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Abstract—Recommender systems, which aim to provide per-
sonalized suggestions for users, have proven to be an effective
approach to cope with the information overload problem existing
in many online applications and services. In this paper, we
target on two specific sequential recommendation tasks: next
music recommendation and next new music recommendation, to
predict next (new) music piece that users would like based on
their historical listening records. In current music recommender
systems, various kinds of auxiliary/side information, e.g., item
contents and users’ contexts, have been taken into account to
facilitate the user/item preferences modeling, and have yielded
comparable performance improvement. Despite the gained bene-
fits, it is still a challenging and important problem to fully exploit
the sequential music listening records, due to the complexity
and diversity of interactions and temporal contexts among users
and music, as well as the dynamics of users’ preferences. To
this end, this paper proposes a novel Attentive Temporal Point
Process (ATPP) approach for sequential music recommendation,
which is mainly composed of a temporal point process model and
an attention mechanism. Our ATPP can effectively capture the
long- and short-term preferences from the sequential behaviors of
users for sequential music recommendation. Specifically, ATPP
is able to discover the complex sequential patterns among the
interaction between users and music with the temporal point
process, as well as model the dynamic impact of historical music
listening records on next (new) music pieces adaptively with an
attention mechanism. Comprehensive experiments on four real-
world music datasets demonstrate that the proposed approach
ATPP outperforms state-of-the-art baselines in both next and
next new music recommendation tasks.

Index Terms—recommender system, temporal point process,
attention mechanism, user profiling, music recommendation

I. INTRODUCTION

THe development of web and mobile technologies are
leading to a rapid growth of digital contents production

(e.g., digital music and micro videos). For example, in the
digital media market, users can access to more than 75 million
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Figure 1. Given the same music pieces with two users’ different listening
behaviors, the appropriate recommendation results may be different. Here,
“interval” is the time span between timestamps of two adjacent music records
in listening sequences, and “skip?” indicates whether the user has skipped to
next music piece before the end of current one.

digital songs in Apple iTunes1, and 75 million songs in Amazon
music2 (statistics in August 2021). However, the flooding
musical contents make it difficult for users to find music
pieces that meet their preferences, which is called information
overload problem. Recommender systems [1], as one of the
most successful applications of data mining and machine
learning in practice, have proven to be an effective approach
to alleviate the information overload problem by providing
personalized contents/services from enormous accessible data.
Existing efforts. Currently, recommendation methods, includ-
ing collaborative filtering (CF) [2], content-based methods [3],
context-aware methods [4] and their hybrid ones [5], have been
successfully applied in many fields, such as movie/video recom-
mendation [6], [7], point of interests (POI) recommendation [8].
Especially, research in music recommender systems (MRSs) [9]
has recently experienced a substantial gain in interest both in
academia and in industry. However, in many music websites
and applications, the interactions between users and music
pieces are recorded over time as music listening/playing
sequences, which cannot be fully exploited by traditional CF or
content-based methods. Therefore, sequential recommendation
methods [10], [11] are proposed to incorporate the sequential
information and provide real-time recommendations appropriate
for users’ current context to promote their experiences.
A motivating scenario. As shown in Figure 1, we use a toy
example to describe the recommendation scenario studied in
this paper as well as our motivation. Specifically, two users’
listening sequences on the same music set may yield different

1https://www.apple.com/my/apple-music/
2https://www.amazon.com/music/unlimited
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recommendation results, which depends on their preferences
inferred from their listening behaviors. For example, in user
u1’s sequence (blue), the most recent music piece m3 generally
will have more influence on the prediction of target music piece
than m1 and m2. However, u1 skipped m3 to next music piece
before the end of m3, which indicates that u1 may not be
interested in m3. Therefore, the prediction of next music piece
for u1 mainly depends on m1 and m2, and the result is mostly
likely to be vocal music. Note that “skip” behaviors can be
inferred from users’ music listening sequences via comparing
the listening time and the length of music. For example, m3’s
full length is 4 minutes, but u1 listened to m3 for only 1 minute.
Therefore, we can infer that u1 skipped m3. Besides, as for the
second sequence (green), user u2 has listened to vocal music
and instrumental music, so he/she may enjoy music pieces with
these two genres next. In brief, it is essential to fully utilize
the temporal context and sequential listening behavior in users’
historical records for better recommendation.
New challenges. As for the music recommendation scenario
mentioned above, existing sequential recommendation methods
still face the following three challenges:

(1) How to capture and leverage users’ long- and short-
term preferences for better recommendation? Especially, music
pieces are not neutral items but carriers of emotions and
thoughts, and users’ preferences for music may change fre-
quently. For example, a user may prefer rock music when
doing exercise (short-term preferences), though he/she likes
pop music better in general (long-term preference).

(2) How to fully exploit users’ behaviors and temporal
context in music listening sequences? Users’ music listening
sequences contain important information that is useful for
recommendation/prediction tasks. For example, short interval
between two listening records may indicate strong correlations
between them, which is a kind of sequential listening patterns.
Besides, the “skip” behaviors can help to capture users’
preferences accurately.

(3) How to model the complex transitions and correlations be-
tween users and music pieces? Users’ next listening behaviors
are associated with their previous listening records. Especially, a
user probably listens to some music pieces with same or similar
genre together, which can help to model users’ preferences
effectively and capture music pieces’ features accurately.

