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ABSTRACT

Understanding deep learning through ultra-wide neural networks

by

Wei Huang

Deep learning has been responsible for a step-change in performance across ma-

chine learning, setting new benchmarks in a large number of applications. However,

the existing accounts fail to resolve why deep learning can achieve such great success.

There is an urgent need to address the deep learning theory caused by the demand

of understanding the principles of deep learning. One promising theoretical tool

is the infinitely-wide neural network. This thesis focuses on the expressive power

and optimization property of deep neural networks through investigating ultra-wide

networks with four main contributions.

We first use the mean-field theory to study the expressivity of deep dropout

networks. The traditional mean-field analysis adopts the gradient independence as-

sumption that weights used during feed-forward are drawn independently from the

ones used in backpropagation, which is not how neural networks are trained in a

real setting. By breaking the independence assumption in the mean-field theory, we

perform theoretical computation on linear dropout networks and a series of exper-

iments on dropout networks. Furthermore, we investigate the maximum trainable

length for deep dropout networks through a series of experiments and provide a

more precise empirical formula that describes the trainable length than the original

work.

Secondly, we study the dynamics of fully-connected, wide, and nonlinear net-

works with orthogonal initialization via neural tangent kernel (NTK). Through a

series of propositions and lemmas, we prove that two NTKs, one corresponding to

Gaussian weights and one to orthogonal weights, are equal when the network width



is infinite. This suggests that the orthogonal initialization cannot speed up training

in the NTK regime. Last, with a thorough empirical investigation, we find that

orthogonal initialization increases learning speeds in scenarios with a large learning

rate or large depth.

The third contribution is characterizing the implicit bias effect of deep linear

networks for binary classification using the logistic loss with a large learning rate.

We claim that depending on the separation conditions of data, the loss will find a

flatter minimum with a large learning rate. We rigorously prove this claim under

the assumption of degenerate data by overcoming the difficulty of the non-constant

Hessian of logistic loss and further characterize the behavior of loss and Hessian for

non-separable data.

Finally, we demonstrate the trainability of deep Graph Convolutional Networks

(GCNs) by studying the Gaussian Process Kernel (GPK) and Graph Neural Tan-

gent Kernel (GNTK) of an infinitely-wide GCN, corresponding to the analysis on

expressivity and trainability, respectively. We formulate the asymptotic behaviors

of GNTK in the large depth, which enables us to reveal the dropping trainability of

wide and deep GCNs at an exponential rate.
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