)

In this section, we use the Gowalla, Foursquare and Brightkite datasets with
different sparsity to explore how the sparsity of the data influences the per-
formance of the proposed model ASGNN and baselines. Specifically, these
datasets with different sparsity are generated by filtering the POIs with low
frequency. In order to make the sparsity gap among the generated datasets
change uniformly, we set the frequency thresholds as [5, 20, 30, 40, 50] on the
Gowalla dataset, respectively. Specifically, the corresponding sparsity degrees
of the Gowalla datasets are [99.87%, 99.35%, 98.90%, 98.43%, 97.96%]. As for
the Foursquare dataset, we set the frequency thresholds as [5, 10, 16, 22, 27],
and the corresponding sparsity degrees of the Foursquare datasets are [99.31%,
98.86%, 98.33%, 97.84%, 97.37%].As for the Brightkite dataset, we set the fre-
quency thresholds as [2, 5, 10, 17, 23], and the corresponding sparsity degrees
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Fig. 6 Effect of different embedding dimensions on next POI recommendation task

of the Foursquare datasets are [99.99%, 99.46%, 98.89%, 98.35%, 97.82%].
The experimental results on Gowalla, Foursquare and Brightkite datasets are
shown in Figure 7(a) and 7(b) and 7(c), respectively.

It is intuitive to observe that the recall and MRR of ASGNN and baselines
decrease as the sparsity increases. Besides, the proposed model ASGNN out-
performs all baselines in terms of recall and MRR on all three datasets with
different sparsity. The reason is that ASGNN can fully exploit the check-in se-
quences to capture and leverage user’s preferences and their behavior patterns
in a more effective and adaptive way. In conclusion, the results show ASGNN
can effectively deal with datasets with different sparsity.
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Fig. 7 Influence of data sparsity on next POI recommendation task

5.6 Visual Illustration of Embedding (RQ5)

In this section, we use the t-SNE [25] method to visualize the POI embedding
learned by GNN component of ASGNN. The experimental results are shown in
the figure 8. Note that only Foursquare dataset has the category label of POI,
so we illustrate the embeddings learned by ASGNN on Foursquare dataset.

In Figure 8, we can see that POIs with the same label closely cluster in
the 2-D visual space. This proves that the GNN component of the proposed
approach ASGNN can effectively capture the important characteristics of POIs
from the user’s check-in data for accurate POI recommendation. Besides, the
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Fig. 8 Visual Illustration of POI Embedding (RQ5)

visualization results show the feasibility of applying the learned embeddings
in various tasks, such as data visualization, POI tagging, POI retrieval, and
POI clustering.

6 Conclusion and Future Works

In this paper, we propose an Attentive Sequential model based on Graph
Neural Network (ASGNN) for next POI recommendation. Specifically, AS-
GNN consists of four main steps: 1) POI check-in sequence graph construc-
tion, 2) feature representation learning, 3) long/short-term preference captur-
ing, and 4) POI recommendation. This work differs from previous work in
two main aspects: 1) ASGNN adopts GNN to model user’s check-in sequences
and their personalized behavior patterns in an effective way; 2) ASGNN uses
the PHAN to capture and leverage user’s long- and short-term preferences
adaptively for improving recommendation performance. Comprehensive ex-
periments are conducted on three real-world POI check-in datasets, and the
results show that ASGNN outperforms state-of-the-art baselines in next POI
recommendation task. Especially, the PHAN component of ASGNN is shown
to be effective in capturing user’s behavior patterns and preferences for ac-
curate POI recommendation. In the future, we plan to utilize heterogeneous
GNN [45] to fully explore various kinds of auxiliary/side information, such
as temporal contexts, metadata, sequential correlations and so on, to further
improve the recommendation performance.
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