Therefore, it is essential to fully exploit users’ music listening
sequences to capture users’ real-time preferences accurately for
better music recommendation. Besides, different from many
scenarios, such as movie or book, where users hardly rate the
same item for more than one time, users may listen to the
same music pieces repeatedly in music applications. Therefore,
the next music piece has a considerable probability to be new
for the user in sequential music recommendation, resulting
in a more challenging and important task of next new music
recommendation. Especially, this task can help users to explore
interesting new music pieces.
Our solution and contributions. In this paper, we propose
a novel sequential music recommendation method named
Attentive Temporal Point Process (ATPP) to predict next (new)
music that a user will likely listen to in a “near future”. As
shown in Figure 2, ATPP consists of three modules: sequence

user u music i music n

sequence 

modeling

preference 

capturing
preference

…
item j

attention

target 

behavior
music listening sequence

music 1
…

time t1 time ti time tnbehavior behavior behavior

prediction/recommendation

Figure 2. The framework of ATPP in brief

modeling, preference capturing, and recommendation. Specifi-
cally, ATPP firstly learns users’ sequential patterns from their
music listening sequences accurately and models the complex
correlations between music pieces as well as temporal context
information with a temporal point process (TPP) (addressing
challenge 2 and 3). Especially, TPP can effectively model the
time dependency and feature interactions between music pieces
in listening sequences, and help learn users’ listening patterns.
Then, a self-attention mechanism is designed to enhance ATPP
in modeling dynamic impact of historical listening records
on next music piece (addressing challenge 3) and leveraging
users’ long- and short-term preferences (addressing challenge
1). Note that the adopted attention model can increase the
adaptivity of ATPP by automatically calculating the weights of
different listening records in sequences, and help capture users’
preferences accurately. Finally, we can perform next and next
new music prediction and recommendation according users’
real-time preferences, which are obtained from their historical
listening sequences with ATPP.

Compared with existing methods, the proposed approach
ATPP is capable of: 1) fully exploiting users’ listening
behaviors and temporal context; 2) precisely modeling dynamic
relevance and complex relationships between music pieces in
listening sequences; and 3) effectively capturing and leveraging
users’ long/short-term user preferences for sequential music
recommendation. To summarize, the main contributions of this
paper are as follows:
• We devise a temporal point process based method to

learn the complex relationships between music pieces in
users’ listening sequences, and then infer and model their
long/short-term preferences with an attention model.

• We propose a sequential music recommendation model
named ATPP, which can recommend appropriate music
pieces based on target users’ long/short-term preferences.

• Extensive experiments conducted on four music datasets
show that ATPP outperforms state-of-the-art baselines in
both next and next new music recommendation tasks.

Organization. The rest of this paper is organized as follows.
Section II describes the related works. In Section III and
Section IV, we introduce the problem definitions and the
proposed model in detail. Then, extensive experiments of
the proposed approach are given in Section V. Finally, the
conclusion and future works are provided in Section VI.

Page 2 of 13Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA 3

II. RELATED WORK

In this section, we mainly investigate some related works
about music recommendation and sequential recommendation.
Besides, we also introduce some related works that inspire this
study, such as temporal point process and attention mechanism,
as well as their applications.

A. Music Recommendation

Generally, existing works on music recommendation [9],
[12] mainly fall into four categories: collaborative filtering
(CF) methods, content-based recommendation methods, context-
aware methods, and hybrid recommendation methods. Specif-
ically, collaborative filtering based music recommendation
approaches [13] can be further categorized into user-based
CF (UCF) and item-based CF (ICF). On the other hand,
content-based recommendation methods [14], [15] perform
recommendation based on users’ profiles and music pieces’
acoustic feature or textual metadata, such as tags, lyrics, and
so on. Cheng et al. [16] explore how acoustic similarity
can be used to improve music recommendation, especially
for songs from these lesser known artists. Context-aware
recommender systems [4], [17] incorporate the contexts related
to environments or users to achieve better recommendation
performance. Generally, the contexts include temporal infor-
mation [18], geographical location [19], users’ emotional
state [20], [21] and so on. Zangerle et al. [22] analyze
the connection between users’ emotional states reflected in
tweets and their musical choices, and propose music ranking
strategies that incorporate users’ musical preferences, affective
information and hashtag contexts. Recently, more and more
works have tried to combine different kinds of recommendation
methods to alleviate the influence of data sparsity and further
improve the performance of recommendation, which belong
to hybrid methods [23], [24]. Besides, many existing works
have studied users’ listening behavior in various aspects, which
also promotes the research on music recommendation. For
example, Lee et al. [25] investigate the contexts in which
music recommendations occur, in order to help understand the
impact of music recommendations on people’s lives and social
relationships (and vice versa). Manolovitz et al. [26] find that
the more times a listener is exposed to a song, the more likely
she is to return to the song.

B. Sequential Recommendation

Users’ interactive actions/events recorded in online web ap-
plications and systems play an important role in understanding
their underlying requirements and mining behavior patterns,
and lots of methods have been developed to model users’
sequential behaviors for prediction or recommendation. For
example, Rendle et al. [27] propose the factorized personalized
Markov chains model, which combines first-order Markov
chains with matrix factorization technique for recommendation.
Wang et al. [28] propose a hierarchical representation model
to model complicated interactions between users and items
for the task of next basket recommendation. However, these
methods mainly focus on mining the local sequential patterns

between adjacent interaction records, ignoring the long-term
dependence in users’ behavior sequences.

In addition to traditional sequential recommendation meth-
ods, the rapid development of deep learning promotes its widely
applications in sequence modeling, prediction, recommendation,
and so on. For example, Hidasi et al. [29] apply recurrent neural
networks (RNN) on session-based recommender systems. Zhu
et al. [30] propose a variant of Long Short-Term Memory
(LSTM), named Time-LSTM, to model users’ actions as time
series for recommendation. Ying et al. [11] use a hierarchical
attention network to model users’ behavior patterns and capture
their long/short-term preferences for sequential recommen-
dation. Zhao et al. [31] propose a Spatio-Temporal Gated
Network (STGN) to model personalized sequential patterns
as well as rich context for users’ long/short-term preferences
modeling and recommendation. Besides, some existing works
focus on understanding users’ playlists or listening sequence,
which inspire many sequential recommendation models. Vall et
al. [32] propose a hybrid recommender system that integrating
the collaborative information in music playlists with song
feature for automated music playlist continuation. Tang et
al. [33] propose a unified and flexible model named Con-
volutional Sequence Embedding Recommendation (Caser) to
learn users’ general preferences from their behavior sequences
and capture their sequential behavior patterns for sequential
recommendation. Yuan et al. [34] present a efficient and
effective convolutional generative model NextItNet for session-
based top-N item recommendations.Kang et al. [35] address
the next item recommendation task with a self-attention based
sequential model (SASRec) Ma et al. [36] combine hierarchical
gating network with the Bayesian Personalized Ranking (BPR)
to capture users’ long/short-term interests for the sequential
recommendation. Sun et al. [37] propose a Transformer based
sequential recommendation model called BERT4Rec, which
employs the deep bidirectional self-attention to model user
behavior sequences.

