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ABSTRACT

Understanding deep learning through ultra-wide neural networks

by

Wei Huang

Deep learning has been responsible for a step-change in performance across ma-

chine learning, setting new benchmarks in a large number of applications. However,

the existing accounts fail to resolve why deep learning can achieve such great success.

There is an urgent need to address the deep learning theory caused by the demand

of understanding the principles of deep learning. One promising theoretical tool

is the infinitely-wide neural network. This thesis focuses on the expressive power

and optimization property of deep neural networks through investigating ultra-wide

networks with four main contributions.

We first use the mean-field theory to study the expressivity of deep dropout

networks. The traditional mean-field analysis adopts the gradient independence as-

sumption that weights used during feed-forward are drawn independently from the

ones used in backpropagation, which is not how neural networks are trained in a

real setting. By breaking the independence assumption in the mean-field theory, we

perform theoretical computation on linear dropout networks and a series of exper-

iments on dropout networks. Furthermore, we investigate the maximum trainable

length for deep dropout networks through a series of experiments and provide a

more precise empirical formula that describes the trainable length than the original

work.

Secondly, we study the dynamics of fully-connected, wide, and nonlinear net-

works with orthogonal initialization via neural tangent kernel (NTK). Through a

series of propositions and lemmas, we prove that two NTKs, one corresponding to

Gaussian weights and one to orthogonal weights, are equal when the network width



is infinite. This suggests that the orthogonal initialization cannot speed up training

in the NTK regime. Last, with a thorough empirical investigation, we find that

orthogonal initialization increases learning speeds in scenarios with a large learning

rate or large depth.

The third contribution is characterizing the implicit bias effect of deep linear

networks for binary classification using the logistic loss with a large learning rate.

We claim that depending on the separation conditions of data, the loss will find a

flatter minimum with a large learning rate. We rigorously prove this claim under

the assumption of degenerate data by overcoming the difficulty of the non-constant

Hessian of logistic loss and further characterize the behavior of loss and Hessian for

non-separable data.

Finally, we demonstrate the trainability of deep Graph Convolutional Networks

(GCNs) by studying the Gaussian Process Kernel (GPK) and Graph Neural Tan-

gent Kernel (GNTK) of an infinitely-wide GCN, corresponding to the analysis on

expressivity and trainability, respectively. We formulate the asymptotic behaviors

of GNTK in the large depth, which enables us to reveal the dropping trainability of

wide and deep GCNs at an exponential rate.
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Chapter 1

Introduction

1.1 Background

1.1.1 Machine learning

Machine learning is the study of algorithms that realize pattern precognition from

real-world data automatically. By extract relevant information from data through

modeling, ML is known to have a wide range of applications.

Machine learning is one of the fastest-growing branches of artificial intelligence.

In the 1980s, symbolic learning was the mainstream of machine learning, and from

the 1990s to around 2014, it has been the dominant statistical machine learning.

Since 2014, deep learning has become the mainstream method, and still maintains

its dominant position in academia and industry.

From the perspective of tasks, machine learning can be divided into supervised

learning and unsupervised learning respectively. Supervised learning requires know-

ing the label of the data, and the main tasks are regression and classification. For

example, for computer vision, how to recognize handwritten digits is a typical clas-

sification task. Instead of providing data labels, unsupervised learning generally

processes tasks such as clustering and dimensionality reduction. In this thesis, we

mainly account for the theory of supervised learning, especially imagine classification

and graph classification.



2

1.1.2 Deep learning

Deep learning is a sub-field of machine learning. It is a new method of learning

representations from data, emphasizing learning from successive layers, which cor-

respond to increasingly meaningful representations. The “depth” in “deep learning”

does not refer to any other concept regarding deep, but refers to stacking layers.

Figure 1.1 shows a typical fully-connected neural network. Until now, deep learning

has been developed with dozens or even hundreds of presentation layers.

At the early stage of deep learning, a fully-connected network (FNN) is the

fundamental structure [2, 3, 4]. The full connection layer is generally composed

of two parts, one is the linear layer, and another is the non-linear layer. In order

to express the following formula more clearly, the superscript in the variable name

represents the layer in which it is located. Consider a FCN of L layers of width

N with dropout. We denote synaptic weight and bias for the l-th layer by W l and

bl; pre-activations and post-activations by zl and yl respectively, where activation

stands for the non-linear layer. Finally, we take the input to be y0i = xi. The linear

part is a mainly linear transformation, which can be written as,

zli =
∑
j

W l
ijy

l−1
j + bli, (1.1)

and the nonlinear part can be expressed as,

yli = φ(zli). (1.2)

Later, the rise of convolutional neural networks (CNN) brings deep learning into

a new era. In 2012, Alex Krizhevsky took the convolutional neural network into an

ImageNet competition (the equivalent of the Olympics in importance) and made a

great hit [5]. Since then, many companies have started to use deep learning as the

core of their services. For example, Facebook uses it in their auto-tagging algorithm,

Google uses it in photo search, Amazon uses it in product recommendations, and
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Figure 1.1 : A typical fully-connected neural network.

Instagram is used in their search engine.

For notational simplicity, we consider a 1D convolutional network with periodic

boundary conditions. We denote the spatial location β ∈ [−k, k] and spatial location

α ∈ {1, . . . ,m}, with m being the spatial size. Then the forward propagation is given

by,

yli,α = φ(zli,α), zli,α =

nl∑
j=1

k∑
β=−k

W l
ij,βy

l−1
j,α+β + bli, (1.3)

where nl is the channel size and weight in each layer is denoted as W l. The output

layer is processed with a fully-connected layer, fi(x) = hL
i =

∑nL

j=1

∑
α W

L
ij,αy

L−1
j,α .

In chapter 4, we consider the training dynamics of networks across FNN and CNN.

To overcome the over-fitting problem, Alex and Hinton used the Dropout algo-

rithm which is a regularization technique to prevent over-fitting [5]. Network units

are randomly dropped during training in dropout, which can prevent complex co-

adaptations [6]. Dropout is also the focus of chapter 3 in this thesis. We can express

an FNN with dropout as,

zli =
1

ρ

∑
j

W l
ijpjy

l−1
j + bli, yli = φ(zli) + yl−1

i . (1.4)
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where pj is sampled from the Bernoulli distribution, pj ∼ pρ(1− p)1−ρ. In addition,

recent seminal innovations have been proposed to improve the performance of neu-

ral networks further. For example, residual networks [7] and batch normalization

[8], which were introduced to solve the gradient vanishing and exploding problem,

enabled the trainable length to be very deep.

Recently, Graph Convolutional Networks (GCN) have shown incredible abili-

ties to learn node or graph representations and achieved superior performances for

various downstream tasks, such as node classifications [9, 10, 11, 12], graph classi-

fications [13, 14, 15, 16, 17, 18], link predictions [19], etc. A GCN layer is actually

designed as the message-passing operation, where messages are aggregated together

from nodes to nodes within the graph connections. It is the mechanism on how

each node aggregate neighboring representations and integrate them together to up-

date its own representation that makes different GNN architectures varying in their

performances [9, 10, 11].

Graph neural networks (GNNs) are powerful in practical performance when deal-

ing with graph-structured data. However, it is known that GNN suffers from so call

over-smoothing problems, where node features tend to be identical after aggrega-

tion operation. Despite this understanding is prevailing, rare theoretical analysis

has been implemented to exploit the dynamics of deep GNN. In chapter 6, we de-

rive the dynamics of wide GNN for node and graph classification problems based

on techniques for infinitely wide GNN. Furthermore, theoretical derivative on the

residual connection technique of graph network shows it can mildly alleviate expo-

nential decay. Our work reveals aggregation is not only a successful factor of graph

network but also the root cause of graph network can not be too deep. Finally, all

theoretical results in this work can be verified by numerical experiments.
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Figure 1.2 : Double descent phenomenon in deep learning versus U-shaped curve in

traditional machine learning [1].

1.2 Motivation and Contribution

In deep learning, over-parameterization is a common phenomenon. This is con-

trary to the traditional convention that there is a trade-off between training error

and generalization power in machine learning. On the one hand, we need to tune

the number of parameters in the model to be big enough so that the model can be

fully fitted to data, thus achieving a very small training error. On the other hand,

the complexity of the model should be small enough so as to obtain reasonable test

error by preventing the so-called over-fitting problem.

In Figure 1.2, we show that traditional understanding of the relationship be-

tween model performance and model complexity can be characterized by a U-shape

curve. However, in deep learning, it turns out that as we increase the number of

parameters in networks, the test error keeps decreasing instead of increasing. The

new understanding is characterized by a double descent curve, as shown in Figure

1.2. There is plenty of experiments confirming that the over-parameterized model

performs better. However, our theoretical comprehension is limited regarding the

double descent phenomenon. Researchers have been trying to explain why deep

learning can achieve such great accomplishment theoretically, and answer this big
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question through three perspectives: expressivity, optimization, and generalization.

The expressive power (expressivity) of neural networks is usually studied at ini-

tialization before training. It is a measure of how complex a function can be rep-

resented by a neural network. According to the universal approximation theorem

[20, 21], neural networks can represent a wide variety of functions when given appro-

priate weights. However, whether a neural network can reach a powerful represen-

tation depends on its optimization process. In particular, the optimization property

of a neural network stands for its ability to find a global minimum on the training

dataset by optimization methods such as gradient descent. Nevertheless, in general,

getting an error close to zero on the training set does not guarantee that we can use

this result to achieve high accuracy on the training set. Thus, researchers introduce

the concept of generalization to address the problem of performance on the test

(unseen) data.

The aims of the project are to tackle the three aspects of deep learning theory

through ultra-wide and deep neural networks. The main contributions are summa-

rized as follows,

i. Conduct studies of expressivity of deep dropout networks through the mean-

field theory. The mean-field theory shows that the existence of depth scales

that limit the maximum depth of signal propagation and gradient backprop-

agation. However, the gradient backpropagation is derived under the gradi-

ent independence assumption where weights are independent from forward to

backward. This is not how neural networks are trained in a real setting. In-

stead, the same weights used in a feed-forward step need to be carried over to

its corresponding backpropagation. Using this realistic condition, we perform

theoretical computation on linear dropout networks and a series of experiments

on dropout networks with different activation functions. Our empirical results
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show an interesting phenomenon that the length gradients can backpropagate

for a single input and a pair of inputs are governed by the same depth scale.

Besides, we investigate the maximum trainable length for deep dropout net-

works through a series of experiments using MNIST and CIFAR10 and provide

a more precise empirical formula that describes the trainable length than the

original work.

ii. Conduct studies of optimization of deep networks with orthogonal initializa-

tion. In recent years, a critical initialization scheme of orthogonal initialization

on deep nonlinear networks has been proposed. The orthogonal weights are

crucial to achieve dynamical isometry for random networks, where the en-

tire spectrum of singular values of an input-output Jacobian are around one.

To understand the optimization of networks with orthogonal initialization,

we study the Neural Tangent Kernel (NTK), which can describe dynamics

of gradient descent training of wide network, and focus on fully-connected

and nonlinear networks with orthogonal initialization. We prove that NTK of

Gaussian and orthogonal weights are equal when the network width is infinite,

resulting in a conclusion that orthogonal initialization can speed up training is

a finite-width effect in the small learning rate regime. Then we find that dur-

ing training, the NTK of infinite-width network with orthogonal initialization

stays constant theoretically and varies at a rate of the same order as Gaussian

ones empirically, as the width tends to infinity.

iii. Conduct studies of optimization and generalization of deep linear neural net-

works with a large learning rate. We characterize the implicit bias effect of deep

networks for binary classification using the logistic loss in the large learning

rate regime. It was found there is a learning rate regime with a large stepsize

named the catapult phase, where the loss grows at the early stage of training
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and eventually converges to a minimum that is flatter than those found in the

small learning rate regime. We claim that depending on the separation condi-

tions of data, the gradient descent iterates will converge to a flatter minimum

in the catapult phase. We rigorously prove this claim under the assumption

of degenerate data by overcoming the difficulty of the non-constant Hessian

of logistic loss and further characterize the behavior of loss and Hessian for

non-separable data. Finally, we demonstrate that flatter minima in the space

spanned by non-separable data along with the learning rate in the catapult

phase can lead to better generalization empirically.

iv. Conduct studies of expressivity and trainability of ultra-wide and deep graph

convolutional networks on the node classification task. Graph convolutional

networks (GCNs) and their variants have achieved great success in dealing with

graph-structured data. However, it is well known that deep GCNs will suffer

from over-smoothing problem, where node representations tend to be indistin-

guishable as we stack up more layers. We demonstrate these characterizations

by studying the Gaussian Process Kernel(GPK) and Graph Neural Tangent

Kernel (GNTK) of an infinitely-wide GCN, corresponding to the analysis on

expressivity and trainability, respectively. We formulate the asymptotic be-

haviors of GNTK in the large depth, which enables us to reveal the dropping

trainability of wide and deep GCNs at an exponential rate. Additionally, we

extend our theoretical framework to analyze residual connection-resemble tech-

niques. We found that these techniques can mildly mitigate exponential decay,

but they failed to overcome it fundamentally. Finally, all theoretical results

in this work are corroborated experimentally on a variety of graph-structured

datasets.
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1.3 Thesis Organization

This thesis studies the expressivity, optimization and generalization proper-

ties of over-parameterized neural networks, ranging from deep dropout networks,

orthogonally-initialized networks to graph neural networks. This dissertation con-

tains seven chapters which are organized as follows:

• Chapter 1: This chapter introduces the foundation of deep learning with a

brief introduction to several neural networks and advanced techniques which

are widely used. Later on, motivations and contributions are demonstrated.

• Chapter 2: This chapter presents a survey of ultra-wide networks, including

the mean-field theory on Gaussian process kernel before training, the neural

tangent kernel on Gaussian process with gradient descent training, and the

effect of implicit bias on generalization.

• Chapter 3: The mean-field theory for deep dropout networks is derived in this

chapter. The results for gradient back-propagation are formulated by break-

ing the gradient independence assumption. Moreover, enormous simulations

on the trainable depth with different hyper-parameters with a more precise

empirical formula that describes the trainable length are given.

• Chapter 4: This chapter presents a study of optimization of orthogonally

initialized networks. The theoretical derivation of the neural tangent kernel

(NTK) for orthogonal initialization is illustrated. Furthermore, the theoretical

results in the NTK regime are demonstrated in the formulation of lemmas and

theorems. Finally, an analysis of empirical results outside the NTK regime is

included.

• Chapter 5: This chapter discusses the implicit bias of ultra-wide linear net-

works with logistic loss with a large learning rate. The derivation and experi-
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ments on the linear networks with different separation conditions are described

in the form of theorems and figures. In conclusion, the risk will converge to a

flatter minimum with a better performance in the large learning rate regime.

• Chapter 6: The dynamics of infinitely-wide graph convolutional networks

(GCNs) are characterized in terms of depth are presented in this chapter.

Firstly, the over-smoothing problem for deep GCNs is introduced with several

techniques that can deepen GCN. Moreover, theoretical characterization of

expressivity and trainability of ultra-wide GCNs are presented. With an ex-

tension analysis on the techniques for deepening GCN, the conclusion is given

with numerical support.

• Chapter 7: A brief summary of the complements and room for improvement

of the works presented in the previous chapters are given in the final chapter.

Plans for the development of future works are discussed as well.
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Chapter 2

Literature Review

2.1 Mean-Field Theory

In deep learning theory, there is a branch of study working on the expressivity of

deep networks through infinitely-wide networks [22, 23, 24, 25, 26, 27, 28, 29]. The

mean field theory utilize the infinite-width limit to make each neuron in the same

layer i.i.d. distribution according to the central limit theory (CMT). Based on this

observation, we can study how the correlation information between different inputs

evolve through deep networks.

As stated before, the information propagation in a fully-connected network is

governed by,

zli =
∑
j

W l
ijy

l−1
j + bli, yli = φ(zli), (2.1)

where φ is the activation function. Upper index used in this chapter denotes the

depth of the neural networks and lower index indicates the index of weights matrix,

hidden layer and bias index.

We want to understand the signal information propagation through such net-

works by adopting the mean-field theory assumption [22, 23]. As the signal propa-

gates through the network, we track a quantity,

qlaa =
1

N

N∑
n=1

(zli;a)
2. (2.2)

where we denote a single input xi;a and a pair of inputs xi;a and xi;b. As we increase

Nl, this empirical distribution of hidden neurons converges to a Gaussian distribution

with the help of the central limit theorem. By implementing the Gaussian property
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into the quantity qlaa, we can obtain a recursive expression:

qlaa = σ2
w

∫
Dzφ2(

√
ql−1
aa z) + σ2

b , (2.3)

where
∫ Dz = 1√

2π

∫
dze−

1
2
z2 . The properties of length propagation of a single input

can be determined by finding the results of fixed-points.

We define the correlation between the pair of inputs,

qlab =
1

N

N∑
n=1

(zli;az
l
i;b). (2.4)

Again, according to the central limit theory, we derive a recursive relation for qlab,

qlab = σ2
w

∫
Dz1Dz2φ(u1)φ(u2) + σ2

b , (2.5)

where

u1 =
√

ql−1
aa z1, u2 =

√
ql−1
bb (cl−1

ab z1 +

√
1− (cl−1

ab )2z2) (2.6)

with

clab = qlab/
√
qlaaq

l
bb, (2.7)

We can analyze the behavior of qlaa and clab, as they measure the depth the

information can propagate through neural networks. As a result of studying the

fixed-point property in fully-connected networks, it is shown that there is a phase

transition in the σw and σb plane. In the chaotic phase, a pair of inputs end up

asymptotically decorrelated. Conversely, in the ordered phase, the fixed point is

stable, in which a pair of inputs end up asymptotically correlated.

The mean-field theory has been applied to different network architectures, includ-

ing CNNs [30], RNNs [31], Residual networks [7], Batch normalization [8], LSTM

[32], Graph Neural Network [33], and GRUs [34]. These networks have been investi-

gated by [26, 27, 25, 28, 35], respectively, which form a large family of the mean-field

theory for deep neural networks.
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2.2 Neural Tangent Kernel

While mean-field theory studies the Gaussian process kernel of infinitely-wide

networks at initialization, neural tangent kernel (NTK) are can describe the dy-

namics of corresponding networks during training. In the infinite-width limit, NTK

converges to a limiting kernel before training and remains the same during train-

ing in the infinite-width limt, thus can provide a convergence guarantee for over-

parameterized networks [36, 36, 37, 38, 39, 40, 41, 42, 43]. Besides, [40, 38, 41, 42]

have proven the same proprieties of NTK and global convergence of deep networks

in a few different ways.

Suppose there is a FCN with L Layer. The width are n0, · · · , nL, and θ is the

set of weights W and biases b of the network. One thing to note is that we refer to

the factor 1√
nl

before the weights, which we call NTK parameterization. The aim is

to prevent the divergence of NTK.

Considering the training of the network, ∂tfθ(t) = −∇Θ(L)C|fθ(t), where C is cost

function. The NTK is defined as,

Θ(L)(θ) =
∑
p

∂θpf
(L)(θ)⊗ ∂θpf

(L)(θ), (2.8)

where p is the index of parameters; f is the output function.

It is shown that NTK tends to a limiting kernel at initialization. The usual way

to prove it is by induction. Firstly, when the number of layers in the network is

one, then NTK has no limit, and the result can be obtained by taking the derivative

directly. Then we sssume that the L-layer network satisfies the tendency to a fixed

kernel. In this step, we divide the network parameters into two parts. The first part

is the parameters of the former L layer. In this part we need to use the law of large

numbers. The second part is parameter at layer L. In this part we use the results of

the infinitely wide network at initialization. Add the first part and the second part,
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and we get the recursion formula of NTK.

Researches utilize NTK to obtain a generalization bound for deep networks [44,

45]. NTK has been applied to a various of architecture and obtained a wealth

of results, such as orthogonal initialization [46], convolutions [38], graph neural

networks (GNTK) [47], attention [48], and see [49] for a summary. Especially, GNTK

helps us to understand how GNN learns a class of smooth functions on graphs [47]

and how GNN extrapolates differently from NN [50].

Although NTK can describe the infinite wide network well, it will fail in the finite

wide network, which is the difference between the neural network and the kernel

method. In a paper [51], the finite width and finite depth correction of NTK in fully

connected ReLU networks are studied. Another work [40] studies the dynamic NTK

of finite width and depth fully connected neural network. In their work, an infinite

order ordinary differential equation, namely neural thumbs (NTH), is derived to

describe the optimization properties of neural networks with finite width and depth.

2.3 Implicit Bias in Deep Learning

Since the seminal work from [52], implicit bias has led to a fruitful line of research.

There are a line of works which treated linear predictors [53, 54, 55]; deep linear

networks with a single output [56, 57, 58] and multiple outputs [59]; homogeneous

networks (including ReLU, max pooling activation) [60, 61, 62]; ultra-wide networks

[63, 64]; matrix factorization [65].

Specifically, consider a linear predictor using gradient descent trained on linearly

separable data can yield the convergence in the direction of hard margin and the

norm of weight tends to infinity [52]. If the dataset changes to a general set consist

of both linear separable and strong convex, then the outputs are biased to follow a

unique ray defined by the data [54]. When the linear predictor goes deeper, which is
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deep linear networks, the maximum margin will remain [56, 58] with the emergence

of alignment between the weight in each layer [58].

Consider the dataset {xn, yn}Nn=1, where x ∈ R
d, and y ∈ {−1, 1}. This is a

common way of representing binary classification datasets. The expression for loss

is,

L(w) =
N∑

n=1

�(ynw
Txn) (2.9)

As you can see from this, our network has only one linear layer, fn = wTxn, no

hidden layer, and no nonlinear activation function. For the sake of analysis, we have

two hypotheses: (1) Data sets are linearly separable, (2) The loss function is positive,

differentiable, and monotonically decreasing to zero. Under gradient descent, the

results are as follows,

lim
t→∞

L(w(t)) = 0

lim
t→∞

‖w(t)‖ = ∞

lim
t→∞

w(t)Txn = ∞

(2.10)

It can be seen from this that eventually the norm of weight will tend to infinity.

These three conclusions above are explained by the following formula,

wT
∗ ∇L(w) =

N∑
n=1

�′(wTxn)w
T
∗ xn (2.11)

where wT
∗ is the solution of the weight w. We know that for any wT

∗ xn is greater

than zero, and since loss is monotonically decreasing, the above formula cannot be

satisfied with the weight of finite size. So we know that the norm of weights tends

to infinity in the end, and then we infer that loss converges to the global minimum.

While we do know the preliminary result, many of the details are still being

worked out. For example,

w(t) = ŵ log t+ ρ(t), lim
t→∞

w(t)/‖w(t)‖ =
ŵ

‖ŵ‖ (2.12)

where ŵ = argmin‖w‖2 s.t. wTxn ≥ 1. And ρ(t) has the maximum magnitude

of ‖ρ(t)‖ = O(log log(t)). Those of you familiar with SVM may know that ŵ is the
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solution to maximum margin. And that’s the amazing thing about our problem. The

final solution is not a straight line that separates the data casually, but a solution

that meets the SVM maximum margin.
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Chapter 3

Mean Field Theory for Deep Dropout Networks

3.1 Introduction

Deep learning have achieved exceptional results in a range of fields since its in-

ception [3]. More recently, we have witnessed several signs of progress made using

mean field theory [22, 23, 24] in deep learning. The mean field considers networks af-

ter random initialization, whose weights and biases were i.i.d. Gaussian distributed,

and the width of each layer tends to infinity. As a result of studying signal propaga-

tion under mean field theory, an order-to-chaos expressivity phase transition split by

a critical line has been found [22]. Later, how parameter initialization may impact

the gradient of backpropagation was studied, and the conclusion that the ordered

and chaotic phases correspond respectively to regions of vanishing and exploding

gradient respectively was shown [23]. The results were also equivalently applied to

networks with or without dropout.

The main contribution of the mean field theory for random networks is that it

shows the existence of depth scales that limit the maximum depth of signal propa-

gation and gradient backpropagation. Practically, the result is to show a hypothesis

that random networks may be trained precisely when information can travel through

them. Thus, the depth scales provide bounds on how deep a network may be trained

for a specific choice of hyper-parameters [23]. This ansatz was tested and verified

by practical experiments on MNIST and CIFAR10 dataset with wide width fully-

connected networks [23], deep dropout networks [23], and residual networks [25].

However, the mean field calculation for the gradient is based on the so-called
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gradient independence assumption, which states that the weights used during feed

forward are drawn independently from the ones used in backpropagation. This is

in an effort to make the calculation of gradient feasible regardless of the choice of

activation functions. This assumption was later formulated explicitly [25] for residual

networks and was illustrated in a review [39]. While it enjoys the correct prediction

of gradient dynamics in some cases, our experiments show that under the condition in

which the weights in feed-forward are carried over to its backpropagation, the length

that gradients can backpropagate for a single and a pair of inputs are governed by

the same depth scale on deep dropout networks instead.

By further studying the mean and variance of gradient statistics metrics on deep

dropout networks, we show an emergence of universality for the relationship between

the mean and variance. This universality exists regardless of the choice of hyper-

parameters, including dropout rate and activation function. After summarizing the

theoretical results about the trainable length of deep dropout networks governed by

maximum depth of signal propagation and gradient backpropagation, we perform a

series of experiments to investigate it. Empirically, we find a more precise way to

describe the maximum trainable length for deep dropout networks, compared with

the original results [23].

3.2 Background

In this section, we review the mean field theory for deep dropout networks. We

give the main definitions, setup, and notations, and introduce the results of theory

for random networks at initialization, including signal feed-forward and gradient

backpropagation, respectively.
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Figure 3.1 : The iterative squared length mapping of Equation (3.2) and Equation

(3.4) with different activations and dropout rates. (a) qlaa in linear network at

σw = 0.5 and σb = 1.5. Theoretical results match well with the simulations within

a standard error (shadow). Different color correspond to different dropout rates:

ρ = 1 is red, ρ = 0.7 is green, and ρ = 0.4 is blue. (b) The iterative length map of

qlaa in Tanh network at σw = 2.5 and σb = 0.5. (c) The iterative length map of clab

in ReLU network at σw = 0.9 and σb = 0.5. Only intersection of network at ρ = 1

(red) is c∗ab = 1, the others are c∗ab < 1. (d) The iterative length map of clab in Erf

network at σw = 0.9 and σb = 0.5. Again, c∗ab = 1 only holds at ρ = 1.

3.2.1 Feed Forward

In the context of a fully-connected, feedforward, untrained, and dropout neural

network of depth L with layer width N . We denote synaptic weight and bias for the

l-th layer by W l
ij and bli; pre-activations and post-activations by zli and yli respectively.

Finally, we take the input to be y0i = xi and the dropout keep rate to be ρ. The

information propagation in this network is governed by,

zli =
1

ρ

∑
j

W l
ijp

l
jy

l−1
j + bli, yli = φ(zli), (3.1)

where φ is the activation function and p ∼ Bernoulli(ρ). We adopt the mean field

theory assumption [22, 23], where W l
ij ∼ N (0, σ

2
w

N
), bli ∼ N (0, σ2

b ), and the width

N tends to infinite. Since the weights and biases are randomly distributed, these

equations define a probability distribution on the pre-activations over an ensemble of
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untrained neural networks. Under the mean field approximation, zli can be replaced

by a Gaussian distribution with zero mean.

Consider a single input xi;a, where the subscript a refers to the index of input.

We define the length quantities qlaa = 1
N

∑N
n=1(z

l
i;a)

2, which is the mean squared

pre-activations. According to the mean field approximation, the length quantity is

described by the recursion relation,

qlaa =
σ2
w

ρ

∫
Dzφ2(

√
ql−1
aa z) + σ2

b , (3.2)

where
∫ Dz = 1√

2π

∫
dze−

1
2
z2 is the measure for a normal distribution. This equation

describes how a single input evolves through a random neural network. To study

the property of evolution, we investigate the fixed point at q∗aa ≡ liml→∞ qlaa. One

way to estimate the fixed point is to plot Equation (3.2) with the unity line, and the

intersection is the fixed point. We show the result for Equation (3.2) with Linear

dropout network and Tanh dropout network in Figure 3.1(a)(b). Note that the

smaller the dropout rate ρ, the larger the fixed point value q∗aa.

The propagation of a pair of inputs xi;a and xi;b, where the subscript a and b

refer to different inputs, can be studied by looking at the correlation between the two

inputs after l layers. We definite this correlation quantity as qlab =
1
N

∑N
n=1(z

l
i;az

l
i;b).

Similarly, the correlation qlab will be given by the recurrence relation,

qlab = σ2
w

∫
Dz1Dz2φ(u1)φ(u2) + σ2

b , (3.3)

where u1 =
√

ql−1
aa z1 and u2 =

√
ql−1
bb (cl−1

ab z1 +
√
1− (cl−1

ab )2z2), with

clab = qlab/
√
qlaaq

l
bb. (3.4)

This equation also have a fixed point at c∗ab ≡ liml→∞ clab. It is known that c∗ab = 1

when ρ = 1, while c∗ab < 1 when ρ < 1 [23]. We show the result of Equation (3.4)

on the ReLU and Erf dropout networks in Figure 3.1(c)(d), which demonstrate the

main conclusion about fixed-point without (ρ = 1) and with (ρ < 1) dropout.
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The main contribution of mean field theory for the fully-connected networks

without dropout (ρ = 1) is that it presents a phase diagram, which is determined

by a crucial quantity,

χ1 =
∂clab
∂cl−1

ab

= σ2
w

∫
Dz[φ′(

√
q∗z)]2. (3.5)

This quantity was firstly introduce by [22] to determine whether or not the c∗ab = 1

is an attractive fixed point. When χ1 < 1, the fixed point is unstable. Conversely,

when χ1 > 1, the fixed point is stable. Thus, the critical line χ1 = 1 separates

two phases. One is the chaotic phase (χ1 < 1), where a pair of inputs end up

asymptotically decorrelated, and the other is the ordered phase, in which a pair of

inputs end up asymptotically correlated.

We give a comment on the difference between qlaa and clab here. The random net-

works under the infinite width limit setting can be viewed as the Gaussian processes,

where qlaa and clab are the diagonal and non-diagonal elements of the compositional

kernel[66], respectively. Intuitively, the non-diagonal element of the kernel measures

the correlation between different data points while the diagonal component measures

the information of one input itself.

The study of information propagation shows the existence of a depth-scales ξ2,

which represent the length of propagation of the following qualities:

|clab − c∗ab| ∼ e−l/ξ2 . (3.6)

where ξ2 = |1/ logχ2|, according to the exponential rate of propagation, with χ2 =

σ2
w

∫ Dz1Dz2φ
′(u∗

1)φ
′(u∗

2), where u∗
1 =

√
q∗aaz1 and u∗

2 =
√

q∗bb(c
∗
abz1 +

√
1− (c∗ab)2z2).

Intuitively, the depth-scales ξ2 measures how far can correlation between two differ-

ent inputs survives through the network.
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3.2.2 Back Propagation

There is a duality between the forward propagation of signals and the backprop-

agation of gradients. Given a loss E, we have

∂E

∂W l
ij

=
plj
ρ
φ(zl−1

j )δli, δli = φ′(zli)
pl+1
i

ρ

∑
j

δl+1
j W l+1

ji , (3.7)

where δli =
∂E
∂zli

. We define the metric of gradient for both a single input and a pair

of inputs cases:

glaa ≡
1

N2

∑
ij

(
∂Ea

∂W l
ij

)2, glab ≡
∣∣∣∣ 1N2

∑
ij

∂Ea

W l
ij

∂Eb

W l
ij

∣∣∣∣. (3.8)

Within mean field theory, the scale of fluctuations of the gradient of weights in

a layer will be proportional to q̃laa ≡ E
[
δli;aδ

l
i;a

]
, which can be written as, glaa ∝ q̃laa

[23]. On the other hand, the correlation between gradients of a pair of inputs will

be proportional to q̃lab ≡ E
[
δli;aδ

l
i;b

]
, namely, glab ∝ q̃lab.

In order to work out the recurrence relation for q̃laa and q̃lab, an approximation was

made [23], named gradient independence assumption, that the weights used during

forward propagation are drawn independently from the weights used in backpropaga-

tion. In this way, the term φ′(zli), δ
l+1
j and W l+1

ji in Equation (3.7) can be addressed

independently. Then, the recurrence behavior of q̃laa and q̃lab are achieved,

q̃laa = q̃l+1
aa χ1, q̃lab = q̃l+1

ab χ2. (3.9)

where we redefine the quantity χ1 for the dropout networks,

χ1 =
σ2
w

ρ

∫
Dz[φ′(

√
q∗z)]2, (3.10)

Equation (3.9) has an exponential solution with,

q̃laa = q̃Laae
−(L−l)/ξ1 , q̃lab = q̃Labe

−(L−l)/ξ2 . (3.11)

Similar to the signal propagation, gradient backpropagation can limit the trainable

length in the way of gradient vanishing or gradient exploding, which is measured by

the depth-scales ξ1 and ξ2.
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Figure 3.2 : Theoretical calculations versus network simulations for metric of gra-

dient. (a) glaa as a function of layer l, for a 200 layers random linear network with

σ2
w = 0.5 and σ2

b = 0.1. (b) glab as a function of layer l. Theoretical calculations

(solid lines) fail to predict empirical simulations (dashed lines). (c) glab as a function

of layer l in the range of length l = 170− 200. Theoretical calculations (solid lines)

can predict empirical simulations (dashed lines) in the few last layers. (d) glab as

a function of layer l. The solid lines are glab ∝ χL−l
1 for different ρ. Theoretical

calculations failed to predict empirical simulations (dashed lines).
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Figure 3.3 : The metric of gradient with one and two different inputs, glaa (solid

lines), g̃lab (dashed lines), and gl ∝ χL−l
1 (dotted lines) as a function of layer l with

different activation. (a) ReLU network with σ2
w = 1.0 and σ2

b = 0.1. (b) Tanh

network with σ2
w = 1.4 and σ2

b = 0.1. (c) Hard Tanh network with σ2
w = 1.4 and

σ2
b = 0.1.

3.3 Gradient Backpropagation

In this section, we first calculate the metrics of gradient gaa and gab theoretically

without the gradient independence assumption on linear dropout networks. We
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then conduct a series experiment for metrics of gradient on deep dropout networks,

including non-linear cases. Finally, we show an emergence of a universal relationship

between mean and variance of metrics of the gradient.

3.3.1 Breaking the gradient independence assumption

We follow the fact that weights used in a feed-forward are carried over to its

back-propagation. We first provide a theoretical treatment to the linear networks in

which we assume the output is the last layer of network yLi = zLi without soft-max.

The labels of data are set to be zeros, and the loss is the mean squared loss.

For space reason, we omit details of the calculation and present the primary

analysis and final results here. The main problem is that we should expand δl+1
j

when calculating δli in Equation (3.7), since δl+1
j can correlate with W l+1

ji without

the gradient independence assumption. Using glaa as an example, we perform:

i. Starting from the last layer L, we compute δLi,a = ∂Ea

∂zLi,a
= 2zLi,a and use this

result to compute gLaa = E

[
(
pLj,a
ρ
zL−1
j,a δLi,a)

2
]
.

ii. Then we compute gL−1
aa = E

[
(
pL−1
j,a

ρ
zL−2
j,a δL−1

i,a )2
]

with the result of δL−1
i,a =

∂Ea

∂zLi,a

∂zLi,a

∂zL−1
i,a

=
∑

j 2z
L
j,a

pLi,a
ρ
WL

ji and zLi = 1
ρ

∑
j W

L
ijp

l
jz

L−1
j + bLi .

iii. By parity of reasoning, we obtained the results for the penultimate layer gL−2
aa .

The correlation between terms that contain WL
ij and WL−1

ij are considered.

iv. As the index of the layer decreases, the amount of calculation becomes larger

and larger. Thus we use the induction method to achieve the results for the

left layers.
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Figure 3.4 : Universal relationship between variance and mean of glaa, glab, and g̃lab,

on the 200 layers and width N = 500 random dropout networks. Different color

represents a different dropout rate. The black line is the function of V ∝ m2. (a)

V l
aa as a function ml

aa. (b) V l
ab as a function of ml

ab. (c) Ṽ l
ab as a function of m̃l

ab. All

the curves regarding different activations collapse to a line, and the power coefficient

of all curves is consistent with 2.

We use the same approach to derive the result for glab. As a result, we have,

glaa = 4(
q∗aa
ρ
)2(

σ2
w

ρ
)L−l[ρ+

L−l∑
j=1

(
σ2
w

ρ
)j],

glab = 4(q∗ab)
2(σ2

w)
L−l[1 +

L−l∑
j=1

(
σ2
w

ρ2
)j].

(3.12)

By analyzing the first formula of Equation 3.12, we find that glaa = gl+1
aa χ1.

This can be better observed by dividing the expression related to layer l into two

factors: one is (σ
2
w

ρ
)L−l, and the other is

∑L−l
j=1(

σ2
w

ρ
)j. The first factor accounts for

glaa = gl+1
aa χ1, where χ1 = σ2

w

ρ
for linear dropout networks. And second factor will

be stable after several layers starting from the last layer L due to σ2
w < ρ. We show

an excellent match between the theoretical calculation above with simulation using

networks with width N = 500 and layer L = 200 over 100 different instantiations of

the network in Figure 3.2(a).

Despite the successful prediction of theoretical calculation for glaa, our theoretical

results for glab only hold on the case of ρ = 1 while fail to predict the experimental
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Figure 3.5 : Universal relationship between variance and mean of glaa, glab, and g̃lab,

on the 200 layers, Tanh random dropout networks with ρ = 0.9. All the curves

regarding different width collapse to a line. Different color represents a different

network width. (a) V l
aa as a function ml

aa. (b) V l
ab as a function of ml

ab. (c) Ṽ l
ab as a

function of m̃l
ab.

behavior except for last few layers when ρ < 1, as shown in Figure 3.2(b)(c). After

a few layers from L, the variances began to increase dramatically as shown in Figure

3.2(c). We noticed that unlike the case of computing qlab, using χ2 is prohibitive for

computing glab. On the other hand, we try a function regarding χ1 to fit glab, and

find an interesting observations that χ1 is a much more compatible term for glab, i.e,

glab = gl+1
ab χ1. This is demonstrated in Figure 3.2(d).

The incompatible phenomenon between theoretical calculation and experimental

results for glab begins with the emergence of variance, as shown in Figure 3.2(c).

One possible explanation is that the emergence of variance is caused by limited

network length. Thus, we can reduce this variance by increasing network length

only. To check if this explanation works, we further investigate the relationship

between variance and mean of glab with different network widths N . The answer is

that glab = gl+1
ab χ1 holds regardless of the finite width. We will demonstrate it in the

next section.

After studying the gradient behavior at the linear networks, A series of experi-
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ments is conducted on the nonlinear case since theoretical formulations for nonlinear

activation or with the soft-max layer is intractable. We firstly use glab as the metric

of gradient and find it has a huge variance when ρ < 1. This is because the element

of the gradient matrix with a pair of inputs can be either negative or positive. To

find a metric with low variance, we consider the metric g̃lab ≡ 1
N2

∑
ij |∂Ea

W l
ij

∂Eb

W l
ij
| whose

elements are all positive. Besides, it is the �1 norm of the gradient matrix.

We plot glaa and g̃lab as a function of l in Figure 3.3. Interestingly, our simulations

show that both glab and g̃ab are governed by χ1 in a range of activations. Thus we

make a conjecture that the relation,

glaa = gl+1
aa χ1, glab = gl+1

ab χ1, (3.13)

holds on deep dropout networks.

Table 3.1 : Summary of depth-scale for theoretical results i.e. signal propagation

and gradient backpropagation, and empirical results under different condition or

assumption.

Summary feed-forward propagation gradient backpropagation empirical results

metric qaa qab gaa gab

realistic condition (our work) - ξ2 ξ1 ξ1 min{12ξ1, 12ξ2}
independent assumption [23] - ξ2 ξ1 ξ2 6ξ2

3.3.2 Emergence of universality

We have studied three statistical metrics of the gradient, i.e. gaa, gab, and g̃ab

using their mean value. Inevitably, the variance of these metrics can give us essential

information about the gradient. To do this, we performed a series of experiments
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Figure 3.6 : The relation between steps and the learning rate η. (a) Network without

dropout, colors reflect different network depth L from 50 (black) to 400 (green). (b)

Network with dropout ρ = 0.99, colors reflect different network depth L from 20

(black) to 120 (green), additional L = 300 is colored blue for comparison. Curves

with L ≤ 120 collapse to a universal curve without any re-scale. (c) Network with

dropout ρ = 0.98, colors reflect different network depth L from 10 (black) to 55

(green), additional L = 200 is colored blue for comparison. Curves with L ≤ 55

collapse to a universal curve without any re-scale.

to obtain the mean and variance of gaa, gab and g̃ab with different activation and

different network width N .

First, we show the relationship between variance and mean of the metric of

gradient with different activations, including Linear, ReLU, Tanh, and Hard Tanh.

We denote the mean of gaa, gab and g̃ab as ml
aa, ml

ab, and m̃l
ab, while naming the

variance as V l
aa, V l

ab, and Ṽ l
ab respectively. We show the variance as a function of

mean in Figure 3.4, and find the emergence of universality between the variance and

mean regardless of dropout rate and choice of activation for gaa, gab, and g̃lab.

The plot of variance as a function of mean shows a power-law between them since

it is like a straight line in the log-log plot. To estimate the power, we use a simple

equation V ∝ m2 to compare with the experiment results. Surprisingly, all three

curves are consistent with V ∝ m2. Thus we make a conjecture that the universal
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power coefficient between the variance and mean is 2.

Then, we investigate the relationship between variance and mean with different

network width N and show the results in Figure 3.5. This time, we perform ex-

periments on the ρ = 0.9 Tanh networks with different network width N . Again,

the relationship between variance and mean satisfies universality, which means the

Equation (3.13) does not depend on the network width of N .