C. Temporal Point Process

Temporal point process (TPP) is generally used to model
the probability of event/item in sequences and learn their
correlations. Compared with RNN/LSTM-based method, TPP-
based method can explicitly incorporate the time information,
including timestamp and interval, and models sequences as well
as the correlations between events in sequences via conditional
intensity function in a probabilistic perspective. As one typical
variant of TPP, Hawkes process [38] models the occurrence
of future event based on past events, and it assumes that past
events can temporarily raise the probability of future events,
which is known as self-exciting effect. Hawkes process assumes
that the excitation is positive, additive over the past events,
and exponentially decaying with time. However, in practice,
the occurrence of one event may inhibits another one, which
violates these assumptions. To mitigate this issue, Rotondi et
al. [39] present self-correcting process, which adopts an ever-
increasing probability for the target event, and the occurrence
of other events will reduce the probability by a certain amount.
Du et al. [40] combine TPP with recurrent neural network, and
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proposed a method named Recurrent Marked Temporal Point
Process (RMTPP) to predict the time of next event occurrence
and the corresponding marker. Mei et al. [41] propose a new
variant of TPP named neural Hawkes process (NHP) based
on a self-modulating multivariate point process and a novel
continuous-time LSTM. Since event data become more and
more pervasive, TPP and its variants have been widely used in
many applications, such as online advertisement [42], prediction
and detection [43], [44], and so on. For example, Xu et al. [43]
propose a framework for modeling the transition events of
patient flow via TPP. Dutta et al. [44] combine Hawkes process
with topic model, and present a novel fake retweeters detector
named HawkesEye, which can exploit textual content data and
time information for better detection performance.

D. Attention Mechanism

As one important technique in deep learning, attention
mechanism [45]has been applied in many applications, such as
computer vision and natural language processing [46], query
suggestion [47], prediction and recommendation [48], [49],
and so on. Recently, there are many attempts of applying
attention mechanism in recommendation. For example, Li et
al. [50] explore a hybrid encoder with an attention mechanism
to model the users’ sequential behaviors and capture their
main purpose in the current session for accurate sequential
recommendation. Chen et al. [51] incorporate implicit feedback
into a Collaborative Filtering (CF) framework together and
combine them with an attention model in both item-level
and component-level for accurate multimedia recommendation.
Xiao et al. [52] propose Attentional Factorization Machines,
which combines attention model and Factorization Machine
(FM) to measure the significance and relevance between
different features as well as their interactions. Wang et al. [49]
present a content- and context-aware music recommendation
method namely CAME based on network embedding with
attention and Convolutional Neural Network, which can cope
with various dynamic features of music. Han et al. [53] propose
a deep neural networks based recommendation framework
to learn the adaptive representations of users. Li et al. [54]
explicitly model the absolute positions of items and the time
intervals with self-attention mechanism for next item prediction.

III. PROBLEM FORMULATION

We start by giving a formal description of the studied
problem setting with some definitions. The notations and
symbols used in this paper are summarized in Table I.

Definition 3.1: Music Listening Record. Let U =
{u1, u2, . . . , u|U |} denote the whole user set, M =
{m1,m2, . . . ,m|M |} represent the item set, and T is the time
domain. A music listening record r is a tuple (u,m, t, lm) ∈
U×M×T×L, which represents the interaction record between
user u and music piece m at time t, and lm is the length of
music m.

Definition 3.2: Music Listening Sequence. Let H be the
collection of all users’ historical music listening records and

Table I
SYMBOLS USED IN THIS WORK

Symbol Description

u ∈ U A user u in the user set U
m ∈M A piece of music m in the music set M
Hu u’s music listening sequence
Hu,t ⊆ Hu u’s historical music listening sequence before time t
U ∈ R|U|×d,
V ∈ R|M|×d User embedding matrix and music embedding matrix

v ∈ Rd The d-dimension feature vector representation (embed-
ding) of user or music

lm The full length of music m

ωh,m
The degree to which historical music piece h ∈ M
initially excites the target music m ∈M

κ (·) The kernel function that incorporates temporal and
behavior information in music listening sequences

κt (·), κb (·)
The temporal influence function and the behavior
modeling function

δu ≥ 0 The decay rate of historical influence
Wl, Ws, Wl̄ Model parameters
A ∈ Rd × d The transition matrix
f (·), f ′ (·) Mapping functions
λ̃m|u (t) The predicted preference of u for music m at time t
>u,t The ranking of candidate music for user u at time t

u ∈ U is a user. Then, u’s historical music listening sequence
is defined as

Hu := [(u,m1, t1, lm1) , (u,m2, t2, lm2) , . . . ,(
u,m|Hu|−1, t|Hu|−1, lm|Hu|−1

)]
.

Note that we can infer important behavior information from Hu.
For example, time interval can be obtained from timestamps t
of records in music listening sequences. Besides, we can also
infer whether a user skips to next music piece before the end
of currently listening one according to time interval and length
of music.

Given a user u ∈ U associated with her/his historical music
listening sequence Hu,t ⊆ Hu until time t, our goal is to
predict u’s preference for music m at t ∈ M and perform
next music recommendation. However, the next music piece
has a considerable probability to be new for the given user,
which results in a more challenging and important task of next
new music recommendation. In this work, both next music
recommendation and next new music recommendation tasks
are taken into consideration. Note that there is only one correct
answer in each of those two tasks.

IV. METHODOLOGY

The basic idea of Attentive Temporal Point Process (ATPP)
is to learn the correlations among music pieces and behavior
patterns from users’ music listening sequences for accurate
music prediction and recommendation. Figure 3 presents
the workflow of ATPP, which is composed of three main
components: 1) sequence modeling, 2) preference capturing,
and 3) music recommendation.