We want to point out that we have performed the same investigation on qlaa and

clab. However, we did not observe a similar universal relationship between variance

and mean of qlaa and clab. This may occur due to the different behavior of qlaa (qlab)

and glaa (glab). As Equation 3.6 shows, the mean of clab will converge to a fixed point

after several layers, which means that the mean of clab will be stable in deeper layers.

So, we won’t expect a universal relation between the mean and the variance in this

case.

In summary, we have tried all the parameter freedom that we can tune, the

universal power coefficient between the variance and mean remains the same. We

conclude that once the topological structure of the neural network is set, the power

coefficient is universal.

3.4 Experiments

According to the theoretical results, during feed-forward, we expect that length-

scale ξ2 control the propagation of clab, while ξ1 measure the number of layers that

gradient metrics glaa and glab can survive during backpropagation. However, [23]

claimed that both networks with or without dropout networks have a limited train-

able length, which is governed by the depth-scale ξ2. As our experimental results

show, which be demonstrated later, this statement is not exactly right. To summa-

rize, we present the comparison for the length-scale between [23] and our work in
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Figure 3.7 : The training accuracy for neural networks as a function of the depth L

and initial weight variance σ2
w from a high accuracy (bright yellow) to low accuracy

(black). Comparison is made by plotting 12ξ1 (white solid line), 6ξ2 (green dashed

line), and 12ξ2 (white dashed line). (a) 2000 training steps of ρ = 1 network with

Gaussian weights on the MNIST using SGD. (b) 1000 training steps of ρ = 1 network

with Gaussian weights on the MNIST using RMSProp. (c) 2000 training steps of

ρ = 1 network with Orthogonal weights on the MNIST. (d) 3000 training steps of

ρ = 1 network with Orthogonal weights on CIFAR10. (e) 3000 training steps of

ρ = 0.99 network with Orthogonal weights on the MNIST. (f) 3000 training steps

of ρ = 0.98 network with Orthogonal weights on the MNIST using SGD. (g) 10000

training steps of ρ = 0.98 network with Gaussian weights on the MNIST. (h) 3000

training steps of ρ = 0.95 network with Orthogonal weights on the MNIST using

SGD.

Table 3.1.

3.4.1 Training speed

Before investigating this problem, we study the relationship between training

speed and choice of hyper-parameters. We confine the hyper-parameters at the
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critical line χ1 = 1 for the network with and without dropout and train networks of

a range of length with width N = 400 for 103 steps with a batch size of 103 on the

standard CIFAR10 dataset. Strictly speaking, χ1 = 1 is not the critical line when

ρ < 1, since χ2 < 1. For learning rates of each network, we consider logarithmically

spaced in steps 101. The τ is the steps required to obtain a accuracy threshold

p = 0.25. We show the relation between steps τ and the learning rate η on the

networks of dropout rate ρ = 1.0, 0.99, and 0.98 in Figure 3.6.

We find that for networks without dropout, there is a universal scaling τ = f1(ηL)

between the steps and learning rate, where f1 is a scaling function, as shown in Figure

3.6(a). Note that it is different to the result that τ/
√
L = f ′

1(ηL) in [24] where they

use the standard CIFAR10 dataset augmented with random flips, crops, and so on.

The difference may be caused by the pretreatment of the dataset in [24]. Besides, we

study the networks with ρ = 0.99 and ρ = 0.98, and find that the scaling τ = f2(η)

can be kept under a limited length L = 120 for ρ = 0.99 and L = 55 for ρ = 0.98,

as shown in Figure 3.6(b) and (c) respectively.

3.4.2 Trainable length

Now we study the problem of trainable length. We consider random networks

of depth 10 ≤ L ≤ 250, and 1 ≤ σ2
w ≤ 4 with σ2

b = 0.05. We train these networks

by Stochastic Gradient Descent (SGD) and RMSProp on MNIST and CIFAR10

with Gaussian and Orthogonal weights, which can be seen as another variant of

weight initialization in the mean field theory [24]. We perform four experiments

on the network without dropout (ρ = 1) with different datasets, optimizer, and

learning rate to conduct a comprehensive study, and plot the results in Figure 3.7(a)-

(d). Besides, four experiments are conducted on the dropout networks (ρ < 1),

and results are shown in Figure 3.7(e)-(h). The trainable length can be obtained

according to the relationship between ξ and χ, which are ξ1 = |1/ logχ1| and ξ2 =
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|1/ logχ2|. We color in bright yellow the training accuracy that networks achieved

as a function of σ2
w and L for different dropout rates. From the heatmap, we can

observe a boundary in which accuracy began to drop. We noticed that there are

two boundaries, left and right. In order to show its relationship with ξ1 and ξ2, we

superimpose them onto the heatmap.

In figure 3.7(a), we use the same learning rate and optimizer as those in Figure

5(a)-(c) of [23]. We use a learning rate of 10−3 for SGD when L ≤ 200, and 10−4 for

larger L. From the plot, we find the 6ξ2 underestimates the scope of train-ability

in the σ2
w-L plane, while 12ξ1 is more compatible with the experimental result.

We note the phenomenon that 6ξ2 underestimates the scope of train-ability also

happened in Figure 5(b)(c) of [23]. In figure 3.7(b), we adopt the same learning rate

and optimizer as those in Figure 5(d) of [23], where we use a learning of 10−5 and

RMSProp optimizer. Here, the only difference is that we use 1000 training steps

instead of 300 training steps in [23]. According to the simulation result, 12ξ1 (solid

line) and ξ2 (dashed line) are identical on the left boundary, while they differ on the

right side. We make a comparison between 12ξ1 and 12ξ2, and find that 12ξ1 has a

much better argument with the trainable length while 12ξ2 overrates the trainable

length on the right side.

Based on the analysis of Figure 3.7(a)(b), we may conclude that 12ξ1 can be

used to measure the maximum trainable length of the network without dropout.

We further reinforce this conclusion by performing experiments on different learning

rates, weight initialization, and datasets. In figure(c), we use orthogonal weight

initialization. In figure(d), we perform experiment on CIFAR-10 dataset and adopt

a learning rate of η = c/L, where c is constant. These learning rates were selected

for the reason that each learning rate can lead to the fast step to a certain test

accuracy at χ1 = 1, as shown in Figure 3.6. In a word, we attribute the maximum

trainable length to L ≤ min{12ξ1, 12ξ2} = 12ξ1, where the relation ξ1 ≤ ξ2 holds on
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the network without dropout.

Furthermore, we consider the dropout case in Figure 3.7(e)-(h). We have studied

three different dropout rate: ρ = 0.99 (Figure 3.7(e)), ρ = 0.98 (Figure 3.7(f)(g)),

and ρ = 0.95 (Figure 3.7(h)). We find that both ξ1 and ξ2 have connections to the

trainable length: the networks appear to be trainable when L ≤ min{12ξ1, 12ξ2}.
Networks on the left side are influenced by 12ξ2 while they are constrained by the

12ξ1 on the right size. Note that the formula L ≤ min{12ξ1, 12ξ2} is valid in the no

dropout case as discussed above. To conclude, we show an improved relationship

between maximum trainable length and length scale ξ1 and ξ2 than [23]. This

conclusion that both ξ1 and ξ2 have connections to the trainable length instead of

only ξ2 [23] is more compatible with the theoretical results.

3.5 Discussion

In this chapter, we have investigated the dropout networks by calculating its

statistical metrics of gradient during the backpropagation at initialization and con-

jecture that both gradients metric with a single input and a pair of inputs are

governed by the same quantity χ1. We further investigate the relationship between

variance and mean of statistical metrics empirically and find an emergence of uni-

versality. Our finding of a universal relationship between variance and mean of

statistical metrics of gradient backpropagation suggests a deeper mechanism behind

it. This mechanism may be comprehended better by studying more different net-

work structures such as Resnet. Finally, for networks with or without dropout, we

attribute the maximum trainable length to the formula L ≤ min{12ξ1, 12ξ2}, which

is novel and important.
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3.6 Proof

3.6.1 Derivation of q̃laa on linear dropout networks with a single input

(1) The Lth layer:

δLi,a =
∂Ea

∂zLi,a
=

∂Ea

∂yLi,a
= 2yLi,a = 2zLi,a

q̃Laa = E[(δLi,a)
2] = 4E[(zLi,a)

2] = 4q∗aa

(2) The (L− 1)th layer:

zLj,a =
1

ρ

∑
k

WL
jkp

L
k,ay

L−1
k,a + bLj , yL−1

k,a = φ(z
L−1
k,a ) = zL−1

k,a

δL−1
i,a =

∂Ea

∂zLa

∂zLa
∂zL−1

i,a

=
∑
j

δLj,a
∂zLj,a

∂zL−1
i,a

=
∑
j

δLj,a
pLi,a
ρ

WL
ji =

∑
j

2zLj,a
pLi,a
ρ

WL
ji

q̃L−1
aa = 4E

[∑
j

∑
j′

zLj,az
L
j′,a

(pLi,a)
2

ρ2
WL

jiW
L
j′i

]

= 4E
[∑

j

∑
j′

∑
k

∑
k′

(
pLk,a
ρ

pLk′,a
ρ

WL
jkW

L
j′k′z

L−1
k,a zL−1

k′,a + bLj b
L
j′)

(pLi,a)
2

ρ2
WL

jiW
L
j′i

]

= 4E
[∑
j=j′

∑
k=k′

(pLk,a)
2

ρ2
(pLi,a)

2

ρ2
(WL

jkW
L
ji)

2(zL−1
k,a )2

+
∑
j �=j′

∑
k=k′=i

(pLi,a)
4

ρ4
(WL

jiW
L
j′i)

2(zL−1
i,a )2 +

∑
j=j′

(bLj )
2
(pLi,a)

2

ρ2
(WL

ji)
2
]

≈ 4
[ 1
ρ2

(σ2
ω)

2q∗aa +
1

ρ3
(σ2

ω)
2q∗aa + σ2

bσ
2
ω

1

ρ

]
(3.14)

Since,

q∗aa =
σ2
ω

ρ
q∗aa + σ2

b

We rewrite Eq (3.14) as:

q̃L−1
aa = 4

[ 1
ρ2

(σ2
ω)

2q∗aa +
1

ρ3
(σ2

ω)
2q∗aa + σ2

bσ
2
ω

1

ρ

]
= 4
[σ2

ω

ρ
q∗aa +

1

ρ3
(σ2

ω)
2q∗aa
]

= 4
q∗aa
ρ

σ2
ω

ρ

[
ρ+

σ2
ω

ρ

]
(3.15)



35

(3) The (L− 2)th layer:

δL−2
i,a =

∑
j

δL−1
j,a

pL−1
i,a

ρ
WL−1

ji =
∑
j

∑
k

2zLk,a
pLj,a
ρ

WL
kj

pL−1
i,a

ρ
WL−1

ji

= 2
∑
j

∑
k

zLk,a
pLj,a
ρ

pL−1
i,a

ρ
WL

kjW
L−1
ji

(3.16)

q̃L−2
aa = 4E

[∑
j

∑
j′

∑
k

∑
k′

zLk,az
L
k′,a

pLj,ap
L
j′,a

ρ2
(pL−1

i,a )2

ρ2
WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

]

= 4E
[∑

j

∑
j′

∑
k

∑
k′

∑
m

∑
m′

(zL−1
m,a z

L−1
m′,a

pLm,ap
L
m′,a

ρ2
WL

kmW
L
k′m′ + bLk b

L
k′)

pLj,ap
L
j′,a

ρ2
(pL−1

i,a )2

ρ2
WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

]

= 4E
[∑

j

∑
j′

∑
k

∑
k′

∑
m

∑
m′

zL−1
m,a z

L−1
m′,a

pLm,ap
L
m′,ap

L
j,ap

L
j′,a

ρ4
(pL−1

i,a )2

ρ2
WL

km

WL
k′m′WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

+
∑
j

∑
j′

∑
k

∑
k′

bLk b
L
k′
pLj,ap

L
j′,a

ρ2
(pL−1

i,a )2

ρ2
WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

]

= 4E
[ ∑

j,j′,k,k′
m,m′,n,n′

(
pL−1
n,a pL−1

n′,a

ρ2
WL−1

mn WL−1
m′n′z

L−2
n,a zL−2

n′,a + bL−1
m bL−1

m′ )

pLm,ap
L
m′,ap

L
j,ap

L
j′,a

ρ4
(pL−1

i,a )2

ρ2
WL

kmW
L
k′m′WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

+
∑

j,j′,k,k′
bLk b

L
k′
pLj,ap

L
j′,a

ρ2
(pL−1

i,a )2

ρ2
WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

]

= 4E
[ ∑

j,j′,k,k′
m,m′,n,n′

zL−2
n,a zL−2

n′,a
pLm,ap

L
m′,ap

L
j,ap

L
j′,a

ρ4
pL−1
n,a pL−1

n′,a (p
L−1
i,a )2

ρ4

WL
kmW

L
k′m′WL

kjW
L
k′j′W

L−1
ji WL−1

j′i WL−1
mn WL−1

m′n′

+
∑

j,j′,k,k′,m,m′
bL−1
m bL−1

m′
pLm,ap

L
m′,ap

L
j,ap

L
j′,a

ρ4
(pL−1

i,a )2

ρ2
WL

kmW
L
k′m′WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

+
∑

j,j′,k,k′
bLk b

L
k′
pLj,ap

L
j′,a

ρ2
(pL−1

i,a )2

ρ2
WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

]

= 4E
[
I + II + III

]
(3.17)
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There are three parts in Eq (5.15), we denote them as I, II, III and compute them

one by one,

E[I] = E
[ ∑

j,j′,k,k′
m,m′,n,n′

zL−2
n,a zL−2

n′,a
pLm,ap

L
m′,ap

L
j,ap

L
j′,a

ρ4
pL−1
n,a pL−1

n′,a (p
L−1
i,a )2

ρ4

WL
kmW

L
k′m′WL

kjW
L
k′j′W

L−1
ji WL−1

j′i WL−1
mn WL−1

m′n′

]
= E

[
(
∑

n = n′ = i

k �= k′

m = j

m′ = j′

+
∑

n = n′ �= i

k = k′

m = m′

j = j′

+
∑

n = n′ �= i

k �= k′

m = m′ = j = j′

)zL−2
n,a zL−2

n′,a
pLm,ap

L
m′,ap

L
j,ap

L
j′,a

ρ4

pL−1
n,a pL−1

n′,a (p
L−1
i,a )2

ρ4
WL

kmW
L
k′m′WL

kjW
L
k′j′W

L−1
ji WL−1

j′i WL−1
mn WL−1

m′n′

]

= E
[ ∑

n=n′=i,k �=k′
m=j,m′=j′

(zL−2
i,a )2

(pLj,a)
2(pLj′,a)

2

ρ4
(pL−1

i,a )4

ρ4
(WL

kjWk′j′)
2(WL−1

ji WL−1
j′i )2

+
∑

n=n′ �=i,k=k′
m=m′,j=j′

(zL−2
n,a )2

(pLm,a)
2(pLj,a)

2

ρ4
(pL−1

n,a )2(pL−1
i,a )2

ρ4
(WL

kmW
L
kj)

2(WL−1
ji WL−1

mn )2

+
∑

n=n′ �=i,k �=k′
m=m′=j=j′

(zL−2
n,a )2

(pLj,a)
4

ρ4
(pL−1

n,a )2(pL−1
i,a )2

ρ4
(WL

kjW
L
k′j)

2(WL−1
ji WL−1

jn )2
]

≈ qL−2
aa

1

ρ5
(σ2

ω)
4 + qL−2

aa

1

ρ4
(σ2

ω)
4 + qL−2

aa

1

ρ5
(σ2

ω)
4

= qL−2
aa

[(σ2
ω)

4

ρ5
+

(σ2
ω)

4

ρ4
+

(σ2
ω)

4

ρ5

]
(3.18)
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E[II] = E
[ ∑
j,j′,k,k′,m,m′

bL−1
m bL−1

m′
pLm,ap

L
m′,ap

L
j,ap

L
j′,a

ρ4
(pL−1

i,a )2

ρ2

WL
kmW

L
k′m′WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

]
= E

[
(

∑
k �= k′

m = j = m′ = j′

+
∑
k = k′

m = m′

j = j′

)bL−1
m bL−1

m′
pLm,ap

L
m′,ap

L
j,ap

L
j′,a

ρ4
(pL−1

i,a )2

ρ2

WL
kmW

L
k′m′WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

]
= E

[ ∑
k �=k′

m=j=m′=j′

(bL−1
m )2

(pLj,a)
4

ρ4
(pL−1

i,a )2

ρ2
(WL

kjW
L
k′j′)

2(WL−1
ji )2

]

+
∑

k=k′,m=m′,j=j′
(bL−1

m )2
(pLm,a)

2(pLj,a)
2

ρ4
(pL−1

i,a )2

ρ2
(WL

kmW
L
kj)

2(WL−1
ji )2

]

≈ σ2
b

(σ2
ω)

3

ρ4
+ σ2

b

(σ2
ω)

3

ρ3

(3.19)

E[III] = E
[ ∑
j,j′,k,k′

bLk b
L
k′
pLj,ap

L
j′,a

ρ2
(pL−1

i,a )2

ρ2
WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

]

= E
[ ∑
j=j′,k=k′

(bLk )
2
(pLj,a)

2

ρ2
(pL−1

i,a )2

ρ2
(WL

kj)
2(WL−1

ji )2
]

= σ2
b

(σ2
ω)

2

ρ2

(3.20)

Finally, we have,

q̃L−2
aa = 4E

[
I + II + III

]
= 4
[
q∗aa
(
(
(σ2

ω)
4

ρ5
+

(σ2
ω)

4

ρ4
+

(σ2
ω)

4

ρ5

)
+ σ2

b

(σ2
ω)

3

ρ4
+ σ2

b

(σ2
ω)

3

ρ3
+ σ2

b

(σ2
ω)

2

ρ2

]
= 4
[
q∗aa

(σ2
ω)

4

ρ5
+ q∗aa

(σ2
ω)

3

ρ4
+ q∗aa

(σ2
ω)

3

ρ3
+ σ2

b

(σ2
ω)

2

ρ2

]
= 4
[
q∗aa

(σ2
ω)

4

ρ5
+ q∗aa

(σ2
ω)

3

ρ4
+ q∗aa

(σ2
ω)

2

ρ2

]
= 4

q∗aa
ρ
(
σ2
ω

ρ
)2
[
ρ+

σ2
ω

ρ
+ (

σ2
ω

ρ
)2
]

(3.21)
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To summarize, we list the results for q̃Laa, q̃L−1
aa , and q̃L−2

aa :

q̃Laa = 4q∗aa (3.22)

q̃L−1
aa = 4

q∗aa
ρ

σ2
ω

ρ

[
ρ+

σ2
ω

ρ

]
(3.23)

q̃L−2
aa = 4

q∗aa
ρ

(σ2
ω

ρ

)2[
ρ+

σ2
ω

ρ
+ (

σ2
ω

ρ
)2
]

(3.24)

Using mathematical induction method we draw the conclusion that,

q̃laa = 4
q∗aa
ρ

(σ2
ω

ρ

)L−l[
ρ+

L−l∑
j=1

(σ2
ω

ρ

)j]
(3.25)

Using the relation,
∂E

∂W l
ij

=
plj
ρ
φ(zl−1

j )δli, (3.26)

we obtain the final result,

glaa = 4(
q∗aa
ρ
)2
(σ2

ω

ρ

)L−l[
ρ+

L−l∑
j=1

(σ2
ω

ρ

)j]
. (3.27)
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3.6.2 Derivation of q̃lab on linear dropout networks with a pair of inputs

(1)The Lth layer:

δLi,a = 2zLi,a

q̃Lab = E[(δLi,aδ
L
i,b)] = 4E[(zLi,az

L
i,b)] = 4q∗ab

(2)The (L− 1)th layer:

zLj,a =
1

ρ

∑
k

WL
jkp

L
k,ay

L−1
k,a + bLj , yL−1

k,a = φ(z
L−1
k,a ) = zL−1

k,a

zLj′,b =
1

ρ

∑
k′

WL
j′k′p

L
k′,by

L−1
k′,b + bLj , yL−1

k′,b = φ(z
L−1
k′,b ) = zL−1

k′,b

δL−1
i,a =

∑
j

2zLj,a
pLi,a
ρ

WL
ji

δL−1
i,b =

∑
j′

2zLj′,b
pLi,b
ρ
WL

j′i

q̃L−1
ab = 4E

[∑
j

∑
j′

zLj,az
L
j′,b

pLi,ap
L
i,b

ρ2
WL

jiW
L
j′i

]

= 4E
[∑

j

∑
j′

∑
k

∑
k′

(
pLk,a
ρ

pLk′,b
ρ

WL
jkW

L
j′k′z

L−1
k,a zL−1

k′,b + bLj b
L
j′)

pLi,ap
L
i,b

ρ2
WL

jiW
L
j′i

]

= 4E
[∑
j=j′

∑
k=k′

zL−1
k,a zL−1

k,b

pLk,ap
L
k,bp

L
i,ap

L
i,b

ρ4
(WL

jkW
L
ji)

2

+
∑
j �=j′

∑
k=k′=i

zL−1
i,a zL−1

i,b

(pLi,a)
2(pLi,b)

2

ρ4
(WL

jiW
L
j′i)

2 +
∑
j=j′

(bLj )
2
pLi,ap

L
i,b

ρ2
(WL

ji)
2
]

≈ 4
[
(σ2

ω)
2q∗ab +

1

ρ2
(σ2

ω)
2q∗ab + σ2

bσ
2
ω

]
(3.28)

Here, we have

q∗ab = σ2
ωq

∗
ab + σ2

b
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We rewrite Eq (3.28) as:

q̃L−1
ab = 4

[ 1
ρ2

(σ2
ω)

2q∗ab + (σ2
ω)

2q∗ab + σ2
bσ

2
ω

]
= 4
[ 1
ρ2

(σ2
ω)

2q∗ab + σ2
ωq

∗
ab

]
= 4q∗abσ

2
ω

[
1 +

σ2
ω

ρ2

]
(3.29)

(3)The (L− 2)th layer:

δL−2
i,a =

∑
j

δL−1
j,a

pL−1
i,a

ρ
WL−1

ji =
∑
j

∑
k

2zLk,a
pLj,a
ρ

WL
kj

pL−1
i,a

ρ
WL−1

ji

= 2
∑
j

∑
k

zLk,a
pLj,a
ρ

pL−1
i,a

ρ
WL

kjW
L−1
ji

(3.30)

δL−2
i,b =

∑
j′

δL−1
j′,b

pL−1
i,b

ρ
WL−1

j′i =
∑
j′

∑
k′

2zLk′,b
pLj′,b
ρ

WL
k′j′

pL−1
i,b

ρ
WL−1

j′i

= 2
∑
j′

∑
k′

zLk′,b
pLj′,b
ρ

pL−1
i,b

ρ
WL

k′j′W
L−1
j′i

(3.31)
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q̃L−2
ab = 4E

[∑
j

∑
j′

∑
k

∑
k′

zLk,az
L
k′,b

pLj,ap
L
j′,b

ρ2
pL−1
i,a pL−1

i,b

ρ2
WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

]

= 4E
[∑

j

∑
j′

∑
k

∑
k′

∑
m

∑
m′

(zL−1
m,a z

L−1
m′,b

pLm,ap
L
m′,b

ρ2
WL

kmW
L
k′m′ + bLk b

L
k′)

pLj,ap
L
j′,b

ρ2
pL−1
i,a pL−1

i,b

ρ2
WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

]

= 4E
[∑

j

∑
j′

∑
k

∑
k′

∑
m

∑
m′

zL−1
m,a z

L−1
m′,b

pLm,ap
L
m′,bp

L
j,ap

L
j′,b

ρ4
pL−1
i,a pL−1

i,b

ρ2

WL
kmW

L
k′m′WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

+
∑
j

∑
j′

∑
k

∑
k′

bLk b
L
k′
pLj,ap

L
j′,b

ρ2
pL−1
i,a pL−1

i,b

ρ2
WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

]

= 4E
[ ∑

j,j′,k,k′
m,m′,n,n′

(
pL−1
n,a pL−1

n′,b

ρ2
WL−1

mn WL−1
m′n′z

L−2
n,a zL−2

n′,b + bL−1
m bL−1

m′ )

pLm,ap
L
m′,bp

L
j,ap

L
j′,b

ρ4
pL−1
i,a pL−1

i,b

ρ2
WL

kmW
L
k′m′WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

+
∑

j,j′,k,k′
bLk b

L
k′
pLj,ap

L
j′,b

ρ2
pL−1
i,a pL−1

i,b

ρ2
WL

kjW
L
k′j′W

L−1
ji WL−1

j′i

]

= 4E
[ ∑

j,j′,k,k′
m,m′,n,n′

zL−2
n,a zL−2

n′,b
pLm,ap

L
m′,bp

L
j,ap

L
j′,b

ρ4
pL−1
n,a pL−1

n′,b p
L−1
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kmW

L
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kjW
L
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L−1
ji WL−1
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+
∑
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L
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ρ4
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i,a pL−1
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ρ2
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kmW
L
k′m′WL

kjW
L
k′j′W

L−1
ji WL−1
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+
∑

j,j′,k,k′
bLk b

L
k′
pLj,ap
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ρ2
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i,a pL−1
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ρ2
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kjW
L
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]

= 4E
[
I + II + III

]
(3.32)
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E[I] = E
[ ∑
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m′ = j′
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L
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n,b pL−1
i,a pL−1

i,b

ρ4

(WL
kmW

L
kj)

2(WL−1
ji WL−1

mn )2

+
∑
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]
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1
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ω)
4 + q∗ab(σ

2
ω)

4 + q∗ab
1
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(σ2

ω)
4

= q∗ab
[(σ2

ω)
4

ρ4
+ (σ2

ω)
4 +

(σ2
ω)

4

ρ2

]
(3.33)
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E[II] = E
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∑
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E[III] = E
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Finally, we have,

q̃L−2
ab = 4E

[
I + II + III

]
= 4
[
q∗ab
((σ2

ω)
4

ρ4
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ω)
4 +
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4

ρ2

)
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2
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]
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]

(3.36)
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To summarize, we list the results for q̃Lab, q̃
L−1
ab , and q̃L−2

ab :

q̃Lab = 4q∗ab (3.37)

q̃L−1
ab = 4q∗abσ

2
ω

[
1 +

σ2
ω

ρ2

]
(3.38)

q̃L−2
ab = 4q∗ab(σ

2
ω)

2
[
1 +

σ2
ω

ρ2
+ (

σ2
ω

ρ2
)2
]

(3.39)

Using mathematical induction method we draw the conclusion that

q̃lab = 4q∗ab
(
σ2
ω

)L−l[
1 +

L−l∑
j=1

(σ2
ω

ρ2

)j]
(3.40)

Using the relation,
∂E

∂W l
ij

=
plj
ρ
φ(zl−1

j )δli, (3.41)

we obtain the final result,

glab = 4(q∗ab)
2
(
σ2
ω

)L−l[
1 +

L−l∑
j=1

(σ2
ω

ρ2

)j]
(3.42)
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Chapter 4

Orthogonally-Initialized Networks and the Neural
Tangent Kernel

4.1 Introduction

Deep learning has been responsible for a step-change in performance across ma-

chine learning, setting new benchmarks for state-of-the-art performance in many

applications, from computer vision [67], natural language processing [68], to rein-

forcement learning [69], and more. Beyond its fundamental shift in approach, an

array of innovative techniques underpin the success of deep learning, such as resid-

ual connections [7], dropout [6], and batch normalization [8]. The mean field theory

[22, 23] recently opened a gate to analyze the principles behind neural networks with

random, infinite width, and fully-connected networks as the first subjects. Broadly,

what [23] discovered, and then empirically proved, is that there exists a critical ini-

tialization called the edge of chaos, allowing the correlation signal to go infinitely

far forward and preventing vanishing or exploding gradients. Later, this theory had

been extended to a much wider range of architectures, e.g., convolutional networks

[26], recurrent networks [27], dropout networks [70], residual networks [25], and

batch normalization [28].

Critical initialization requires the mean squared singular value of a network’s

input-output Jacobian to be O(1). It was already known that the learning process

in deep linear networks could be dramatically accelerated by ensuring all singular

values of the Jacobian being concentrated near 1, a property known as dynamical

isometry [71]. However, what was not known was how to impose dynamical isometry
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in deep nonlinear networks. Pennington et al. [24, 72] conjectured that they could

do so with techniques based on free probability and random matrix theory, giving

rise to a new and improved form of initialization in deep nonlinear networks. Since

then, dynamical isometry has been introduced to various architectures, such as

residual networks [73, 74], convolutional networks [26], or recurrent networks [27]

with excellent performance on real-world datasets.

In fully connected networks, two key factors help to ensure dynamical isometry.

One is orthogonality, and the other is appropriately tuning weights’ and biases’ pa-

rameters to establish a linear regime in nonlinear activation [24]. In straightforward

scenarios, orthogonal initialization is usually enough to impose dynamical isometry

in a linear network. The benefit of the orthogonality in linear networks has been

proven recently [75]. However, the dynamics of nonlinear networks with orthogonal

initialization has not been investigated. The roadblock is that it has been unclear

how to derive a simple analytic expression for the training dynamics.

Hence, to fill this gap, we look to a recent technique called neural tangent kernel

(NTK) [36], developed for studying the optimization of deep networks using gradi-

ent descent training in the infinite-width limit. In terms of definition, the NTK is a

kernel characterized by a derivative of the output of a network to its parameters. It

has been shown that the NTK of a network with Gaussian initialization converges

to a deterministic kernel and remains unchanged when trained by the gradient de-

scent under infinite-width limit setting. We extend these results to the orthogonal

initialization case and find that orthogonal weights contribute to the same proper-

ties for NTK. Given a sufficiently small learning rate and wide width, the network

optimized by gradient descent behaves as a linearized model [37]. It is known that

these dynamics are called the NTK regime, or lazy training [76]. As the learning

rate gets larger or the network becomes deeper, that is, out of the NTK regime, we

expect that there will be new phenomena that can differentiate two initialization.
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To summarize, our contribution is as follows,

• We prove that the NTK of an orthogonally-initialized network converges to the

NTK of a network initialized by Gaussian weights in the infinite-width limit.

Besides, theoretically, during training, the NTK of an orthogonally-initialized

infinite-width network stays constant in the infinite-width limit.

• We prove that the NTK of an orthogonally-initialized network across archi-

tectures, including FCNs and CNNs, varies at a rate of the same order for

finite-width as the NTK of a Gaussian-initialized network. Therefore, there

are no significant improvements brought by orthogonal initialization for wide

and nonlinear networks compared with Gaussian initialization in the NTK

regime.

• We conduct a thorough empirical investigation of training speed outside the

NTK regime to complement theoretical results. We show that orthogonal

initialization can speed up training in the large learning rate and depth regime

when the hyper-parameters are set to achieve a linear regime in nonlinear

activation.

4.2 Preliminaries

4.2.1 Networks and Parameterization

Suppose there are D training points denoted by {(xd, yd)}Dd=1, where input X =

(x1, . . . , xD) ∈ R
n0×D, and label Y = (y1, . . . , yD) ∈ R

nL×D. We consider the follow-

ing architectures:

Fully-Connected Network (FCN). Consider a FCN of widths nl, for l =

0, · · · , L, where l = 0 is the input layer and l = L is output layer. Following

the typical nomenclature of literature, we denote synaptic weight and bias for the
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l-th layer by W l ∈ R
nl×nl−1 and bl ∈ R

nl , with a point-wise activations function

φ : R → R. For each input x ∈ R
n0 , pre-activations and post-activations are

denoted by hl(x) ∈ R
nl and xl(x) ∈ R

nl respectively. The information propagation

for l ∈ {1, . . . , L} in this network is govern by,

xl
i = φ(hl

i), hl
i =

nl∑
j=1

W l
ijx

l−1
j + bli, (4.1)

Convolutional Neural Network (CNN). For notational simplicity, we con-

sider a 1D convolutional networks with periodic boundary conditions. We denote

the spatial location as β ∈ [−k, k] and spatial location α ∈ {1, . . . ,m}, with m being

the spatial size. The forward propagation for l ∈ {1, . . . , L− 1} is given by,

xl
i,α = φ(hl

i,α), hl
i,α =

nl∑
j=1

k∑
β=−k

W l
ij,βx

l−1
j,α+β + bli, (4.2)

where weight W l ∈ R
nl×nl−1×(2k+1), and nl is the number of channels in the lth layer.

The output layer of a CNN is processed with a fully-connected layer, fi(x) = hL
i =∑nL

j=1

∑
α W

L
ij,αx

L−1
j,α .

Standard parameterization requires the parameter set θ = {W l
ij, b

l
i} is an ensem-

ble generated by, W l
ij ∼ N (0, σ2

w

nl−1
), bli ∼ N (0, σ2

b ), where σ2
w and σ2

b are weight

and bias variances. The variance of weights is scaled by the width of previous

layer nl−1 to preserve the order of post-activations layer to be O(1). We denote

this parameterizationas standard parameterizaiton. However, this paramterization

can lead to a divergence in derivation of neural tangent kernel. To overcome this

problem, ntk-parameterization was introduced, W l
ij = σw√

nl−1
ωl
ij, bli = σbβ

l
i, where

ωl
ij, β

l
i ∼ N (0, 1).

4.2.2 Dynamical Isometry and Orthogonal Initialization

Consider the input-output Jacobian which is defined as J = ∂hL

∂x0 , where hL is

output function, x0 is input. Ensuring all singular values of the Jacobian concentrate
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near 1 is a property known as dynamical isometry. In particular, it is shown that

two conditions regarding singular values of W l and Dl contribute crucially to the

dynamical isometry in non-linear networks [24]. More precisely, the singular values

of Dl can be made arbitrarily close to 1 by choosing a linear regime in a nonlinear

activation, combined with the fact that orthogonal matrix satisfies dynamical isom-

etry. On the other hand, adopting a random orthogonal initialization can force the

singular values of weights into 1. In particular, the weights are randomly generated

from the orthogonal distribution,

(W l)TW l = σ2
wI, (4.3)

This is the standard parameterization for orthogonal weights, and ntk-parameterization

of orthogonality follows,

W l
ij =

σw√
nl−1

ωl
ij, (ωl)Tωl = nl−1I. (4.4)

We show a summary of improved standard parameterization and ntk-parameterization

across FCN and CNN for Gaussian and orthogonal initialization in Table 4.1. The

factor s in the layer equation of standard parameterization is introduced to prevent

divergence of NTK [77].

4.2.3 Neural Tangent Kernel

NTK is originated from [36] and defined as,

Θt(X,X) = ∇θft(θ,X)∇θft(θ,X)T . (4.5)

where function ft was the outputs of the network at training time t, i.e. ft(X) =

hL
t (X) ∈ R

D×nL , and ∇θft(X) = vec([∇θft(x)]x∈X) ∈ R
DnL . Thus, the neural

tangent kernel is formulated as a DnL ×DnL matrix.

The original NTK work [36] studied the behavior of the output function ft regard-

ing the network under the infinite-width limit setting and trained using a gradient
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Table 4.1 : Summary of improved standard parameterization and ntk-

parameterization for Gaussian and orthogonal initialization. The abbreviation “std”

stands for standard, and the “parameterization” is omitted after ntk or std.

Network Parameterization W initialization b initialization layer equation

FCN

ntk Gaussian ωij ∼ N (0, 1)
βi ∼ N (0, 1) hl = σw√

nl−1
ωlxl−1 + σbβ

l

ntk Orthogonal (ωl)Tωl = nl−1I

std Gaussian Wij ∼ N (0, σ2
w

Nl−1
)

bi ∼ N (0, σ2
b ) hl = 1√

s
W lxl−1 + bl

std Orthogonal W TW = σ2
wI

CNN

ntk Gaussian ωij,α ∼ N (0, 1)
βi ∼ N (0, 1) hl

α =
∑k

β=−k
σw√

(2k+1)nl−1

ωl
βx

l−1
α+β + σbβ

l

ntk Orthogonal (ωl
α)

Tωl
α = nl−1I

std Gaussian Wij,α ∼ N (0, σ2
w

(2k+1)Nl−1
)

bi ∼ N (0, σ2
b ) hl

α = 1√
s
W l

βx
l−1
α+β + bl

std Orthogonal W T
α Wα = σ2

w

2k+1
I

descent method. Later, Lee et al. [37] presented this result in another statement

that infinite width networks are linearized networks in the parameter space. We

recall some of these results here.

Let η be the learning rate, and L be the loss function. Then dynamics of gradient

flow for parameters and output function are given by,

∂θ

∂t
= −η∇θL = −η∇θft(θ,X)T∇ft(θ,X)L

∂ft(θ, x)

∂t
= ∇θft(θ, x)

∂θ

∂t
= −ηΘt(x,X)∇ft(θ,X)L.

(4.6)

This equation for ft has no substantial insight in studying behavior of networks

since Θt(x,X) varies with the time evolution of training. However, as stated in

above, the NTK Θt(X,X) converges to a deterministic and limiting kernel Θ∞(X,X)

and does not change during training, under the infinite-width limit setting, i.e.

Θt(X,X) = Θ∞(X,X). As a result, the infinite width limit of the training dynamics

can be expressed as,

∂ft(X)

∂t
= −ηΘ∞(X,X)∇ft(θ,X)L. (4.7)
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If we use an MSE loss, L(y, f) = 1
2
‖y − ft(θ, x)‖22, the Equation (4.7) becomes a

linear model with a solution,

ft(θ,X) = (I− e−ηΘ∞(X,X)t)Y + e−ηΘ∞(X,X)tf0(θ,X). (4.8)

4.3 Theoretical results

4.3.1 An Orthogonally Initialized Network at Initialization

As stated in [66, 78], the pre-activation hl
i of Gaussian initialized network tends

to Gaussian processes (GPs) in the infinite-width limit. This is the proposition to

construct the NTK in networks with Gaussian weights [36]. We extend this result

to the orthogonal initialization:

Theorem 4.1. Consider a FCN of the form (4.1) at orthogonal initialization, with

a Lipschitz activation φ, and in the limit as n1, ..., nL−1 → ∞, the pre-activations

hl
i at each layer tend to an i.i.d. Gaussian distribution of covariance Σl which can

be computed recursively by:

Σ1(x, x′) =
σ2
w

n0

xTx′ + σ2
b

Σl(x, x′) = σ2
wEf∼N(0,Σl−1)[φ(f(x))φ(f(x

′))] + σ2
b ,

For a CNN of the form (4.2) at orthogonal initialization, and in the limit as

channels tend to be infinity, the pre-activations hl
i,α tend to Gaussian processes of

covariance Σl
α,α′, which is defined recursively by:

Σ1
α,α′(x, x′) =

σ2
w

n0(2k + 1)

k∑
β=−k

xT
α+βx

′
α′+β + σ2

b

Σl
α,α′(x, x′) =

σ2
w

(2k + 1)

k∑
β=−k

[
E
f∼N

(
0,Σl−1

α+β,α′+β

)

[φ(f(xα+β))φ(f(x
′
α′+β))]

]
+ σ2

b .

ΣL(x, x′) =
∑
α

δα,α′
[
E
f∼N

(
0,ΣL−1

α,α′
)[φ(f(xα))φ(f(x

′
α′))]

]
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Figure 4.1 : (a) Gaussian initialized network of NNGP. (b) Orthogonally initial-

ized network of NNGP. (c) Gaussian initialized network of NTK. (d) Orthogonally

initialized network of NTK. All the kernels are consistent with convergence rate of

O(n− 1
2 ).

Different from the independence property of Gaussian initialization, the entries

of the orthogonal matrix are correlated. We use the Stein method and exchangeable

sequence to overcome this difficulty and leave the detailed proof in the appendix. As

shown by Theorem 4.1, neural networks with Gaussian and orthogonal initialization

are in correspondence with an identical class of GPs.

4.3.2 The limit of the NTK at initialization

According to [36], the NTK of a network with Gaussian weights is proven to

converge with a probability to a deterministic kernel under the infinite-width limit

setting. We show that the NTK of an orthogonally initialized network is identical

to the one with Gaussian weights in the infinite-width limit.

Theorem 4.2. Consider a FCN of the form (4.1) at orthogonal initialization, with

a Lipschitz activation φ, and in the limit as the layers width tend to be infinity, the

NTK ΘL
0 (x, x

′), converges to a deterministic limiting kernel with high probability:

ΘL
0 (x, x

′) → ΘL
∞(x, x′)⊗ InL×nL

.
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Figure 4.2 : Changes of weights, empirical NTK on a three hidden layer Erf Network.

Solid lines correspond to empirical simulation and dotted lines are theoretical pre-

dictions, i.e. black dotted lines are 1/
√
n while red dotted lines are 1/n. (a) weight

changes on Gaussian initialized network. (b) weight changes on the orthogonal

initialized network. (c) NTK changes on both Gaussian and orthogonal networks.

The scalar kernel ΘL
∞(x, x′) is defined recursively by

Θ1
∞(x, x′) = Σ1(x, x′)

Θl
∞(x, x′) = σ2

wΣ̇
l(x, x′)Θl−1

∞ (x, x′) + Σl(x, x′),

where

Σ̇l (x, x′) = Ef∼N(0,Σ(l−1))

[
φ̇ (f (x)) φ̇ (f (x′))

]
,

For a CNN of the form (4.2) at orthogonal initialization, and in the limit as

channels to be infinity, the NTK ΘL
0 (x, x

′), converges to a deterministic limiting

kernel:

ΘL
0 (x, x

′) → ΘL
∞(x, x′)⊗ InL×nL

.
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The scalar kernel ΘL
∞(x, x′) is given recursively by

Θ1
α,α′∞(x, x′) = Σ1

α,α′(x, x′)

Θl
α,α′∞(x, x′) =

σ2
w

(2k + 1)

∑
β

[
Σ̇l

α+β,α′+β(x, x
′)

Θl−1
α+β,α′+β∞(x, x′) + Σl

α+β,α′+β(x, x
′)
]

ΘL
∞(x, x′) =

∑
α

δα,α′
[
Σ̇L

α,α′(x, x′)ΘL−1
α,α′∞(x, x′)

+ ΣL
α,α′(x, x′)

]

Remark 4.1. Since the Lipschitz function is differentiable besides a measure zero

set, then taking the expectation would not destroy the whole statement, which allows

for the ReLU activation.