Specifically, given a sequence of users’ music listening
records, ATPP firstly models music listening sequence with
multivariate temporal point process, and embeds the music
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Figure 3. The workflow of the proposed model ATPP. ATPP consists of three steps: 1) modeling users’ music listening sequences and time information,
2) exploiting users’ complex behavior information and capturing their long/short-term musical preferences, and 3) performing next and next new music
recommendation based on users’ preferences and transition matrix.

pieces into a low-dimensional space. That is, users and items
are represented as low dimensional denser feature vectors
(embeddings), which are more informative and effective than
the users/items’ id or one-hot representations. Then, ATPP
adopts a self-attention mechanism to capture the complex
correlations between music pieces and learn users’ preferences
for music by leveraging users’ long- and short-term interest.
Finally, ATPP employs a transition matrix to model users’
preferences and music pieces’ feature, and performs next (new)
music recommendation based on users’ preferences obtained
from their historical behavior sequences with ATPP. Next, we
will elaborate the details of each component.

A. Music Listening Sequence Modeling

In the proposed model, users’ music listening sequences
are modeled with a devised Temporal Point Process (TPP).
Specifically, the TPP can model records (music listening events)
in behavior sequences in continuous time space by learning
the time dependency between events. Formally, TPP represents
the probability of a record occurs at time t (more precisely,
in the infinitesimally wide interval [t, t+ ∆t)) as λ (t) ∆t.
Specifically, λ (t) ≥ 0 is known as the intensity function,
which represents the arrival rate of sequential listening records.

Generally, the prediction of target music piece depends on
users’ historical music listening behaviors. In this work, a
record (u,m, t, lm) indicates that a user u has listened to music
m at time t ∈ R+ (a set of non-negative real numbers). Besides,
lm is m’s length, which will be explained in the following
part. Formally, given user u ∈ U as well as u’s historical
listening sequence Hu, the conditional intensity function for
the arrival of target music m ∈M at time t is formally defined
as follows:

λ̃m|u (t) =
∑

h∈Hu,t

ωh,mκ (t− th, lh), (1)

where Hu,t ∈ Hu denotes u’s recent historical behavior
sequence before time t, th is the timestamp of music piece h,

and lh it the full length of h. ωh,m represents the degree to
which historical music piece h initially excites target music
piece m. κ (·) is a kernel function that incorporates time interval
and users’ listening behaviors into sequence modeling.

Specifically, recent music pieces in Hu generally will have
more influence on the prediction of next music piece than others.
Therefore, smaller interval |t− th| indicates stronger impact
of h on m. Besides, we argue that the correlation between h
and m also depends on whether u skips h before the end of
it. For example, u might listen to h, whose full length lh is 6
minutes, for only 1 minute before skipping to next music. In
this case, the correlation between h and m is not strong, and h
plays a very weak role in u’s listening sequence modeling or
the prediction of next music. Note that we can infer that user
may dislike some genres if he/she skips some music pieces,
and it is also important information for preference capturing
and recommendation tasks that how long the user have listend
to the music pieces that he/she skipped. Therefore, the skip
behavior is quite important for improving recommendation
performance, and it is incorporated in the proposed approach
instead of being filtered in the pre-processing stage. Formally,
κ (·) consists of two kernel functions, which are defined as:

κ (t− th, lh) = κt (t− th)κb (lh) , (2)

where κt (t− th) = exp (−δu (t− th)) calculates the influ-
ence of historical records, which decays exponentially with time.
Especially, δu ≥ 0 denotes the decay rate of historical influence,
and it is a user-dependent (personalized) parameter since each
user’s preference may decay in different rates. Besides, κb (lh)
incorporates users’ behavior information, which is defined as:

κb (lh) =

{
exp (−(lh −∆th) /lh) , if∆th < lh

1, if (t− th) ≥ lh
, (3)

where ∆th it the time interval between h and its subsequent
music piece in u’s listening sequence.

In a word, two terms in Equation (2) model temporal context
and behaviors in user u’s music listening sequence, respectively.
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Specifically, when a user listens to a piece of music, the
intensities of all music pieces are elevated or inhibited by
certain degree, which depends on the time interval between
them and u’s specific listening behaviors, i.e. skipping current
music or not.

In traditional temporal point process, the inputs are sequences
of the original user or item IDs represented as one-hot vecotrs,
whose dimension is the same as the size of item set. However,
one-hot vectors suffers from serious dimensional disaster and
data sparsity problems, especially when the size of item set
reach millions or even larger. Besides, one-hot vectors has very
limited representation capacity, because it cannot fully capture
the intrinsic features of music pieces or their correlations.

In this work, the proposed model ATPP can learn the
informative low-dimensional features (embeddings) of users
and music pieces, which capture both items’ features and
relationships in users’ listening sequences. Formally, each
music piece m ∈M in the behavior sequences is transformed
into corresponding feature embeddings vm ∈ Rd with an
music embedding matrix V ∈ R|M |×d, where d represents
the music embeddings’ dimension of and M is the music set.
Similarly, user u’s preference embedding vu ∈ Rd can be
obtained by looking up a user embedding matrix U ∈ R|U |×d.

Although recommendation methods like matrix factorization
or latent factor models [55] can also learn the feature vectors
of users and items, ATPP can capture more high-level dynamic
key features and sequential patterns via temporal point process.
Then, we can feed the d-dimensional embeddings of music
pieces into the intensity function in Equation (1). Specifically,
ωh,m, the degree to which historical music h in a listening
sequence initially excites current music m, depends on features
of h and m. Formally, ωh,m is a mapping function f (·) :
Rd ×Rd → R, which can be defined as cosine similarity, dot
product, or negative Euclidean distance between vectors.

B. Long/Short-Term Preferences Capturing

In the devised multivariate temporal point process, ωh,m

depends on features of h and m. However, we argue that
the correlations between music pieces may be different for
each user. For example, some users may have relatively stable
preferences for music, and their listening behaviors are more
repetitive and predictive. Therefore, their long-term preferences
reflected in their listening sequences have large impact on the
prediction of target music piece. On the other hand, some
users may have relatively diverse preferences, and the music
pieces they listen to change frequently. Then, in this case,
the prediction of target music mainly depends users’ short-
term dynamic preferences, which can be inferred from recent
listening records. Formally, as for a user u’s recent music
listening sequence Hu = {m1,m2, . . . ,mn} (only retain music
id for simplicity and n = |Hu|), we use the last clicked music
piece mn to obtain u’s short-term preferences, and infer her/his
long-term preferences from the rest music listening records
Hu\mn = {m1,m2, . . . ,mn−1}.