From the theorem above, the NTK of CNNs propagate differently by averaging

over the NTKs regarding the neuron location of the previous layer. According to

Theorem 4.2, the NTK of an orthogonally initialized network converges to an iden-

tical kernel as Gaussian initialization. This suggests these two NTKs are equivalent

when the network structure (depth of L, filter size of 2k + 1, and activation of φ)

and choice of hyper-parameters (σ2
w and σ2

b ) are the same.

We use the Markov chain Monte Carlo (MCMC) estimate of the NNGP and

NTK in the finite-width for both Gaussian and orthogonal weights to investigate

how these kernels converge. We consider a random inputs generated by a normal

distribution. The number training samples is D = 20, and dimension of input is

n0 = 1024. The depth of networks is L = 2 with one hidden layer. We observe

the convergence of the NTK as the width of hidden layer nl increases, as shown in

Figure 6.2. For ntk-parameterizaiton of both Gaussian and orthogonal weights, we

formulate the convergence rate as O(1/
√
n). The same convergence rate for ntk-

parameterization for Gaussian weights has been observed by [37]. Besides, we show
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that the convergence rate of O(1/
√
n) is also valid for standard parameterization

for both Gaussian and orthogonal initialization in the appendix.

4.3.3 Neural Tangent Kernel during training

It is shown that the NTK of a network with Gaussian initialization stays asymp-

totically constant during gradient descent training in the infinite-width limit, pro-

viding a guarantee for loss convergence [36]. We find that the NTK of orthogonally

initialized networks have the same property, which is demonstrated below in an

asymptotic way,

Theorem 4.3. Assume that λmin(Θ∞) > 0 and ηcritical =
λmin(Θ∞)+λmax(Θ∞)

2
. Let

n = n1, ..., nL−1 be the width of hidden layers. Consider a FCN of the form (4.1)

at orthogonal initialization. The learning rate is chosen as η < ηcritical (or gradient

flow). Then we have following results for the changes of weights and the NTK,

sup
t≥0

‖θt − θ0‖2√
n

, sup
t≥0

∥∥∥Θ̂t − Θ̂0

∥∥∥
F
= O(n− 1

2 ), as n → ∞ . (4.9)

where Θ̂t are empirical kernels of networks with finite width.

For a CNN of the form (4.2) at orthogonal initialization. The learning rate is

chosen as η < ηcritical (or gradient flow). Then we have following results for the

changes of weights and the NTK,

sup
t≥0

‖θβ,t − θβ,0‖2√
n

, sup
t≥0

∥∥∥Θ̂t − Θ̂0

∥∥∥
F
= O(n− 1

2 ). (4.10)

Jacot et al. [36] proved the stability of NTK under the assumption of global

convergence of neural networks, while Lee et al. [37] provided a self-contained proof

of both global convergence and stability of NTK simultaneously. In this work, we

refer to the proof strategy from [37, 79] and extend it to the orthogonal case, as

shown in the proof.

We certificate this theorem empirically. We use three hidden layers ReLU net-

works with both Gaussian and orthogonal initialization trained by gradient descent.
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Figure 4.3 : Dynamics of full batch gradient descent on Gaussian and orthogonal

initialized networks of T = 104 steps. Orthogonal networks behaves similarly to

dynamics on the corresponding Gaussian networks, for loss and accuracy functions.

The dataset is selected from full CIFAR10 with D = 256, while MSE loss and tanh

fully-connected networks are adopted for the classification task. (a)(b) Network

with depth L = 3 and width of n = 400, with σ2
w = 1.5, and σ2

b = 0.01. (c)(d)

Network with depth L = 7 and width of n = 800, with σ2
w = 1.5, and σ2

b = 0.1.

While the solid lines stand for Gaussian weights, dotted lines represent orthogonal

initialization.

We choose a small learning rate of η = 1.0. The dataset in this experiment is from a

subset (20 samples) of the MNIST dataset. The variation of weights and empirical

NTK is measured after convergence (T = 215). As a result, we found that the both

first and last layer exhibit a change of 1/
√
n for weights while second and third layer

weights’ changes scale as 1/n. This observation is valid for both Gaussian and or-

thogonal weights, as shown in Figure 6.3(a)(b). In Figure 6.3(c), we find the change

in NTK is consistent with the prediction from our theory. However, we found that

the bound is closer to O(1/n) for both Gaussian and orthogonal networks. Note that

this is discrepancy has been solved in [40], where they prove that relative change of

empirical NTK of Gaussian initialized networks is bounded by O(1/n). Without loss

of generality, we infer that the proof framework is suitable for orthogonal weights.
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Figure 4.4 : Orthogonally initialized networks behave similarly to the networks with

Gaussian initialization in the NTK regime. (a)(b) We adopt the network architecture

of depth of L = 5, width of n = 800, activation of tanh function, with σ2
w = 2.0,

and σ2
b = 0.1. The networks are trained by SGD with a learning rate η = 10−3 with

T = 105. (c)(d) The hyper-parameters are: depth of L = 9, width of n = 1600,

activation of ReLU function, with σ2
w = 2.0, and σ2

b = 0.1. The networks are trained

by PMSProp with a learning rate η = 10−5 with T = 1.2 × 104 steps with a batch

size of 103 on MSE loss on MNIST. While the solid lines stand for Gaussian weights,

dotted lines represent orthogonal initialization.

4.4 Numerical experiments

Our theoretical results indicate that both orthogonal and Gaussian networks

should have the same convergence rate at initialization and during training by gra-

dient descent algorithm. This means that two different initializations have similar

dynamics for loss and accuracy function during training in the NTK regime. Thus,

it is now for us to prove our theories in practice. To this end, we perform a series of

experiments on MNIST and CIFAR10 dataset. All the experiments are performed

with the standard parameterization with TensorFlow.

In the first experiment, summarized in Figure 5.3, we make a comparison loss

and accuracy across two different initialization, i.e., Gaussian and orthogonal weights

using D = 256 samples from the CAFAR10 dataset. To reduce noise, we averaged
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Figure 4.5 : Learning dynamics measured by the optimization and generalization

accuracy on train set and test set. The depth is L = 100 and width is n = 400. Black

curves are the results of orthogonal initialization, and red curves are performances

of Gaussian initialization. (a) The training speed of an orthogonally initialized

network is faster than that of a Gaussian initialized network. (b) On the test set,

the orthogonally initialized network not only trains with a higher speed but also

ultimately converges to a better generalization performance.

the results over 30 different instantiations of the networks. Figures 5.3(a)(b) show

the results of the experiments on the L = 3, n = 400 network with tanh activation,

while figures 5.3(c)(d) display the results for the L = 7, n = 800 network with tanh

activation. All networks are optimized by the vanilla gradient descent. We choose

a small learning rate of η = 10−4 for T = 104 steps. Consistent with our theoretical

findings, the loss and accuracy of both networks are almost the same.

The second experiment is performed to compare the dynamics of two initializa-

tion with the result of training and testing on full CIFAR-10 and MNIST dataset,

as shown in Figure 5.4. In Figure 5.4(a)(b) we train networks of depth L = 5, width

n = 800, and activation tanh function, using SGD optimizer with a small learning

rate of η = 10−3 for T = 105 steps on CIFAR-10 dataset. In Figure 5.4(c)(d) we
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Figure 4.6 : The steps τ as a function of learning rate η of two lines of networks

on both train and test dataset. The results of orthogonal networks are marked by

dotted lines while those of Gaussian initialization are plotted by solid lines. Networks

with varying width, i.e. n = 400, 800, and 1600, on (a) train set and (b) test set;

Networks with varying depth, i.e. L = 50, 100, and 200, on (c) train set and (d) test

set. Different colors represent the corresponding width and depth. While curves

of orthogonal initialization are lower than those of Gaussian initialization with a

small learning step, the differences become more significant when we increase the

learning rate. Besides, the greater the depth of the network, the more significant

the difference in performance between orthogonal and Gaussian initialization.

train networks of depth L = 9, width n = 1600, and activation ReLU function, using

PMSProp [80] optimizer with a small learning rate of η = 10−5 for T = 1.2 × 104

steps on MNIST.

Having confirmed the consistency between training speed of networks with Gaus-

sian and orthogonal initialization in the NTK regime, our primary interest is to find

when orthogonal initialization accelerates the training speed for nonlinear networks.

We need to go beyond the NTK regime and experiment with an additional require-

ment for hyper-parameters according to the evidence that orthogonal initialization

increases learning speeds when the variance of weights and biases is set to achieve a

liner regime in nonlinear activation [24].
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Following [24], we set σ2
w = 1.05, and σ2

b = 2.01× 10−5, and φ(x) = tanh(x). We

then vary the width of network in one set of experiments as n = 400, 800 and 1600

when L = 50, and the depth in another as L = 50, 100 and 200, when n = 400.

All networks are trained by SGD optimizer on CIFAR-10 dataset. To evaluate the

relationship between the learning rate and training speed, we measure the steps τ

when it surpass a certain accuracy (in this work we use 0.25). Figure 4.6 shows the

steps of τ as a function of the learning rate of η for both the training and testing

sets.

The results in Figure 5.3 suggest a more quantitative analysis of the learning

process until convergence. We train networks listed in Figure 5.3 for 5 × 104 steps

with a certain learning rate. We show the results of a certain network of depth

L = 100 and width n = 400 trained with a learning rate η = 0.01 as a typical example

in Figure 4.5. The results of other network structures can be found in the appendix.

It is shown that the training speed of orthogonally initialized networks is faster than

that of Gaussian initialized networks outside the NTK regime. At the same time,

orthogonally initialized networks can finally obtain a higher generalization result.

We draw two main conclusions from these experiments. First, orthogonal ini-

tialization results in faster training speeds than Gaussian initialization in the large

learning rate phase with both train and test set. While it was shown that the network

with a large learning rate has many different properties compared to the network

trained with a small learning rate [81, 82], our finding can be seen as another effect

of networks trained with a large learning rate. Second, given the constant width, the

greater the depth of the network, the more significant the difference in performance

between orthogonal and Gaussian initialization. This phenomenon is consistent with

the theoretical result observed in deep linear networks [75]. The reason why orthog-

onally initialized networks can accelerating training may due to that it can achieve

tighter distribution of spectrum of NTK matrix and can be studied in the future



61

work.

4.5 Conclusion

This chapter study wide and nonlinear networks with orthogonal initialization

has proven, theoretically and empirically, that the NTK of an orthogonally-initialized

network across both FCN and CNN converges to the same deterministic kernel of a

network initialized from Gaussian weights in the finite-width limit. We find that with

an infinite-width network and a gradient descent (gradient flow) training scheme,

the NTK of an orthogonally initialized network does not change during training.

Further, it has the same order convergence rate from a finite to an infinite width

limit as that of a Gaussian initialized network. Our theoretical results suggest that

the dynamics of wide networks with orthogonal initialization behave similarly to

that of Gaussian networks with a small learning rate verified by experiments. This

observation implies that orthogonal initialization is only effective when not in the

lazy (NTK) regime. And it is consistent with the fact that the infinite-width anal-

ysis does not explain the practically observed power of deep learning [38, 76, 83].

Last, we find that orthogonal networks can outperform Gaussian networks in the

large learning rate and depth on both train and test sets.

4.6 Proof

This section is dedicated to proving the key results of this chapter, namely Theo-

rem 4.1, Theorem 4.2, and Theorem 4.3 based on a series of lemmas, which describe

the asymptotics of neural networks with orthogonal weights at initialization and

during training. We prove the Gaussian process behavior of the output function,

the limiting deterministic kernel for the orthogonal initialization, and its stability

during training in the first three sections.
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4.6.1 NNGP at Initialization

In the following proof, our unified hypothesis is that n1 = n2 = · · · = nL = n.

That is, {Wij}n×n is an orthogonal mapping. We first cite the following lemma from

[84], which describes how the post-activations of one-layer transform by multiplying

a random orthogonal matrix.

Lemma 4.1. Let (Wij)n×n be an orthogonal matrix randomly sampled by the Haar

measure of orthogonal matirx. Let B be a n × n matrix s.t Tr(BBT ) = n. Then

Tr(BW ) converges to a standard Gaussian distribution as the size of the matrix n

tends to infinity.

If we condition on the previous layer’s output, the next layer’s pre-activations

are Gaussian when the width tends to infinity. Therefore if we take the limit of

previous layers n1, . . . , nl−1 → ∞ sequentially, the pre-activation {hl
i} of the l-th

layer tends to an i.i.d. Gaussian distribution with respect to the input vector x.

However, our goal is to take all the previous layers’ width simultaneously. The main

technical difficulty is that we lose the independence between different index i in

the finite width when we implement orthogonal ensemble. Hence analysis based on

the central limit theorem for i.i.d random sequences would not work. Instead, we

follow the strategy in [78] to apply a modified version of the exchangeable random

sequence central limit theorem. Note that the Haar probability measure is invariant

under row and column permutations. This implies that permuting the output index

i won’t change the joint law of {hl
i(x)}1≤i≤nl

.

We will use the following adapted version of the central limit theorem for ex-

changeable sequences in [78].

Lemma 4.2. We let (Xn,i; i = 1, 2, ...) be an infinitely exchangeable process with zero

mean, finite variance σ2
n. In addition, we set a finite absolute third moment for this
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process. In particular, we assume that the variance has a limit limn→∞ σ2
n = σ2

∗.

Define

Sn =
1√
h(n)

h(n)∑
i=1

Xn,i , (4.11)

where h : N �→ N is a strictly increasing function. If the following conditions hold:

(a) En[Xn,1Xn,2] = o( 1
h(n)

)

(b) limn→∞ En[X
2
n,1X

2
n,2 = σ4

∗

(c) En[|Xn,1|3] = o(
√
h(n))

Then Sn converges in distribution to N (0, σ2
∗).

We restate Definition 7 of [78] as follows

Definition 4.1. The projections are defined in terms of a finite linear projection of

the l-th layer’s input values without the biases:

S(l)(L, α)[n] =
∑

(x,i)∈L
α(x,i)

[
hl
i(x)[n]− σbβ

l
i

]
(4.12)

where L ⊂ X ×N is a finite set of tuples for data set and indices of pre-activations,

with X = (x[i])∞i=1. α ∈ R
|L| is a vector parameterising the linear projection. The

suffix [n] indicates min{n1, . . . , nl}. Let n → ∞ means that the widths of 1 to l

layers tend to infinity simultaneously.

We reorganize the index and let

γl
j(L, α)[n] :=

∑
(x,i)∈L

α(x,i)W l
ijφ(h

l−1
i (x))[n]

σw√
nl−1

, (4.13)

so that

S(l)(L, α)[n] = 1√
nl−1(n)

nl−1∑
j=1

γl
j(L, α)[n] . (4.14)
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Since we impose Haar ensemble to {Wij}1≤i,j≤nl−1
, it’s invariant under the column

permutation. This implies that {γl
j(L, α[n])}1≤j≤nl−1

form an exchangeable sequence

with respect to the column index j.

To fit the three conditions of Lemma 4.2, we need the following lemma on the

moment calculation of orthogonal random matrices:

Lemma 4.3. If (Wij)n×n is an orthogonal matrix distributed according to Haar

measure, then E

[∏
W

kij
ij

]
is non-zero if and only if the number of entries from

each row and from each column is even. Second and fourth-degree moments are as

follows:

i. For all i, j,

E
[
W 2

ij

]
=

1

n
.

ii. For all i, j, r, s, α, β, λ, μ,

E
[
WijWrsWαβWλμ

]
= − 1

(n− 1)n(n+ 2)

[
δirδαλδjβδsμ + δirδαλδjμδsβ + δiαδrλδjsδβμ

+ δiαδrλδjμδβs + δiλδrαδjsδβμ + δiλδrαδjβδsμ

]
+

n+ 1

(n− 1)n(n+ 2)

[
δirδαλδjsδβμ + δiαδrλδjβδsμ + δiλδrαδjμδsβ

]
.

Remark 4.2. In our scaling setting, the second moment should multiply by n and

the fourth moment should multiply by n2.

Let Xn,i := γl
j(L, α)[n], then

En[Xn,iXn,j] = σ2
w · αT

En[(W
lφ(hl−1

i (x)))(W lφ(hj−1
i (x)))]

= σ2
w

∑
k

α2
kEn[(W

l
kiφ(h

l−1
i (x)))(W l

kjφ(h
j−1
i (x)))] (4.15)

Note that for i �= j,

E[WkiWkj] = 0
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we have

En[Xn,iXn,j] = 0.

Thus, condition a) of Lemma 4.2 is satisfied.

The rest of the proof goes by induction. We assume that for the l − 1-th layer,

the pre-activations tend to independent Gaussian processes as the previous layers

tend to infinite width simultaneously. Then we check that the moment conditions

b) and c) of Lemma 4.2 for the l-th layer under the inductive hypothesis and Lemma

4.3. We first calculate the covariance formula non-rigorously where we take the limit

sequentially. Since the recursion formula of the covariance doesn’t depend on how

we take the limit.

We impose an assumption on the nonlinear activation function φ(x):

Definition 4.2 (Lipschitz nonlinearity). A nonlinearity φ is said to obey the the

Lipschitz property if there exist c,m ≥ 0 such that the following inequality holds

|φ(x)| ≤ c+m|x| ∀x ∈ R . (4.16)

Proposition 4.1. For a network of depth L at initialization. We use a Lipschitz

activation φ which is defined in Definition 4.2, and as n1, ..., nl−1 → ∞ sequentially,

the pre-activations hl
i, for i = 1, ..., nl, tend to i.i.d centered Gaussian processes

specified by the covariance {Σl}1≤l≤L, where Σl is defined recursively by:

Σ1(x, x′) =
σ2
w

n0

xTx′ + σ2
b

Σl(x, x′) = σ2
wEf∼N(0,Σl−1)[φ(f(x))φ(f(x

′))] + σ2
b ,

taking the expectation with respect to a centered Gaussian process of covariance Σl−1



66

denoted by f . In the CNN case, Σl
α,α′ is defined recursively by:

Σ1
α,α′(x, x′) =

σ2
w

n0(2k + 1)

k∑
β=−k

xT
α+βx

′
α′+β + σ2

b

Σl
α,α′(x, x′) =

σ2
w

(2k + 1)

∑
β

E
f∼N

(
0,Σl−1

α+β,α′+β

)[φ(f(xα+β))φ(f(x
′
α′+β))] + σ2

b ,

where α is the convolution index.

Proof. We show the result in the framework of NTK parameterization, while the

argument for standard parameterization can be derived in the same way. In the

FCN case, When L = 1, there are no hidden layers and h1
i has the form:

h1
i =

n0∑
j=1

σw√
n0

W 1
ijx

0
j + σbβ

1
i .

Then we check the variance Σ1 of output layer hl
i. By Lemma 4.3,

E
[
W 1

ij

]
= 0, E

[
W 1

ijW
1
kl

]
=

1

n0

[n0δikδjl] = δikδjl.

We note that the fraction 1
n0

is from the scaling of the orthogonal distribution, while

the term n0 comes from the initialization. Thus we can compute the covariance of

the first layer explicitly:

Σ1 =E
[
h1
ih

1
i

]
= E
[
(

n0∑
j=1

σw√
n0

W 1
ijx

0
j + σbβ

1
i )(

n0∑
j′=1

σw√
n0

W 1
ij′x

0
j′ + σbβ

1
i )
]

=
σ2
w

n0

E
[ n0∑

j=1

n0∑
j′=1

W 1
ijx

0
jW

1
ij′x

0
j′
]
+ σ2

b =
σ2
w

n0

xTx+ σ2
b .

The next step is to use the induction method. Consider an l-network as the

function mapping the input to the pre-activations hl
i. The induction hypothesis

gives us that as n1, ..., nl−2 → ∞ sequentially, the pre-activations hl−1
i tend to i.i.d

Gaussian processes with covariance Σl−1. Then the inputs of the l-th layer are

governed by:

hl
i =

σw√
nl−1

nl−1∑
j=1

W l
ijx

l−1
j + σbβ

l
i,
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where xl−1
j := φ(hl−1

j ). When the input x = x′, let

B =

√
nl−1∑nl−1

i=1 (xl−1
i )2

⎡
⎢⎢⎢⎢⎣
xl−1
1 0 · · · 0

...
... . . . ...

xl−1
nl−1

0 · · · 0

⎤
⎥⎥⎥⎥⎦ ,

then tr(BBT ) = nl−1. By Lemma 4.1, we have that limn→∞
∑nl−1

j=1
1√
nl−1

W l
ijx

l−1
j

tends to N (0, limn→∞
∑nl−1

i=1 (xl−1
i )2

nl−1
). As a result, {hl

i} are centered Gaussian variables.

With the help of Lemma 4.3, we get the following covariance expression between

two input data x and x′:

Σl(x, x′)[nl−1] =
σ2
w

nl−1

∑
j

φ(hl−1
j (x))φ(hl−1

j (x′)) + σ2
b .

Since hl−1
j , hl−1

k are independent for j �= k by the inductive hypothesis, we have

V ar(Σl(x, x′)) =
σ4
w

n2
l−1

∑
j

E
[
φ(hl−1

j (x))2φ(hl−1
j (x′))2

]− σ4
w

n2
l−1

∑
j

E
[
φ(hl−1

j (x))φ(hl−1
j (x′))

]2
.

By the symmetry of the underlying index j, we can choose index 1 as a representative:

V ar(Σl(x, x′)) =
σ4
w

nl−1

E
[
φ(hl−1

1 (x))2φ(hl−1
1 (x′))2

]− σ4
w

nl−1

E
[
φ(hl−1

1 (x))φ(hl−1
1 (x′))

]2
.

Since E
[
φ(hl−1

1 (x))2φ(hl−1
1 (x′))2

]−E
[
φ(hl−1

1 (x))φ(hl−1
1 (x′))

]
is bounded, by the Cheby-

shev’s inequality, the covariance kernel tends in probability to its expectation,

Σl(x, x′) := lim
nl−1→∞

Σl(x, x′)[nl−1] = σ2
wEf∼N(0,Σl−1)[φ(f(x))φ(f(x

′))] + σ2
b .

We still need to verify the independence of hl
i, hl

j for i �= j. This follows from

computing the covariance between hl
i, hl

j:

lim
nl−1→∞

Cov(hl
i(x)h

l
j(x

′)) =
∑
k

∑
l

W l
ikφ(h

l−1
k (x))W l

jlφ(h
l−1
l (x′))

Note that we ignore the bias bli, since they are independent with the weight param-

eters {W l
ij}. By Lemma 4.3,

E
[
WikWjl

]
= 0, for i �= j.
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Therefore we have,

lim
nl−1→∞

Cov(hl
i(x)h

l
j(x

′)) = 0.

Since we know that as nl−1 → ∞, hl
i(x), hl

j(x
′) are Gaussian variables, zero covari-

ance means they are independent.

In the CNN case, we have an extra convolution index α. Since E[(W l
α)(W

l
α′)] = 0

for α �= α′, we have

Σl
α,α′(x, x′) =

σ2
w

(2k + 1)

∑
β

E
f∼N

(
0,Σl−1

α+β,α′+β

)[φ(f(xα+β))φ(f(x
′
α′+β))] + σ2

b .

With the explicit covariance formula in hand, we can prove by induction that the

limiting covariance of the finite width output functions match with the covariance

of the infinite Gaussian processes obtained above.

Proposition 4.2. Let σ2(l,L, α)[n] be the variance of the random variable γ(l)
j (L, α)[n],

then

lim
n→∞

σ2(l,L, α)[n] = σ2(l,L, α)[∞] , (4.17)

where

σ2(l,L, α)[∞] = αT [Σl(x, x′)− σ2
b ]α. (4.18)

Proof.

σ2(l,L, α)[n] = σ2
w

nl−1

αT
E[W lφ(hl−1

1 )[W lφ(hl−1
1 )T ]α.

By Lemma 4.3 and independence form the layer l with (l − 1) layer, we have

E[W l
i1φ(h

l−1
1 )[W l

j1φ(h
l−1
1 )T ] =

σ2
w

nl−1

δ(i = j)E[φ(hl−1
1 (xi)[n])φ(h

l−1
1 (xj)[n])].



69

Once we prove that φ(hl−1
1 (xi)[n])φ(h

l−1
1 (xj)[n]) is uniformly integrable with respect

to n, the proof goes exactly the same as the proof of Lemma 17 in [78]. To build

the uniform integrability, we need the Lipschitz nonlinearity property of φ.

E[φ(hl−1
1 [n]i)φ(h

l−1
1 [n]j)] ≤ E[(c+m|hl−1

1 (xi)[n])| · (c+m|hl−1
1 (xj)[n])|].

To claim we have a uniform bound for the right hand side, it suffices to show

that E[|hl−1
1 (xi)[n]|] and E[|hl−1

1 (xi)[n]h
l−1
1 (xj)[n]|] are uniformly bounded. By the

boundedness of Pearson correlation coefficient, we are down if

E[|(hl−1
1 (x)[n])|2]

is uniformly bounded as n → ∞. This can be down by induction.

Since {Wij} is a scaled orthogonal matrix,

nlE[|hl
1(x)[n]|2 = E[‖hl

1:nl
(x)[n]‖2]

= E[E[‖hl
1:nl

(x)[n]‖2|hl−1
1:nl−1

(x)[n]]

= σ2
wE[‖φ(hl−1

1:nl−1
(x)[n])‖2]

Applying the lipschitz nonlinearity property, we get

E[‖φ(hl−1
1:nl−1

(x)[n])‖2] = E[

j=n∑
j=1

φ2(hl−1
j (x)[n])] (4.19)

≤ E[

j=n∑
j=1

(c+m|hl−1
j (x)[n]|)2]. (4.20)

Each term in the expansion of the square is bounded by E[|hl−1
j (x)[n]|2], which is

uniformly bounded by the inductive hypothesis. According to the fact that the

number of terms is probably of order n, thus E[|hl
1(x)[n]|2 is uniformly bounded.

Therefore, we can safely change the order of limit as in the proof of Lemma 17 in

[78].

Remark 4.3. Another way to bound the E[|hl
1(x)[n]|2 is to apply Lemma 4.3 to the
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recursion relation directly:

E[|hl
1(x)[n]|2] =

σ2
w

n
E[
∑
j

W1jφ(h
l−1
j (x)[n])]2.

To verify condition (2) and (3) of Lemma 4.2 under the inductive hypothesis, we

go through the same procedure as the proof of lemmas 15 and 16 in [78]. We neglect

the detail and conclude that by Lemma 4.3 and the inductive hypothesis,

S(l)(L, α)[n] = 1√
nl−1(n)

nl−1∑
j=1

γl
j(L, α)[n] (4.21)

P−→ N (0, σ2[∞]). (4.22)

Since it holds for arbitary linear functional α, we have shown that {hl
i(x)} converge

to independent Gaussian processes, where the covariance is specified by the recursion

formula in Proposition 1. In the CNN case, adding the convolution index α won’t

change the symmetry of index j and Lemma 4.2 can be extended to CNN in the

same way without any nontrivial change. Therefore we have simultaneously proved

The theorem 4.1 for both FNN and CNN.

4.6.2 NTK at Initialization

Proof. We show the result in the framework of NTK parameterization, while the

argument for standard parameterization can be derived in the same way with a

similar result, see the details for the Gaussian initialization in [77]. For the input

layer L = 1, taking the derivative with respect to W 1
ij, b1j , we have

Θ1
kk′(x, x

′) =
σ2
w

n0

n0∑
i=1

n0∑
j=1

xix
′
iδjkδjk′ + σ2

b

n0∑
j=1

δjkδjk′

=
σ2
w

n0

xTx′δkk′ + σ2
bδkk′ .

From (l−1)-th layer to l-th layer, by the inductive hypothesis, as n1, . . . , nl−2 → ∞,

the pre-activations hl−1
i are i.i.d Gaussian distributions. The covariance Σl−1 and
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Θl−1
ii′ (x, x

′) converges to:

(∂θh
l−1
i (x))T (∂θh

l−1
i′ (x′)) → Θl−1

∞ (x, x′)δii′ .

Now we calculate the NTK for l layer network and divide the parameters into two

parts. The first part only involves the parameters of the l-th layer, and the other is

the collection of parameters from previous 1, . . . , l − 1 layers. The first part of the

NTK is given by

αl := ∂wlhl
k(x) · ∂wlhl

k(x
′)+ ∂blh

l
k(x) · ∂blhl

k(x
′) =

∑
i

σ2
w

nl−1

φ(hl−1
i (x))φ(hl−1

i (x′))+σ2
b .

Note that in the Gaussian initialization,

φ(hl−1
i (x))φ(hl−1

i (x′))

is independent of

φ(hl−1
j (x))φ(hl−1

j (x′)),

for i �= j before taking the nl−1 → ∞ limit. Thus for the 1
nl−1

scaling, we already

observe that
∑

i
σ2
w

nl−1
φ(hl−1

i (x))φ(hl−1
i (x′)) tends to its mean by the classical law

of large numbers. If we take the limit sequentially, since hl−1
i (x) and hl−1

j (x) are

independent Gaussian by the previous section, we know that it tends to Σl(x, x′) for

the same reason.

If we want to know how αl behaves when the width tends to infinity simultane-

ously, the nonlinear activation would break the non-asymptotic independence. So

we first assume that we work in the linear network category. Then

V ar[αl[n]] = (
σ2
w

nl−1[n]
)2V ar[

∑
i

hl−1
i (x) · hl−1

i (x′)]

= (
σ2
w

nl−1[n]
)2(

n∑
i=1

V ar[hl−1
i (x)hl−1

i (x′)]

+
∑
i �=j

Cov[hl−1
i (x)hl−1

i (x′), hl−1
j (x)hl−1

j (x′)]),
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where

Cov[hl−1
i (x)hl−1

i (x′)hl−1
j (x)hl−1

j (x′)] =E[hl−1
i (x)hl−1

i (x′), hl−1
j (x)hl−1

j (x′)]

− E[hl−1
i (x)hl−1

i (x′)]E[hl−1
j (x)hl−1

j (x′)].

By Lemma 4.3,

E[hl−1
i hl−1

i ] =
σ2
w

nl−2

nl−2∑
k=1

E[φ2(hl−2
k )].

The right-hand side is independent of index i as expected.

E[hl−1
i (x)hl−1

i (x′), hl−1
j (x)hl−1

j (x′)] = (
σ2
w

nl−2[n]
)2

n2
l−2(nl−2 + 1)

(n− 1)n(n+ 2)
(

nl−2∑
k=1

E[φ2(hl−2
k )])2

+ (
σ2
w

nl−2[n]
)2

n3
l−2(nl−2 − 1)

(n− 1)n(n+ 2)
E[φ2(hl−2

1 )φ2(hl−2
2 )]

Thus

Cov[hl−1
i (x)hl−1

i (x′)hl−1
j (x)hl−1

j (x′)] ∼ O(
1

nl−2[n]
).

This implies that

V ar[αl[n]] ∼ O(
1

n
).

Let μn denote the mean of αl[n], then by Chebyshev’s inequality, for ∀ε > 0,

P (|αl[n]− μn| ≥ ε) ∼ O(
1

n
).

Since limn→∞ μn = Σl, we have

P (|αl[n]− Σl| ≥ ε) ∼ O(
1

n
),

for n large enough. In conclusion, we have αl[n] tends to Σl(x, x
′).

In the non-linear activation case, if the activation satisfies definition 4.2, we still

have the asymptotic result

V ar[αl[n]] → 0.

Therefore, by Chebyshev’s inequality, we get

P (|αl[n]− Σl| ≥ ε) → 0,
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for ∀ ε > 0.

For the second part, denoting the parameters of the previous l − 1 layers as θ̃,

we have

∂θ̃h
l
k(x) =

σw√
nl−1

nl−1∑
i=1

∂θ̃h
l−1
i (x)φ̇(hl−1

i (x))W l
ik.

By the induction hypothesis, the NTK of (l−1)-layer networks Θl−1
kk′ (x, x

′) converges

to a diagonal kernel as n1, . . . , nl−2 → ∞. we denote the second part of NTK by,

αl−1[n] :=
σ2
w

nl−1

nl−1∑
i,i′=1

Θl−1
ii′ (x, x

′)φ̇(hl−1
i (x))φ̇(hl−1

i′ (x′))W l
ikW

l
i′k′ .

Note that {W l
ikW

l
i′k′} is independent of Θl−1

ii′ (x, x
′)φ̇(hl−1

i (x))φ̇(hl−1
i′ (x′)), this allows

us to prove the result of convergence by induction.

By Lemma 4.3,

E[αl−1[n]] =
σ2
w

nl−1

δkk′δii′

nl−1∑
i,i′=1

E[Θl−1
ii′ (x, x

′)φ̇(hl−1
i (x))φ̇(hl−1

i′ (x′))],

V ar[αl−1[n]] = E
[
(αl−1 − E[αl−1])

2
]
=

σ4
w

n2
l−1

E
[( nl−1∑

i,i′=1

Θl−1
ii′ (x, x

′)

φ̇(hl−1
i (x))φ̇(hl−1

i′ (x′))(W l
ikW

l
i′k′ − δkk′δii′)

)2]
.

Expanding the square and note that

E[WikWi′k′WjkWj′k′ ] = 0,

if i �= j �= i′ �= j′. This implies that nl(nl−1− 1)(nl−1− 2)(nl−1− 3) number of terms

in the expansion are zero. Now we reorganize the left terms into three groups:

• i �= i′:

The only terms in the expansion that survive after taking the expectation are

of the form: WikWi′k′Wik′Wi′k. The expectation is separated into

E[Θl−1
ii′ (x, x

′)φ̇(hl−1
i (x))φ̇(hl−1

i′ (x′))]2 · E[WikWi′k′Wik′Wi′k].



74

There are O(nl−1 · (nl−1 − 1)) such terms in the expansion, by Lemma 4.3,

E[WikWi′k′Wik′Wi′k] ∼ O(1).

We conclude that

σ4
w

n2
l−1

E
[(∑

i �=i′
Θl−1

ii′ (x, x
′)φ̇(hl−1

i (x))φ̇(hl−1
i′ (x′))(W l

ikW
l
ik′)
)2]

∼ O(E[Θl−1
ii′ (x, x

′)φ̇(hl−1
i (x))φ̇(hl−1

i′ (x′))]2).

• (i = i′) �= (j = j′):

We need to estimate a fourth order moment

γ := E
[
(W l

ikW
l
ik′ − δkk′)(W

l
i′kW

l
i′k′ − δkk′)

]
.

If k = k′, by Lemma 4.3,

γ = − 2n2
l−1

(nl−1 − 1)nl−1(nl−1 + 2)
+

(nl−1 + 1)n2
l−1

(nl−1 − 1)nl−1(nl−1 + 2)
− 1 ∼ O(

1

nl−1

).

If k �= k′,

E
[
(WikWik′Wi′kWi′k′)

]
= − n2

l−1

(nl−1 − 1)nl−1(nl−1 + 2)
∼ O(

1

nl−1

).

In each case, we get that γ ∼ O( 1
nl−1

). Thus we have

σ4
w

n2
l−1

E
[ nl−1∑

i=1

nl−1∑
j=1

(
Θl−1

ii Θl−1
jj (x, x′)φ̇2(hl−1

i (x))φ̇2(hl−1
j (x′))

)
(
W l

ikW
l
ik′ − δkk′

)(
W l

jkW
l
jk′ − δkk′

)] ∼ O(
1

nl−1

).

• (i = i′) = (j = j′): We have

E
[
(W l

ikW
l
ik′ − δkk′)

2
]
= E[W l

ikW
l
ik′ ]

2 − δkk′ .

Note that the weights are drawn from the NTK parameterization, and by

Lemma 4.3,

E[(W l
ik)

2(W l
ik′)

2] ∼ O(1).
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Therefore the number of terms with the same index i are of order O( 1
nl−1

) and

we get

σ4
w

n2
l−1

E
[ nl−1∑

i=1

(
Θl−1

ii (x, x′)φ̇(hl−1
i (x))φ̇(hl−1

i (x′))
)2(

W l
ikW

l
ik′ − δkk′

)2] ∼ O(
1

nl−1

).

Combing the three groups, we have

V ar[αl−1[n]] ∼ O(
1

nl−1

) +O(E[Θl−1
ii′ (x, x

′)φ̇(hl−1
i (x))φ̇(hl−1

i′ (x′))]2).

By the inductive hypothesis,

μ := lim
nl−1→∞

E[αl−1[n]] = σ2
wΘ

l−1
∞ (x, x′)Σ̇l (x, x′) δkk′ .

By Chebyshev’s inequality,

P (|αl−1[n]− μ| ≥ ε) ≤ 2

ε2
(O(

1

nl−1

) +O(E[Θl−1
ii′ (x, x

′)φ̇(hl−1
i (x))φ̇(hl−1

i′ (x′))]2)).

By the inductive hypothesis and the integrability result from the last section,

E[Θl−1
ii′ (x, x

′)φ̇(hl−1
i (x))φ̇(hl−1

i′ (x′))]2
nl−1→∞−→ 0.

Thus we obtain that second part of the NTK tends to σ2
wΘ

l−1
∞ (x, x′)Σ̇l(x, x′) if we

let the width go to infinity simultaneously.

Combining the two parts, we have

Θl
∞(x, x′) = σ2

wΘ
l−1
∞ (x, x′)Σ̇l(x, x′) + Σl(x, x′).

In the CNN case, when L = 1,

Θl
α,α′(x, x′) =

σ2
w

n0(2k + 1)

∑
β

xT
α+βxα′+β + σ2

b .

Here we omit the subscript ∞ for simplicity. Assume the NTK formula is true for

the layer of l − 1, then the first part of the NTK in layer l is given by

αL → (
σ2
w

n0(2k + 1)

∑
β

E[φ(hl−1
α+β(x))φ(h

l−1
α′+β(x

′))] + σ2
b ),
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by the same moment argument as before. For the second part, we still have

Θl−1
(i,α+β),(i′,α′+β)(x, x

′) = δii′Θ
l−1
α+β,α′+β(x, x

′).

Thus, for the second part,

∂θ̃h
l
k,α(x) · ∂θ̃hl

k,α′(x) → σ2
wΘ

l−1
α+β,α′+β(x, x

′)Σ̇l
α+β,α′+β(x, x

′),

since E[WαWα′ ] = 0 for α �= α′. We conclude that

Θl
α,α′∞(x, x′) =

σ2
w

(2k + 1)

∑
β

Σ̇l
α+β,α′+β(x, x

′)Θl−1
α+β,α′+β∞(x, x′) + Σl

α+β,α′+β(x, x
′).

Remark 4.4. Note that the proof for the NNGP and NTK behavior is mainly based

on the moment calculation in Lemma 4.3. Let’s take the second moment as an

example. E[WijWrs]can be seen as the correlation between one normalized vector and

another normal vector sampled uniformly from the orthogonal complement. From

this point view, the moment is independent of the matrix structure, and the results

of Lemma 3 can be extended to the case where (Wij)n×m satisfies

WW T = I, n ≤ m.

Thus, we believe that the previous theorems also hold without assuming that the

weight matrix is a square matrix.

4.6.3 NTK during Training

We can give an upper bound for the change of parameters and NTK at wide

width. We fist prove the local Lipschitzness of J(θ) := ∇θh
L(θ) ∈ R

(DnL)×|θ|, where

|θ| is the number of parameters. Once we have the upper bound of J(θ), the stability

comes from proving that the difference is small of the NTK form time t to time t+1.

As it has been observed in [37], this step is universal of the network structure and

also the initialization. Thus, our primary target is construct local Lipschitzness of
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orthogonal initialization. The Lemma below illustrates the local Lipschitzness of

J(θ) without scale condition for the input layer.

Lemma 4.4. (local Lipschitzness of J(θ)) ∃K > 0 s.t for every c > 0, ∃nc s.t for

n ≥ nc, we have the following bound:

||J(θ)− J(θ̂)||F ≤ K||θ − θ̂||2
||J(θ)||F ≤ K,

for all |θ − θ̂| < c
n

Proof. We prove the result by induction for the standard parameterization, while

the proof for ntk parameterization can be derived in the same way. For l ≥ 1, let

δl(θ, x) := ∇hl(θ,x)h
L(x) ∈ R

nLn

δl(θ,X) := ∇hl(θ,X)h
L(X) ∈ R

(nLD)×(nLD)

Let θ = {W l, bl}, θ̂ = {Ŵ l, b̃l} be two points in B(θ0,
c
n
). Since the initialization is

to choose an orthogonal matrix, i.e. W TW = σ2
wI. If the width n is large enough,

we have,

||W l||, ||Ŵ l|| ≤ 3σw for all l.

As in the original proof for Gaussian initialization [37], there is a constant K1,

depending on D, σ2
w, σ2

b , and number of layers L s.t with high probability over

orthogonal initialization,

||xl(θ,X)||2, ||δl(θ,X)||2 ≤ K1

||xl(θ,X)− xl(θ̂, X)||2, ||δl(θ,X)− δl(θ̂, X)||2 ≤ K1||θ̂ − θ||2

Note: there is a scaling factor 1√
n

along with ||xl(θ,X)||2 in the Gaussian case.