Firstly, we calculate the long-term personalized weight αl

of music piece mi in Hu\mn given user u. Specifically, αl is

a user and historical item dependent parameter, which can be
formally defined with self-attention mechanism [45], [52] as:

αl
mi

=
exp (f ′ (vu,Wlvmi))∑

h∈Hu\mn
exp (f ′ (vu,Wlvh))

, (4)

where vu ∈ Rd and vm ∈ Rd are embeddings of user u and
music m, respectively, d is the dimension of embedding, f ′ (·)
is negative squared Euclidean distance between vectors, and
Wl is a model parameter.

Then, we can define the short-term personalized weight αs

of last clicked music piece mn as follows:

αs
mn

=
exp (f ′ (vu,Wsvmn

))

exp (f ′ (vu,Wsvmn)) + exp (f ′ (vu,Wl̄vl̄))
, (5)

where Ws, Wl̄ are model parameters, and vl̄ is weighted
averaged long-term embedding, which is defined as:

vl̄ =
1

n− 1

∑
h∈Hu\mn

αl
mi

vmi
. (6)

Then, we can reformulate the degree of impacts between
music pieces in Equation (1) as:

ωh,m =

{
αl
hf (vh,vm) , if h ∈ Hu\mn

αs
hf (vh,vm) , if h = mn

, (7)

where f (·) : Rd×Rd → R is a mapping function, which will
be explained later.

C. Sequential Music Recommendation
Note that f (·) in Equation (7) can be defined as cosine

similarity, dot product, or negative Euclidean distance. How-
ever, these metrics can only model correlations of the same
dimension in embeddings. Inspired by Factorizing Personalized
Markov Chains (FPMC) [27], we adopt a transition matrix to
capture the inter-dimension correlations in the embeddings of
music pieces. Therefore, f (·) can be formally defined as

f (v1,v2) = −‖Av1 − v2‖22 , (8)

where A ∈ Rd × d is the transition matrix.
Then, we can use Equation (1) to calculate the preference of

u ∈ U for target item m ∈M at time t given Hu. However,
the result of intensity function λ̃m|u (t) could be negative.
Therefore, we use a softmax unit to define the probability that
user u is interested in target music piece m at time t as

pm|u (t) =
exp

(
λ̃m|u (t)

)
∑

k∈M
exp

(
λ̃k|u (t)

) . (9)

For each target music piece m ∈ M , Equation (9) defines a
conditional distribution p·|u (t) over the entire music set M .

At last, we can perform recommendation according to the
ranking scores of two item m and m′, which is defined as

m>u,t m
′ :⇔ pm|u (t) > pm′|u (t) . (10)

Note that we take both next and next new music recommen-
dation tasks into consideration in this work. Especially, the
candidates in next music recommendation task are the whole
music set, while the music pieces that have not been listened
to by the target user yet are used as candidates in next new
music recommendation task.
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D. Model Learning

In the learning process, Equation (9) is maximized over all
users’ music listening sequences in the dataset. However, the
complexity of softmax function in Equation (9) is proportional
to the music set size |M |, which may reach millions in real-
world online music services or applications. Therefore, we use
a computationally efficient strategy, negative sampling [56]
to approximate the original softmax function in Equation (9).
Then, the log probability can be calculated approximately as:

log pm|u (t) ∝ log σ
(
λ̃m|u (t)

)
+n · Em′∼PM

[
log σ

(
−λ̃m′|u (t)

)]
,

(11)

where σ (x) is a sigmoid function, n is the count of “negative”
samples, and m′ is the music piece sampled from music
set based on PM , which is a noise distribution defined with
empirical uni-gram distribution over music pieces. Note that
n is much smaller than music set size |M |, so the training
time is independent of the item set size |M |. Then, traditional
optimization methods, such as stochastic gradient descent
algorithms, can be adopted to optimize the objective function
defined in Equation (11).

V. EXPERIMENTS

In this section, extensive experiments are designed to answer
the following research questions:

RQ1: Does ATPP outperform state-of-the-art baselines in
next and next new music recommendation tasks?

RQ2: What are the effects of the three key components in
the ATPP architecture?

RQ3: How does the dimension of embedding in ATPP affect
the recommendation results?

A. Experimental Designs

The detailed experimental designs, including datasets, rec-
ommendation tasks, baselines and evaluation metrics, are
introduced in this section.

1) Datasets: We evaluate the proposed approach ATPP
and baselines on four real-world music datasets, including
Xiami3 [4], Lastfm4 [12], 30music5 [57] and LFM-1b6 [58]. the
statistics information of all datasets are listed in Table II. Note
that sparsity means how sparse the user-music interaction data
is. Specifically, if there exist k interaction records between m
users and n music pieces, then the corresponding data sparsity
is 1− k

m×n . Moreover, Figure 4 gives popularity information
(logarithm) of four music datasets mentioned above, which are
consistent with the power law distribution [59].

Each dataset is split into a training set for training
recommendation models and a test set for evaluation,
which are non-overlapping. Specifically, we randomly
choose 20% users from the dataset as test users and the
rest 80% as train users. Then, the full music listening

3https://1drv.ms/f/s!ApojZBGe9UzXgaI6x8pBf8JgN4PfZg
4http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
5http://recsys.deib.polimi.it/datasets/
6http://www.cp.jku.at/datasets/LFM-1b/

sequences of train users and the first half of the test users’
sequences are used as train set, while the second half of
test users’ music listening sequences are used as test set. In
particulary, each user u’s music listening sequence Hu :=[
(u1,m1, t1) , (u2,m2, t2) , . . . ,

(
u|Hu|−1,m|Hu|−1, t|Hu|−1

)]
in the test set generates |Hu| − 1 test cases, where
the k-th test case is to perform recommendation
at time tk+1 given u’s historical sequences
Hu := [(u1,m1, t1) , (u2,m2, t2) , . . . , (uk,mk, tk)] with
the ground truth mk+1.