78

Decomposing the J(θ) into two parts, we have

||J(θ)||2F =
∑
l

||∇W lhL(θ)||2F + ||∇blL
h(θ)||2F

=
∑
l

∑
x∈X

||xl−1(θ, x)δl(θ, x)T ||2F + ||δl(θ, x)T ||2F

≤
∑
l

∑
x∈X

(1 + ||xl−1(θ, x)δl(θ, x)T ||2F ) · ||δl(θ, x)T ||2F

≤
∑
l

(1 +K2
1)
∑
x

||δl(θ, x)T ||2F

≤ 2LK4
1

and similarly,

||J(θ)− J(θ̃)||2F =

=
∑
l

∑
x∈X

||xl−1(θ, x)δl(θ, x)T − xl−1(θ̃, x)δl(θ, x)T ||2

+ ||xl−1(θ̃, x)δl(θ, x)T − xl−1(θ̃, x)δl(θ̃, x)T ||2 + ||δl(θ, x)T − δl(θ̃, x)T ||2

≤
∑
l

2K4
1 ||θ̃ − θ||2 +K2

1 ||θ̃ − θ||2

≤ 3K4
1L||θ̃ − θ||2

Note: In our setting, since we want the orthogonal and Gaussian initialization

have the same NTK, we need to scale the initialization for the input layer.

If we impose this condition, then,

||W 1||op, ||W̃ 1||op ≤ 3σw

√
n√
n0

.
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Chapter 5

Implicit bias of deep linear networks in the large
learning rate phase

5.1 Introduction

Deep neural networks have been responsible for a variety of breakthroughs and

other successes in both supervised and unsupervised learning. And, even after many

decades of study, our understandings of the theoretical mechanisms that underlie the

power of deep learning are continually being refined and expanded by researchers.

Remarkably, recent progress in deep learning theory has shown that optimizing an

over-parameterized network with gradient descent can result in very low or even zero

training errors [36, 41, 42, 85, 43]. Meanwhile, these over-parameterized networks

tend to generalize well to the test set, in a phenomenon known as double descent

[86].

Yet, with far more parameters than training samples, or even input dimensions,

how can an over-parameterized network possibly withstand the overfitting problem?

Among the most promising explanations for this question is implicit bias [52] also

referred to as implicit regularization [87]. Specifically, a large body of works studying

exponential tailed losses, including logistic and exponential losses, have reported that

strong regularization results using maximum margin [52, 53, 54, 60, 61].

Notably, all theoretical results associated with implicit bias are based on the

assumption that the learning rate is sufficiently small. At larger learning rates,

our theoretical understandings of the properties of optimization and generalization

are limited. One thing we do know from real-world observations is that adopting
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a learning rate annealing scheme with a large initial setting often performs better

than the methods prescribing a steady small rate [7, 88]. Lewkowycz et al. [81]’s

observation that the local curvature of the loss landscape drops significantly with

large learning rates shed some light on this issue, offering a promising direction

to explore the training process at a large learning rate typically delivers the best

performance in practice.

Hence, following the threads of [81], we sought to characterize training with

gradient descent at three different learning rate phases. Treating each rate as a

learning scenario or phase, the three are: (i) the lazy phase η < η0, where the learning

rate is small. In these scenarios, the dynamics of the neural network are linearized,

and the model converges to a nearby point in parameter space. Also known as lazy

training, this case is characterized by the neural tangent kernel [36, 38, 39, 40, 41, 42].

(ii) the catapult phase η0 < η < η1, where the loss initially grows but then drops

until it converges to the solution with a flatter minimum. (iii) the divergent phase

η > η1, where the loss diverges and the model will not train.

The training behaviors in these three phases have been reported in regression

settings with mean squared error (MSE) loss. However, it remains unclear whether

these same results extend to cross-entropy (logistic) loss. To fill this gap, we have

examined the effects of a large learning rate on deep linear networks with both

logistic loss and exponential loss. What we find is that, unlike with MSE loss, the

characteristics of gradient descent with logistic loss at a large learning rate depend

on the separation conditions of the data. The main contributions of this chapter

include:

• A theoretical examination characterizing the dynamics of gradient descent

with logistic and experiential losses given different learning rates and data

separability conditions. We find that the network ultimately finds a flatter
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minimum in the catapult phase with a large learning rate when the data is

non-separable. Such three learning rate phases do not apply to the linearly

separable data since the optimum is approaching infinity.

• A theoretical analysis that ranges from a linear predictor to a hidden layer

network. By comparing the behavior of convex (Theorem 5.1) and non-convex

optimizations (Theorem 5.2), we show that the catapult phase is a phenomenon

unique to non-convex optimization.

• Experiments with practical classification tasks that show the best generaliza-

tion results tend to occur in the catapult phase. Given that infinite-width

analysis (i.e., lazy training) typically works to the detriment of generalization

and does not explain the practically-observed power of deep learning [89, 76],

our results partially fill this gap.

5.2 Background

A large learning rate with SGD training is often set initially to achieve good

performance empirically in deep learning [5, 7, 88]. Existing theoretical explanation

of the benefit of the large learning rate contributes to two classes. One is that a

large learning rate with SGD leads to flat minima [90, 91, 81] and the other is that

the large learning rate acts as a regularizer [82]. Especially, Lewkowycz et al. [81]

find a large learning rate phase can result in flatter minima without the help of

SGD for mean squared loss. In this work, we ask whether large learning rate still

has this advantage for logistic loss. We expect this loss function to have a different

outcome because the logistic loss is sensitive to the separable property of the data

and the loss surface is quite different from that of MSE. For example, it is shown

that gradient descent can learn less over-parameterized neural networks with logistic

loss than mean squared loss based on separability [92].
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5.2.1 Setup

Suppose there is a dataset {xi, yi}ni=1, with inputs xi ∈ R
d and binary labels

yi ∈ {−1, 1}. The risk of classification task follows the form,

L =
1

n

n∑
i=1

�(f(xi)yi), (5.1)

where f(xi) is the output of network regarding the input xi, and � is the loss. In

this work, we study two exponential tail losses which are exponential loss �exp(u) =

exp(−u) and logistic loss �log(u) = log(1 + exp(−u)). The reason we look at these

two loss together is that they show the same phenomenon under gradient descent

on a linearly separable data set [52]. We adopt gradient descent optimization with

learning rate η to minimize empirical risk,

w(t+ 1) = w(t)− η∇L(w(t)) = w(t)− η
n∑

i=1

�′(f(xi)yi). (5.2)

5.2.2 Separation Conditions of Dataset

It is known that landscapes of cross-entropy loss on linearly separable data and

non-separable data are different. Thus the separation condition plays an important

role in understanding the dynamics of gradient descent in terms of learning rate.

To build towards this, we define the two classes of separation conditions and review

existing results for loss landscapes of a linear predictor in terms of separability.

Assumption 5.1. The dataset is linearly separable, i.e., there exists a weight w∗

so that the dataset can be separated by a linear predictor.

Assumption 5.2. The dataset is non-separable, i.e., there is no weight w∗ so that

the dataset can be separated by a linear predictor.

Linearly separable. Consider the data under assumption 5.1, one can examine

that the loss of a linear predictor, i.e., f(x) = wTx, is β-smooth convex. On the
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other hand, wecan say that the global minimum is at infinity. The implicit bias

of gradient descent training on a network with a small learning rate (η < 2
β
) in

this phase has been studied by [52]. They show the network’s output function

can converge towards the maximum margin (hard margin SVM) solution, which

implies the gradient descent method itself will find a proper solution with an implicit

regularization instead of picking up a random solver. If one increases the learning

rate until it exceeds η < 2
β
, then the result of converging to maximum margin will

not be guaranteed, though loss can still converge to a global minimum.

Non-separable. Suppose we consider the data under assumption 5.2, which is

not linearly separable. In this case, we can find that the empirical risk of a linear

predictor on this data is α-strongly convex, and the global minimum is finite. In

this case, given an appropriate small learning rate (η < 2
β
), the gradient descent

converges towards the unique finite solution. When the learning rate is large enough,

i.e., η > 2
α
, we can rigorously show that gradient descent update with this large

learning rate leads to risk exploding or saturating.

We formally construct the relationship between loss surfaces and learning dy-

namics of gradient descent with respect to different learning rates on the two classes

of data through the following proposition,

Proposition 5.1. For a linear predictor f = wTx, along with a loss � ∈ {�exp, �log}.

1 Under Assumption 5.1, the empirical loss is β-smooth. Then,

L(wt+1)− L(wt) ≤ 0, lim
t→∞

L(wt) = 0, with η <
2

β

2 Under Assumption 5.2, the empirical loss is β-smooth and α-strongly convex,
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where α ≤ β. Then,

L(wt+1)− L(wt) ≤ 0, lim
t→∞

L(wt) = G0, with η <
2

β

L(wt+1)− L(wt) ≥ 0, lim
t→∞

L(wt) = G1, with η >
2

α

where G0 is the value of a global minimum while G1 = ∞ for exploding situa-

tion or G0 < G1 < ∞ when saturating.

5.3 Theoretical results

5.3.1 Convex Optimization

The Hessian of the logistic and exponential loss with respect to the linear pre-

dictor is non-constant. Moreover, the estimated β-smooth convexity and α-strongly

convexity vary across different finite bounded subspace. As a result, the learning

rate threshold in Proposition 5.1 is not detailed in terms of optimization trajectory.

However, we can obtain more elaborate thresholds of the learning rate for linear

predictor by considering the degeneracy assumption:

Assumption 5.3. The dataset contains two data points where they have same fea-

ture and opposite label, that is

(x1 = 1, y1 = 1) and (x2 = 1, y2 = −1).

We call this assumption the degeneracy assumption since the features from op-

posite label degenerate. Without loss of generality, we simplify the dimension of

data and fix the position of the feature. Note that this assumption can be seen as

a special case of non-separable data. There is a work theoretically characterizing

general non-separable data [54], and we leave the analysis of this setting for the

large learning rate to future work. Thanks to the symmetry of the risk function in
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space at the basis of degeneracy assumption, we can construct the exact dynamics

of empirical risk with respect to the whole learning rate space.

Theorem 5.1. For a linear predictor f = wTx equipped with exponential (logistic)

loss under assumption 5.3, there is a critical learning rate that separates the whole

learning rate space into two (three) regions. The critical learning rate satisfies

L′(w0) = −L′(w0 − ηcriticalL′(w0)),

where w0 is the initial weight. Moreover,

1 For exponential loss,

η < ηcritical : L(wt+1)− L(wt) < 0, lim
t→∞

L(wt) = 1;

η = ηcritical : L(wt+1)− L(wt) = 0, lim
t→∞

L(wt) = L(w0);

η > ηcritical : L(wt+1)− L(wt) > 0, lim
t→∞

L(wt) = ∞.

2 For logistic loss,

η < 8 : L(wt+1)− L(wt) < 0, lim
t→∞

L(wt) = log(2);

8 ≤ η < ηcritical : L(wt+1)− L(wt) ≤ 0, lim
t→∞

L(wt) = L(w∗) < L(w0);

η ≥ ηcritical : L(wt+1)− L(wt) ≥ 0, lim
t→∞

L(wt) = L(w∗) ≥ L(w0).

where w∗ satisfies −w∗ = w∗ − η
2

sinh(w∗)
1+cosh(w∗) .

We demonstrate the gradient descent dynamics with a degenerate and non-

separable example.

Example 5.1. Consider optimizing L(w) with dataset {(x1 = 1, y1 = 1) and (x2 =

1, y2 = −1).} using gradient descent with constant learning rates. Figure 5.1(a,c)

show the dependence of different dynamics on the learning rate η for exponential and

logistic loss respectively.
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Figure 5.1 : Dependence of dynamics of training loss on the learning rate for linear

predictor, with (a,b) exponential loss and (c,d) logistic loss on Example 5.1 and 5.2.

(a,c) The experimental learning curves are consistent with the theoretical prediction,

and the critical learning rates are ηcritical = 1.66843 and ηcritical = 8.485 respectively.

(b,d) For non-separable data, the dynamics of training loss regarding the learning

rate for non-separable data are similar to those of a degenerate case. Hence the

critical learning rates can be approximated by ηcritical = 0.895 and ηcritical = 4.65

respectively.

Example 5.2. Consider optimizing L(w) with dataset {(x1 = 1, y1 = 1), (x2 =

2, y2 = −1) and (x3 = −1, y3 = 1).} using gradient descent with constant learning

rates. Figure 5.1(b,d) show the dependence of different dynamics on the learning

rate η for exponential and logistic loss, respectively.

Remark 5.1. The dataset considered here is an example of a non-separable case,

and the dynamics of loss behave similarly to those with Example 5.1. We use this

example to show that our theoretical results on the degenerate data can be extended

to the non-separable data empirically.

5.3.2 Non-convex Optimization

The typical non-convex optimization model in machine learning is deep net-

works. For simplicity, we focus on a two-layer linear network, and the information
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propagation in these networks is governed by

f(x) = m−1/2w(2)w(1)x, (5.3)

where m is the width, i.e., number of neurons in the hidden layer, w(1) ∈ R
m×d

and w(2) ∈ R
m are the parameters of the model. Taking the exponential loss as an

example, the gradient descent dynamics follow,

w
(1)
t+1 = w

(1)
t − 1

n

η

m1/2
(−e−yαft(xα))w

(2)
t xαyα,

w
(2)
t+1 = w

(2)
t − 1

n

η

m1/2
(−e−yαft(xα))w

(1)
t xαyα,

(5.4)

where we use the Einstein summation convention to simplify the expression and will

apply this convention in the following derivation.

We introduce the neural tangent kernel, an essential element for the evolution

of output function in equation 5.8. The neural tangent kernel (NTK) is originated

from [36] and formulated as,

Θαβ =
1

m

P∑
p=1

∂f(xα)

∂θp

∂f(xβ)

∂θp
. (5.5)

where P is the number of parameters. For a two-layer linear neural network, the

NTK can be written as,

Θαβ =
1

mn

(
(w(1)xα)(w

(1)xβ) + (w(2))2(xαxβ)
)
. (5.6)

Here we use normalized NTK which is divided by the number of samples n. Under

the degeneracy assumption 5.3, the loss function becomes L = cosh(m−1/2w(2)w(1)).

Then the equation 5.4 reduces to

w
(1)
t+1 = w

(1)
t − η

m1/2
w

(2)
t sinh(m−1/2w

(2)
t w

(1)
t ),

w
(2)
t+1 = w

(2)
t − η

m1/2
w

(1)
t sinh(m−1/2w

(2)
t w

(1)
t ).

(5.7)

The updates of output function ft and the eigenvalue of NTK λt, which are both

scalars in our setting:

ft+1 = ft − ηλtf̃texp +
η2

m
ftf̃ 2

t exp,

λt+1 = λt − 4η

m
ftf̃texp +

η2

m
λtf̃ 2

t exp.

(5.8)
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Figure 5.2 : Dependence of dynamics of training loss and maximum eigenvalue of

NTK on the learning rate, with (a,b,e,f) exponential loss and (c,d,g,h) logistic loss

on Example 5.3 and 5.4. (a,b,c,d) The loss increases at the beginning and converges

to a global minimum. (e,f,g,h) The maximum eigenvalue of NTK converges to a

value which is lower than its initial position.

where f̃texp := sinh(ft) while f̃tlog :=
sinh(ft)

1+cosh(ft)
for logistic loss.

We have introduced the catapult phase where the learning rate is larger than a

threshold. In this phase, the loss increases at the beginning and then drops until it

converges to a global minimum. In the following theorem, we prove the existence of

the catapult phase on the degenerate data with exponential and logistic loss.

Theorem 5.2. Under appropriate initialization and assumption 5.3, there exists

a catapult phase for both the exponential and logistic loss. More precisely, when η

belongs to this phase, there exists a T > 0 such that the output function ft and the

eigenvalue of NTK λt update in the following way:

i. Lt keeps increasing when t < T .

ii. After the T step and its successors, the loss decreases, which is equivalent to:

|fT+1| > |fT+2| ≥ |fT+3| ≥ . . . .
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iii. The eigenvalue of NTK keeps dropping after the T steps:

λT+1 > λT+2 ≥ λT+3 ≥ . . . .

Moreover, we have the inverse relation between the learning rate and the final eigen-

value of NTK: λ∞ ≤ limt→∞
4ft

ηf̃texp
with exponential loss or λ∞ ≤ limt→∞

4ft
ηf̃tlog

with

logistic loss.

We demonstrate that the catapult phase can be found in both degenerate and

non-separable data through the following examples. The weights matrix is initialized

by i.i.d. Gaussian distribution, i.e. w(1), w(2) ∼ N (0, σ2
w). For exponential loss, we

adopt the setting of σ2
w = 0.5 and m = 1000 while we set σ2

w = 1.0 and m = 100 for

logistic loss.

Example 5.3. Consider optimizing L(w) using one hidden layer linear networks

with dataset {(x1 = [1, 0], y1 = 1) and (x2 = [1, 0], y2 = −1).} and exponential

(logistic) loss using gradient descent with constant learning rate. Figure 5.2(a,c,e,g)

show how different choices of learning rate η change the dynamics of the networks

with exponential and logistic loss.

Example 5.4. Consider optimizing L(w) using one hidden layer linear networks

with dataset {(x1 = [1, 1], y1 = −1), (x2 = [1,−1], y1 = 1), (x3 = [−1,−2], y1 =

1) and (x4 = [−1, 1], y4 = 1).} and exponential (logistic) loss using gradient descent

with constant learning rate. Figure 5.2(b,d,f,h) show how different choices of learning

rate η change the dynamics of networks with exponential and logistic loss.

As Figure 5.2 shows, in the catapult phase, the eigenvalue of the NTK decreases to

a lower value than its initial point, while it keeps unchanged in the lazy phase where

the learning rate is small. For MSE loss, the lower value of the NTK indicates the

flatter curvature given the training loss is low [81]. Yet, it is unknown whether the
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Figure 5.3 : Top eigenvalue of NTK (λ0) and Hessian (h0) measured at t = 100

as a function of the learning rate, with (a,b) exponential loss and (c,d) logistic loss

on Example 5.3 and 5.4. The green dashed line η = η0 represents the boundary

between the lazy phase and catapult phase, while black dashed line η = η1 separates

the other two phases. The setting are: σ2
w = 0.5 and m = 100 for exponential

loss, and the setting for logistic loss is σ2
w = 0.5 and m = 200. (a,c) The curves of

maximum eigenvalue of NTK and Hessian coincide as predicted by the corollary 5.1.

(b,d) For the non-separable data, the trend of the two eigenvalue curves is consistent

with the change of learning rate.

aforementioned conclusion can be applied to exponential and logistic loss. Through

the following corollary, we show that the Hessian is equivalent to the NTK when

the loss converges to a global minimum for degenerate data.

Corollary 5.1 (Informal). Consider optimizing L(w) with one hidden layer linear

network under assumption 5.3 and exponential (logistic) loss using gradient descent

with a constant learning rate. For any learning rate that loss can converge to the

global minimum, the larger the learning rate, the flatter curvature that gradient

descent will achieve at the end of training.

We demonstrate the flatter curvature can be achieved in the catapult phase

through Example 5.3 and 5.4, using the code provided by [93] to measure Hessian,

as shown in Figure 5.3. In the lazy phase, both curvature and eigenvalue of NTK

are independent of the learning rate at the end of training. However, in the catapult
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phase, the curvature decreases to the value smaller than that in the lazy phase. In

conclusion, the NTK and Hessian have similar behavior at the end of training on

non-separable data.

Finally, we compare our results for the catapult phase to the result with MSE

loss and show the summary in Table 5.1.

Table 5.1 : A summary of the relationship between the separation conditions of the

data and the catapult phase for different losses

separation condition linear separable degenerate non-separable

exponential loss (this work) � � �

logistic loss (this work) � � �

squared loss ([81]) � � �

5.4 Experiments

In this section, we present the numerical results conducted with deep linear NN,

equipped with logistic loss, and CIFAR10 to examine whether reaching a flatter

minimuma in the catapult phase leads to better generalization with real applications.

We selected two of the ten categories in the CIFAR-10 dataset, "cars" and "dogs", to

form a binary classification problem and compared the generalization performance

of models at end of training with different learning rates and with two different

stopping scenarios.

In Figure 5.4 we show the final performance of two linear networks, one with

one hidden layer and no bias; and the other with two hidden layers and bias. Both

networks were trained on CIFAR-10. Figure 5.4(a,c) show the results with a fixed

training time. Figure 5.4(b,d) show the results with a fixed physical training time,
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Figure 5.4 : Test performance of deep linear networks with respect to different

learning rate phases. The data size is of ntrain = 2048 and ntest = 512. (a,b) A

two-layer linear network without bias of σ2
w = 0.5 and m = 500. (c,d) A three-layer

linear network with a bias of σ2
w = 0.5, σ2

b = 0.01, and m = 500. (a,c) The test

accuracy is measured at the time step t = 500 and t = 300 respectively. (b,d)

The test accuracy is measured at the physical time step (red curve), after which it

continues to evolve for a period of time at a small learning rate (purple): tphy = 50/η

and extra time t = 500 at η = 0.01 for the decay case. Although the results in the

catapult phase do not perform as well as the lazy phase when there is no decay, the

best performance can be found in the catapult phase when adopting learning rate

annealing.

defined as tphy = t0η, where t0 is a constant. As shown in 5.4, fixing the training

time leads to higher test accuracy in the catapult phase. However, it also results in

a bias in favor of large learning rates, since large learning rates naturally run faster.