2) Tasks: The tasks in this work include both next and next
new music recommendation tasks. Specifically, the candidates
in next music recommendation task are the whole music set,
while the music pieces that have not been listened to by the
target user yet are used as candidates in next new music
recommendation task, which is more challenging and important.
Especially, these two tasks can evaluate the recommendation
methods’ ability in exploiting and exploring users’ preferences,
which is a classic problem in recommendation research. In this
work, we evaluate the proposed ATPP and baselines on both
kinds of tasks, i.e., next music recommendation and next new
music recommendation. Note that there is only one correct
answer for one test case in both tasks.

3) Baselines: The following basic methods and state-of-the-
art models are used as baselines:
• Pop performs recommendation based on items’ popularity

in training data.
• PPop (Personalized Pop) performs recommendation based

on items’ popularity for each user, which cannot perform
next new music recommendation.

• FPMC [27] combines matrix factorization model with
first-order Markov chain for sequential recommendation.

• HRM [28] encodes sequential patterns and users’ general
taste as one vector with hierarchical representation learn-
ing model. HRM-max and HRM-avg are two variants
with max and average pooling aggregation, separately.

• RDR [4] can learn the feature vectors of items from
behavior sequences with a skip-gram model [56], and
acquire users’ preferences for sequential recommendation.

• SHAN [11] uses a hierarchical attention mechanism to
mine users’ long/short-term preferences.

• TiSASRec [54] is a time interval aware self-attention
based approach for sequential recommendation.

• Mult-VAE [60] is a collaborative fltering recommendation
method for incorporating implicit feedback based on
variational autoencoders.

• SASRec [35] models users’ longer-term semantics as well
as their recent actions simultaneously for accurate next
item recommendation

• Caser [33] embeds items in users’ behavior sequences into
an “image” in the time and latent spaces and learns user
preferences and sequential patterns for recommendation.

• HGN [36] adopts a feature gating module and an instance
gating module to select informative latent features and
items for sequential recommendation.

4) Evaluation Metrics: In the evaluation step, every method
generates a recommendation list of k music pieces (top-k
recommendation), which is evaluated by two quality metrics,
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(d) LFM-1b dataset

Figure 4. Popularity analysis of four music datasets

Table II
COMPLETE STATISTICS OF FOUR MUSIC DATASETS

Dataset #Users #Music Pieces #Listening Records #Avg.Records / User #Avg.Records / Music Sparsity

Xiami 3,982 64,334 3,154,815 792 49 98.77%
Lastfm 896 66,407 1,264,137 1,411 19 97.88%
30music 2,970 84,882 3,168,916 1,067 37 98.74%
LFM-1b 7,641 102,416 10,816,752 1,416 106 98.62%

i.e. recall and Mean Reciprocal Rank (MRR). Note that there
is only one correct answer for each testcase in both tasks.

Recall is the fraction of the total amount of hits in all
testcases. Specifically, a hit means the target music piece
(ground truth) appears in the recommendation list. For instance,
if there exists a listening record (u,m, t) in the test set and
the recommended list of u contains m, then it is called a hit.
Recall is formally defined as:

Recall@k =
#hit

#testcase
, (12)

where k is the length of a recommendation list, #hit is the
amount of hits, and #testcase is the amount of all testcases.

MRR is a ranking evaluation metric, which calculates the
average of the reciprocal ranks of target music piece in a
recommendation list, i.e.,

MRR@k =

∑
1/rankk

#testcase
, (13)

where rankn is the ranking of the nth test case’s target music
piece in the generated recommendation list.

5) Implementation Details: In the training phase, we set
the batch size to 512, negative sample size to 10, dimension
of embedding to 128, number of epochs to 100. Besides, the
parameters in model are updated via Adam optimizer [61] with
the learning rate 3e− 4. Moreover, to prevent over-fitting, we
set the weight decay in Adam as 0.01. All the experiments
were implemented using the PyTorch 1.5.0 framework with
Python 3.6, and the experiments were conducted on a server
with 1.80 GHz Intel(R) Xeon(R) Silver 4108 CPU, an GeForce
RTX 2080Ti GPU with 48 GB memory, running Ubuntu 18.04.
The source code of ATPP is avalable on github7.

7https://github.com/ctokyo/ATPP

B. Comparison with Baselines (RQ1)

To verify the effectiveness of our proposed approach, we
compare ATPP with several state-of-the-art baselines on two
tasks (i.e., next and next new music recommendation), over
four dataset. The experimental results of next and next new
music recommendation tasks are reported in Table III and
Table IV, respectively. Note that, the numbers in bold font are
the best results, and the second best results are underlined.

We can observe that our ATPP indeed outperforms other
baselines in most of evaluation settings, and it can balance
next and next new recommendation tasks. We attribute this to
the fact that ATPP can learn the listening patterns/correlations
in music playing sequences to recommend new music pieces
that they may be interested in. Besides, ATPP can capture and
leverage users’ long/short-term user preferences in an effective
and adaptive way. Especially, the performance on next new
music recommendation show that ATPP can help users to
explore interesting new music pieces, while the performance on
next music recommendation show ATPP’s ability of accurately
predicting users’s next listening behavior. Most baselines have
limited support for next new music recommendation, because
they rely on historical listening records.

In detail, ATPP achieves overall better performance than
deep-learning based baselines. This is because that ATPP
can fully exploit complex sequential patterns and temporal
context in users’ music listening sequences with a multi-
variant temporal point process and learn the embeddings
effectively from users’ behavior sequences. Especially, the
attention mechanism and transition matrix enhance ATPP’s
ability of inferring users’ long/short-term preferences adaptively,
and enable it to capture the temporal and context information
that is essential for improving next and next new music
recommendation. Besides, compared with ATPP, RDR and
SASRec have better results in next music recommendation tasks
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Table III
COMPARISONS BETWEEN THE PROPOSED APPROACH ATPP AND BASELINES ON NEXT MUSIC RECOMMENDATION TASK

Method Xiami (%) Lastfm (%) 30music (%) LFM-1b (%)
R@10 MRR@10 R@20 MRR@20 R@10 MRR@10 R@20 MRR@20 R@10 MRR@10 R@20 MRR@20 R@10 MRR@10 R@20 MRR@20

Pop 2.300 1.303 3.013 1.354 0.295 0.097 0.543 0.114 0.441 0.155 0.671 0.170 0.346 0.116 0.602 0.133
PPop 16.140 7.565 22.871 8.026 6.238 2.477 9.683 2.711 4.257 1.481 6.888 1.661 7.327 2.807 11.499 3.092
HRM-max 8.077 2.838 11.858 3.100 4.614 1.312 7.708 1.520 4.672 1.421 8.162 1.660 8.174 2.448 14.264 2.864
HRM-avg 6.493 2.413 10.314 2.679 7.405 2.334 11.693 2.627 5.434 1.796 9.055 2.043 7.253 2.249 12.198 2.587
TiSASRec 16.936 12.565 19.447 12.740 9.083 4.523 12.678 4.772 6.678 3.569 9.306 3.750 13.563 6.499 18.430 6.834
FPMC 10.392 5.690 13.752 5.922 5.855 2.085 8.476 2.268 7.271 2.572 10.920 2.821 13.363 4.845 20.339 5.403
SHAN 18.013 10.173 22.434 10.477 14.685 5.332 21.832 5.825 12.251 4.632 18.473 5.059 8.733 2.999 13.381 3.323
RDR 27.643 17.880 31.062 18.121 24.559 8.220 31.058 8.680 23.825 8.375 29.899 8.802 25.354 9.174 33.195 9.726
Mult-VAE 3.643 1.153 6.521 1.346 1.9456 0.614 3.630 0.728 1.517 0.476 2.726 0.558 1.747 0.531 3.214 0.630
SASRec 25.970 14.879 32.137 15.315 20.114 6.173 28.923 6.800 20.036 6.258 28.820 6.885 23.582 7.750 34.615 8.537
Caser 11.237 6.598 14.273 6.804 10.589 3.939 15.694 4.291 5.912 2.207 9.103 2.426 5.007 1.780 7.833 1.974
HGN 15.442 8.994 19.896 9.298 7.573 2.630 11.871 2.924 7.221 2.625 11.457 2.916 9.454 3.307 15.331 3.708
ATPP 24.963 16.061 29.147 16.353 26.737 13.831 32.002 14.198 27.253 13.772 33.082 14.180 34.897 16.383 42.888 16.944

Table IV
COMPARISONS BETWEEN ATPP AND BASELINES ON NEXT NEW MUSIC RECOMMENDATION TASK

Method Xiami (%) Lastfm (%) 30music (%) LFM-1b (%)
R@10 MRR@10 R@20 MRR@20 R@10 MRR@10 R@20 MRR@20 R@10 MRR@10 R@20 MRR@20 R@10 MRR@10 R@20 MRR@20

Pop 0.344 0.098 0.700 0.123 0.183 0.059 0.330 0.069 0.203 0.068 0.339 0.077 0.097 0.031 0.187 0.038
PPop N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
HRM-max 1.389 0.393 2.630 0.477 1.757 0.478 3.130 0.571 2.440 0.629 4.813 0.790 4.409 1.121 8.681 1.411
HRM-avg 1.534 0.458 2.735 0.539 2.348 0.725 4.260 0.855 2.408 0.728 4.376 0.861 3.272 0.907 6.298 1.112
FPMC 2.726 1.028 3.967 1.113 5.524 2.046 7.571 2.190 7.202 2.817 9.985 3.010 9.404 4.258 13.847 4.281
TiSASRec 1.883 0.501 3.145 0.586 3.440 0.870 5.724 1.026 2.482 0.633 4.419 0.764 7.627 1.905 11.927 2.200
SHAN 4.126 1.196 7.036 1.394 8.010 2.255 13.333 2.619 7.634 2.185 12.872 2.542 5.124 1.372 8.759 1.626
RDR 6.562 1.439 9.109 1.616 16.395 3.554 21.910 3.943 18.458 4.034 24.237 4.440 18.167 3.620 25.549 4.138
Mult-VAE 0.845 0.253 1.576 0.302 2.079 0.624 3.770 0.738 0.586 0.177 1.105 0.212 1.631 0.496 2.997 0.589
SASRec 5.793 1.024 9.801 1.305 10.933 1.753 18.345 2.280 12.373 1.955 20.481 2.534 14.251 2.422 24.705 3.162
Caser 2.869 0.883 4.683 1.005 6.668 2.214 10.363 2.466 4.268 1.438 6.859 1.614 3.488 1.202 5.663 1.350
HGN 2.719 0.776 4.869 0.921 2.267 0.692 4.050 0.813 3.407 1.000 6.198 1.189 4.825 1.298 9.153 1.592
ATPP 8.864 3.799 11.658 3.994 20.009 9.794 24.001 10.070 23.468 11.784 28.620 12.144 30.864 13.739 38.241 14.254
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Figure 5. Experimental results of ATPP’s components on next music recommendation task. “a”, “b”, and “m” represent three key components in ATPP,
which are attention, time-aware behavior, and transition matrix, separately.
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Figure 6. Experimental results of ATPP’s components on next new music recommendation task. “a”, “b”, and “m” represent three key components in ATPP,
which are attention, time-aware behavior, and transition matrix, separately.
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on Xiami dataset. The reason is that the original music playing
records in Xiami dataset are only accurate to the minute, while
the timestamps in the other three datasets that are accurate to
seconds. Different time accuracy influences the modeling of
time-aware behaviors in ATPP to some extent. Note that the
proposed approach ATPP still outperforms RDR in all the rest
cases, especially in the next new music recommendation task.

When compared with Pop, PPop and Multi-VAE that ignore
sequential information, our ATPP still keeps a better perfor-
mance. The results further confirm necessity of considering
users’ music listening sequences as well as temporal and
context information for the tasks of next and next new music
recommendation.

In conclusion, the comparison with baselines on four music
datasets shows that the proposed approach ATPP is effective
both next and next new music recommendation tasks.

C. Effects of Key Components in ATPP (RQ2)
We also investigate the effectiveness of three key components

in the ATPP architecture via ablation analysis. Specifically,
we evaluate some combinations of these components in ATPP,
including ATPP (a+b+m), ATPP (a+m), ATPP (b+m), ATPP
(b), ATPP (m). Note that “a”, “b”, and “m” represent three
key components in ATPP, which are attention, time-aware
behavior, and transition matrix, respectively. The results of next
and next new music recommendation tasks on four datasets are
given in Figure 5 and Figure 6, respectively. Note that Lastfm,
30music and LFM-1b dataset were collected from Last.fm, and
we present the ablation experiments on Lastfm, Xiami and
30music dataset for simplicity.

We can observe that “ATPP (a+b+m)” that has all three
components outperforms other variants overall in both next
and next new music recommendation tasks on all datasets. The
results show that all the three components (i.e., attention, time-
aware behavior, and transition matrix), play important roles in
improving performance of sequential music recommendation.
Note that the “ATPP (a+m)” achieves better performance in
metric of MRR when perform next new music recommendation
task on 30music dataset. One reason is that the “b” component
for incorporating temporal behaviors may guide ATPP to
exploiting users’ preferences instead of exploration.

Besides, “ATPP (b+m)”, “ATPP (a+m)”, “ATPP (b)”, and
“ATPP (m)” have different results in term of different metrics,
and their performance also changes on different datasets. For
example, ATPP (b+m) outperforms “ATPP (b)” and “ATPP
(m)” on Lastfm and 30music datasets in term of MRR, but its
performance is not as good as the results of two variants in
other cases. The reason is two-fold. Firstly, different datasets
have different properties, which may influence the performance
of recommendation methods. For example, the timestamps in
Xiami datasets are in minutes while the records in the other
datasets are accurate to second. Therefore, the time-aware
behavior component (“b”) on Xiami dataset is not as effective as
it on other datasets. Secondly, Recall is used to measure whether
the recommendation method returns the relevant results, while
MRR focuses on the ranking of relevant items. In other words,
those two metrics evaluate the performance of recommendation
methods from different perspectives.
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Figure 7. Experimental results of the dimension’s impact

Overall, the results show that ATPP can effectively combine
three key components to capture time and sequential informa-
tion as well as users’ long/short-term preferences, and leverage
both preferences adaptively in sequence modeling and next
(new) music recommendation.

D. Impact of Embedding’s Dimension (RQ3)

Embeddings with higher dimension can capture/represent
more useful information at the cost of higher time/space
complexity and more computation resources. We evaluate
the proposed model ATPP with different dimensions (16, 32,
64, 128 and 256) to investigate the impact of embedding’s
dimension on recommendation performance and determine
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Figure 8. A case study for ATPP. The recommendation lists by ATPP vary
with the listening sequences and the corresponding target time (red numbers).

the proper dimension to achieve good performance with
comparatively low complexity. As shown in Figure 7a and
Figure 7b, ATPP with higher embedding dimension has better
performance in both metrics, i.e., recall and MRR, which shows
that high-dimensional embeddings can indeed capture useful
features and model users and music pieces accurately. Besides,
the accuracy tends to get relatively stable and even drops when
the dimension reaches 256. The reason is that higher dimension
may result in over-fitting. Therefore, we set the embeddings’
dimension as 128 for other experiments.

E. Case Study and Analysis

As shown in Figure 8, four case studies are designed
to illustrate characteristics of ATPP. Firstly, case 1 shows
that different target time (400 and 550) will yield different
recommendation results. Specifically, music recommendation
results depend on user’s previous listening behaviors, and the
historical record at 396 (jazz music) has more influence on the
prediction at 400. Besides, the recommendation lists at 550
depend more on users’ listening records for country music,
which are still in the majority. Secondly, case 2 illustrates
the influence of skip behaviors. More precisely, user skipped
jazz music at 396, which indicates that he/she is probably not
interested in jazz music, and the recommendation results at 400
and 550 are more likely to be country music. Thirdly, in case
3, user’s most recent record for jazz music at 396 is not a skip
behavior. However, most of her/his recent behaviors are country
music, so country music ranks first in the recommendation
lists generated by ATPP at 400 and 550. Fourthly, as shown in
case 4, user has listened to a lot of country music recently, so
the recommendation result at 550 are most likely to be country
music. Furthermore, he/she skipped two piece of country music
and then finished listening to the jazz music. In other words,
ATPP infers that the user prefers jazz music to country music at
400. In conclusion, ATPP can exploit music listening sequences
and temporal information, and leverage users’ long/short-term
preferences for accurate sequential music recommendation.

Besides, according to our studies, users’ short-term prefer-
ences play a more important role than long-term preferences in

most recommendation cases. The reason is three-fold. Firstly,
users’s long-term preferences may be diverse and various,
but they usually prefer only one or a few kinds of music
under a certain context (short-term preferences). For example,
a user, who likes both light music and rock music, may prefer
the latter when working out. Therefore, users’ short-term
preferences contribute more to the sequential recommendation
tasks, including both next and next new recommendation, which
is different with traditional top-n recommendation. Secondly,
the music listening is a kind of typical sequential behaviors,
since users may listen to many music pieces continuously,
and there are strong correlations/patterns between records in
sequences, especially nearby ones. Note that the influence of
long/short-term preferences on the prediction of next and next
new music depends on both tempral information, such as time
interval, and behavior information, such as skip behavior.

VI. CONCLUSION AND FUTURE WORK

In this work, we have proposed a novel sequential recom-
mendation method named Attentive Temporal Point Process
(ATPP), which combines temporal point process and attention
mechanism for sequentia music recommendation. It’s worthy
to highlight some advantages of our proposed approach when
compared with existing approaches. Our ATPP can: 1) effec-
tively exploit complex music listening sequences with temporal
context; 2) accurately model dynamic relevance and complex
relationships between music pieces in listening sequences;
and 3) adaptively incorporate and leverage users’ long/short-
term user preferences for sequential music recommendation.
Comprehensive experiments on four real-world music datasets
verify the effectiveness of ATPP in both next and next new
music recommendation tasks.

In future, we will explore how to combine TPP model
with advanced sequence models, such as Transformer [62], for
further improving the recommendation performance. As for
cold start and data sparsity problem, we plan to incorporate
more auxiliary/side information, such as users’ social data [6],
items’ content features and heterogeneous information [63].
Besides, we will also try to further alleviate the cold start
problem via meta-optimization idea [64], which can learn the
user preference by only a few of past interacted items.
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