In the second scenario (Figures 5.4(b,d)), the models trained at a large learning

rate did not perform nearly as well as those trained at a steady small learning rate.

Nevertheless, we can still achieve highest accuracy in the catapult phase where the

learning rate exceeds a critical threshold when adopting the learning rate annealing

strategy.

According to theorem 2 from [58], data can be divided into two partitions: one

linearly separable; the other non-separable. When tuning a learning rate to large,

the algorithm quickly iterates to a flat minimum in the space spanned by non-
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separable data. But this large learning rate prevents gradient descent from achieving

the maximum margin with the linearly separable data. As a result, generalization

ability deteriorates for some of the data. This explains why performance degrades

to below a small learning rate with a fixed number of physical steps. On the other

hand, an annealing strategy with a large learning rate followed by a small learning

rate, produces good results. The large learning rate has learned has learned a

flat curvature, the subsequent small learning rate will not affect this result for non-

separable data. Further, reducing the learning rate can restore the maximum margin

of the linearly separable data, ultimately delivering much better performance overall.

5.5 Discussion

Inspired by the seminal work [81], this study characterizes the dynamics of deep

linear networks on binary classification problem at large learning rates. We find

that producing the catapult effect in the large learning rate phase depends on the

separation conditions associated with logistic and exponential loss. According to our

theoretical analysis, the loss in the catapult phase can converge to a flatter minimum

than that in the lazy phase, from the perspective of the Hessian. We show empirically

that, even without SGD optimization, the best generalization performance for linear

networks can be achieved in the catapult phase. This work advances our theoretical

understanding of the training behaviors resulting from large learning rates with

linear networks for binary classification. However, many open questions remain in

this nascent field of study. For example, there is no solid theory on the effects of

a large learning rate for non-linear networks. The same can be said of stochastic

gradient descent with large learning rates. We leave these unsolved problems for

future work.
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5.6 Proof

This appendix is dedicated to proving the key results of this paper, namely

Proposition 5.1 and Theorems 5.1, 5.2, and Corollary 5.1 which describe the dy-

namics of gradient descent with logistic and exponential loss in different learning

rate phases.

Proposition 5.1. For a linear predictor f = wTx, along with a loss � ∈ {�exp, �log}.

1 Under Assumption 5.1, the empirical loss is β-smooth. Then the gradient

descent with constant learning rate η < 2
β

never increase the risk, and empirical

loss will converge to zero:

L(wt+1)− L(wt) ≤ 0, lim
t→∞

L(wt) = 0, with η <
2

β

2 Under Assumption 5.2, the empirical loss is β-smooth and α-strongly convex,

where α ≤ β. Then the gradient descent with a constant learning rate η < 2
β

never increases the risk, and empirical loss will converge to a global minimum.

On the other hand, the gradient descent with a constant learning rate η > 2
α

never decrease the risk, and empirical loss will explode or saturate:

L(wt+1)− L(wt) ≤ 0, lim
t→∞

L(wt) = G0, with η <
2

β

L(wt+1)− L(wt) ≥ 0, lim
t→∞

L(wt) = G1, with η >
2

α

where G0 is the value of a global minimum while G1 = ∞ for exploding situa-

tion or G0 < G1 < ∞ when saturating.

Proof. 1 We first prove that empirical loss L(u) regrading data-scaled weight

ui ≡ wTxiyi for the linearly separable dataset is smooth. The empirical loss

can be written as L =
∑n

i=1 �(ui), then the second derivatives of logistic and

exponential loss are,

L′′
exp =

n∑
i=1

�′′exp(ui) =
n∑

i=1

exp′′(−ui) =
n∑

i=1

exp(−ui)
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L′′
log =

n∑
i=1

�′′log(ui) =
n∑

i=1

log′′(1 + exp(−ui)) =
n∑

i=1

exp(−ui)

(1 + exp(−ui))2

when wt is limited, there will be a β such that L′′ < β. Besides, because

there exists a separator w∗ such that ∀i : wT
∗ xiyi > 0, the second derivative of

empirical loss can be arbitrarily close to zero. This implies that the empirical

loss function is not strongly convex.

Recall a property of β-smooth [94],

f(y) ≤ f(x) + (∇xf)
T (y − x) +

1

2
β ‖y − x‖2

Taking the gradient descent into consideration,

L(wt+1) ≤ L(wt) +
(∇wtL(wt)

)T
(wt+1 − wt

)
+

1

2
β ‖wt+1 − wt‖2

= L(wt) +
(∇wtL(wt)

)T (− η∇wtL(wt)
)
+

1

2
β ‖−η∇wtL‖2

= L(wt)− η(1− ηβ

2
) ‖∇wtL‖2

when 1− ηβ
2
> 0, that is η < 2

β
,

L(wt+1) ≤ L(wt)− η(1− ηβ

2
) ‖∇wtL‖2 ≤ L(wt)

We now prove that output function of the network will converge to a zero with

learning rate η < 2
β
. We change the form of inequality above,

L(wt)− L(wt+1)

η(1− ηβ
2
)

≥ ‖∇wtL(wt)‖2

this implies,
T∑
t=0

‖∇wtL(wt)‖2 ≤
T∑
t=0

L(wt)− L(wt+1)

η(1− ηβ
2
)

=
L(w0)− L(wT )

η(1− ηβ
2
)

< ∞

therefore we have limt→∞ ‖∇wtL(wt)‖ = 0.

2 When the data is not linear separable, there is no w∗ such that ∀i : wT
∗ xiyi > 0.

Thus, at least one wT
∗ xiyi is negative when the other terms are positive. This
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implies that the solution of the loss function is finite and the empirical loss is

both α-strongly convex and β-smooth.

Recall a property of α-strongly convex function f [94],

f(y) ≥ f(x) + (∇xf)
T (y − x) +

1

2
α ‖y − x‖2

Taking the gradient descent into consideration,

L(wt+1) ≥ L(wt) +
(∇wtL(wt

)T (
wt+1 − wt

)
+

1

2
α ‖wt+1 − wt‖2

= L(wt) +
(∇wtL(wt

)T (− η∇wtL(wt)
)
+

1

2
α ‖−η∇wtL‖2

= L(wt)− η(1− ηα

2
) ‖∇wtL‖2

when 1− ηα
2
< 0, that is η > 2

α
, we have,

L(wt+1) ≥ L(wt)− η(1− ηα

2
) ‖∇wtL‖2 ≥ L(wt).

Theorem 5.1. For a linear predictor f = wTx equipped with exponential (logistic)

loss under assumption 5.3, there is a critical learning rate that separates the whole

learning rate space into two (three) regions. The critical learning rate satisfies

L′(w0) = −L′(w0 − ηcriticalL′(w0)),

where w0 is the initial weight. Moreover,

1 For exponential loss, the gradient descent with a learning rate η < ηcritical

never increases loss, and the empirical loss will find the global minimum. On

the other hand, the gradient descent with learning rate η = ηcritical will oscillate.

Finally, when the learning rate η > ηcritical, the training process never decreases

the loss and the empirical loss will explode to infinity:

L(wt+1)− L(wt) < 0, lim
t→∞

L(wt) = 1, with η < ηcritical,

L(wt+1)− L(wt) = 0, lim
t→∞

L(wt) = L(w0), with η = ηcritical,

L(wt+1)− L(wt) > 0, lim
t→∞

L(wt) = ∞, with η > ηcritical.
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Figure 5.5 : Graph of φ(x) for the two losses. (a) Exponential loss with learning

rate η = 10. (b) Logistic loss with learning rate η = 10.

2 For logistic loss, the critical learning rate satisfies a condition: ηcritical > 8.

The gradient descent with a constant learning rate η < 8 never increases the

loss, and the loss will converge to the global minimum. On the other hand, the

loss along with a learning rate 8 ≤ η < ηcritical will not converge to the global

minimum but oscillate. Finally, when the learning rate η > ηcritical, gradient

descent never decreases the loss, and the loss will saturate:

L(wt+1)− L(wt) < 0, lim
t→∞

L(wt) = log(2), with η < 8,

L(wt+1)− L(wt) ≤ 0, lim
t→∞

L(wt) = L(w∗) < L(w0), with 8 ≤ η < ηcritical,

L(wt+1)− L(wt) ≥ 0, lim
t→∞

L(wt) = L(w∗) ≥ L(w0), with η ≥ ηcritical.

where w∗ satisfies −w∗ = w∗ − η
2

sinh(w∗)
1+cosh(w∗) .

Proof. 1 Under the degeneracy assumption, the risk is given by the hyperbolic

function L(wt) = cosh(wt). The update function for the single weight is,

wt+1 = wt − η sinh(wt).

To compare the norm of the gradient ‖sinh(wt)‖ and the norm of loss, we
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introduce the following function:

φ(x) = ηL′(x)− 2x (5.9)

= η sinh(x)− 2x, for x ≥ 0. (5.10)

Then it’s easy to see that

L(wt+1) > |L(wt)| ⇐⇒ φ(|wt|) > 0.

In this way, we have transformed the problem into studying the iso-surface of

φ(x). Define Phase1 by

Phase1 = {x|φ(x) < 0}.

Let Phase2 be the complementary set of Phase1 in [0,+∞). Since sinx
x

is

monotonically increasing, we know that Phase2 is connected and contains +∞.

Suppose η > ηcritical, then φ(w0) > 0, which implies that

L(w1) > L(w0) and |w1| > |w0|.

Thus, the first step gets trapped in Phase2:

φ(w1) > 0.

By induction, we can prove that φ(wt) > 0 for arbitrary t ∈ N, which is

equivalent to

L(wt) > L(wt−1).

Similarly, we can prove the theorem under another toe initial conditions: η =

ηcritical and η < ηcritical.

2 Under the degeneracy assumption, the risk is governed by the hyperbolic func-

tion L(wt) =
1
2
log(2 + 2 cosh(wt)). The update function for the single weight

is,

wt+1 = wt − η

2

sinh(wt)

1 + cosh(wt)
.
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Thus,

φ(x) = ηL′(x)− 2x (5.11)

=
η

2

sinh(x)

1 + cosh(x)
− 2x, for x ≥ 0. (5.12)

Unlike the exponential loss, sinh(x)
x(1+cosh(x))

is monotonically decreasing, which

means that Phase2 of φ(x) doesn’t contain +∞.(see figure 5.5).

Suppose 8 < η < ηcritical, then w0 lies in Phase2. In this situation, we denote

the critical point that separates Phase1 and Phase2 by w∗. That is

−w∗ = w∗ − η
sinh(w∗)

1 + cosh(w∗)
.

Then it’s obvious that before wt arrives at w∗, it keeps decreasing and will

eventually get trapped at w∗:

lim
t→∞

wt = w∗,

and we have

lim
t→∞

L(wt)− L(wt−1) = 0.

When η < 8, Phase2 is empty. In this case, we can prove by induction that

φ(wt) > 0 for arbitrary t ∈ N, which is equivalent to

L(wt) > L(wt−1).

Theorem 5.2. Under appropriate initialization and assumption 5.3, there exists

a catapult phase for both the exponential and logistic loss. More precisely, when η

belongs to this phase, there exists a T > 0 such that the output function ft and the

eigenvalue of NTK λt update in the following way:

i. Lt keeps increasing when t < T .
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Figure 5.6 : Different colors represent different λ(NTK) values. (a) graph of φλ(x)

equipped with the exponential loss. (b) graph of the derivative of φλ(x) equipped

with the exponential loss. (c) graph of φλ(x) equipped with the logistic loss. (d)

graph of the derivative of φλ(x) equipped with the logistic loss. Notice that the

critical point of the exponential loss moves to the right as λ decreases.

ii. After the T step and its successors, the loss decreases, which is equivalent to:

|fT+1| > |fT+2| ≥ |fT+3| ≥ . . . .

iii. The eigenvalue of NTK keeps dropping after the T steps:

λT+1 > λT+2 ≥ λT+3 ≥ . . . .

Moreover, we have the inverse relation between the learning rate and the final eigen-

value of NTK: λ∞ ≤ limt→∞
4ft

ηf̃texp
with exponential loss, or λ∞ ≤ limt→∞

4ft
ηf̃tlog

with

logistic loss.

Proof. Exponential loss

f̃exp satisfies:
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i. |f̃exp(x)| = |f̃exp(−x)|.

ii. limx→0
f̃exp(x)

x
= 1.

iii. f̃exp(x) has exponential growth as x → ∞.

By the definition of the normalized NTK, we automatically get

λt ≥ 0.

From the numerical experiment, we observe that at the ending phase of training,

λt keeps non-increasing. Thus, λt must converge to a non-negative value, which

satisfies
η2

m
λf̃ 2

t − 4η

m
ftf̃t ≤ 0. (5.13)

Thus, λ ≤ limt→∞
4ft
ηf̃t

.

Since the output f converges to the global minimum, a larger learning rate will lead

to a lower limiting value of the NTK. As it was pointed out in [81], a flatter NTK

corresponds to a smaller generalization error in the experiment. However, we still

need to verify that large learning rate exists.

Note that during training, the loss function curve may experience more than one

wave of uphill and downhill. To give a precise definition of large learning rate, it

should satisfy the following two conditions:

i. |fT+1| > |fT |, this implies that

LT+1 > LT .

For the T + 1 step and its successors,

|fT+1| > |fT+2| ≥ |fT+3| ≥ . . . .

ii. The norm of NTK keeps dropping after T steps:

λT > λT+1 ≥ λT+2 ≥ . . . .
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If we already know that the loss keeps decreasing after the T + 1 step, then

Δλ =
η

m
f̃ · (ηλf̃ − 4f). (5.14)

Since |f̃ |
|f | ≥ 1 and is monotonically increasing when f̃ = sinh f , we automatically

have

λT > λT+1 > λT+2 ≥ . . . ,

If

λT <
4fT

ηf̃T
and λT+1 <

4fT+1

ηf̃T+1

.

This condition holds if the parameters are close to zero initially.

To check condition (1), the following function which plays an essential role as in the

non-hidden layer case:

φλ(x) = ηλ sinh(x)− η2

m
x sinh2(x)− 2x, for x ≥ 0.

Notice that an extra parameter λ emerges with the appearance of the hidden layer.

We call it the control parameter of the function φ(x).

For a fixed λ, since now φ(x) becomes linear, the whole [0,+∞) is divided into three

phases (see figure 5.6):

Phase1 := the connected component of {x| φλ(x) < 0} that contains 0,

Phase2 := {x| φλ(x) > 0},

Phase3 := the connected component of {x| φλ(x) < 0} that contains +∞.

It’s easy to see that Lexp(fT+1) > Lexp(fT ) if and only if

φλT
(fT ) > 0.

That is, fT lies in Phase2 of φλT
. Similarly,

Lexp(fT+2) < Lexp(fT+1) ⇐⇒ φλT+1
(fT+1) < 0.
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That is, fT+1 jumps into Phase1 of φλT+1
. Denote the point that separates Phase1

and Phase2 by x∗, then form the graph of φλ(x) with different λ, we know that

x∗(λ′) > x∗(λ) if λ′ < λ.

Therefore, condition (1) is satisfied if

x∗(λT+1) > fT + φλT
(fT ) (5.15)

and at the same time,

λT+1 − λT > 0.

For simplicity, we reset T as our initial step. Write the output function ft as

ft+1 = ft(1 +At), (5.16)

where At =
η2

m
f̃ 2
t − ηλtf̃t/ft. Thus, φλ0(f0) > 0 is equivalent to A0 < −2.

Similarly, write the update function for λt as

λt+1 = λt(1 + Bt), (5.17)

where Bt =
η2

m
f̃ 2
t − 4η

m
f̃tft/λt. To fulfill the above condition on NTK, we need

B0 < 0.

To check (5.15), let the initial output f0 be close to X∗(λ0) (this can be done by

adjusting w0):

0 < f0 −X∗ < ε.

Then by the mean value theorem,

x∗(λ1)− x∗(λ0) =
∂x∗
∂λ∗

(λ∗) ·Δλ.

The derivative ∂x∗
∂λ∗ can be calculated by the implicit function theorem:

∂x∗
∂λ

= −∂φλ(x∗)
∂λ

/
∂φλ(x∗)
∂x∗

= −η sinh(x∗)/
∂φλ(x∗)
∂x∗

.
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It’s easy to see that |∂x∗
∂λ

| is bounded away from zero if the initial output is in Phase2

and near x∗ of φλ0(x) (see Figure 5.6).

On the other hand, we have the freedom to move f0 towards x∗ of φλ0(x) without

breaking the Δλ < 0 condition. Since

|ηλf̃
4f

| < |ηλf̃
′

4f ′ | if f < f ′.

Therefore, we can always find a ε > 0 such that 0 < f0 − x∗ < ε and (5.15) is

satisfied. Combining the above, we have demonstrated the existence of the catapult

phase for the exponential loss.

logistic loss

When Considering the degeneracy case for the logistic loss, the loss will be

L =
1

2
log(2 + 2 cosh(m−1/2w(2)w(1))). (5.18)

Much of the argument is similar. For example, Equation (5.13) still holds if we

replace f̃exp by

f̃log(x) :=
sinh(x)

1 + cosh(x)
.

f̃log satisfies

i. |f̃log(x)| = |f̃log(−x)|.

ii. |f̃log(x)| ≤ 1 for x ∈ (−∞,∞).

This implies that

| f̃
f
| ≤ 1

2
.

Then by (5.14), we have Δλ < 0 if λ ≤ 8
η
. Thus, condition 2 is satisfied for both

loss functions. Now, φλ(x) becomes:

φλ(x) := ηλ
sinh(x)

1 + cosh(x)
− η2

m
x

sinh2(x)

(1 + cosh(x))2
− 2x,
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along with its derivative:

φ′
λ(x) :=ηλ

cosh(x)

1 + cosh(x)
− ηλ sinh2(x)

(1 + cosh(x))2
− 2

−η2

m

sinh2(x)

(1 + cosh(x))2
− 2

η2

m

sinh(x)

1 + cosh(x)

[ cosh(x)

1 + cosh(x)
− sinh2(x)

(1 + cosh(x))2
]
.

The method of verifying condition 1 is similar with the exponential case, except

that φλ(x) has only Phase1 and Phase2 (see figure 5.6). As the NTK λ goes down,

Phase1 will disappear and at that moment the loss will keep decreasing. Let λ∗ be

the value such that φ′
λ∗(x) = 0, then

λ∗ = 4/η.

During the period when 4/η < λt < 8/η, the NTK keeps dropping and the loss may

oscillate around x∗. However, we may encounter the scenario that both the loss and

the λt are going up before dropping down simultaneously (see the first three steps in

figure 5.6). Theoretically, it corresponds to jump from Phase2 to Phase3 and then

to Phase1 of φλ1(x) in the first two steps. This is possible since f̃log is decreasing

when x > 0. This implies that

|ηλf̃
′

4f ′ | < |ηλf̃
4f

| if f < f ′.

So an increase of the output will cause the NTK to drop faster.

Corollary 5.1 (Informal). Consider optimizing L(w) with one hidden layer linear

network under assumption 5.3 and exponential (logistic) loss using gradient descent

with a constant learning rate. For any learning rate that loss can converge to the

global minimal, the larger the learning rate, the flatter curvature the gradient descent

will achieve at the end of training.

Proof. The Hessian matrix is defined as the second derivatives of the loss with

respect to the parameters,

Hαβ =
∂2L

∂θα∂θβ
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where θα, θβ ∈ {w(1), w(2)} for our setting of linear networks. For logistic loss,

Hαβ =
1

n

∑
i

∂2 exp(−yifi)

∂θα∂θβ

=
1

n

∑
i

[ ∂2fi
∂θα∂θβ

exp(−yifi)(−yi) +
∂fi
∂θα

∂fi
∂θβ

exp(−yifi)
]

We want to make a connection from Hessian matrix to the neural tangent kernel.

Note that the second term contains ∂fi
∂θα

∂fi
∂θβ

, which can be written as JJT , where

J = vec[ ∂fi
∂θj

]. While NTK can be expressed as JTJ . It is known that they have the

same eigenvalue. Further more, under assumption 5.3, we have n = 2 and f1 = f2,

thus,

Hαβ =
1

n

∑
i

[ ∂2fi
∂θα∂θβ

∂L
∂fθ

+
∂fi
∂θα

∂fi
∂θβ

L]

Suppose at the end of gradient descent training, we can achieve a global minimum.

Then we have, ∂L
∂fθ

= 0, and L = 1. Thus, the Hessian matrix reduce to,

Hαβ =
1

n

∑
i

∂fi
∂θα

∂fi
∂θβ

In this case, the eigenvalues of Hessian matrix are equal to those of neural tangent

kernel. Combine with the 5.2, we can prove the result.

For logistic loss,

Hαβ =
1

n

∑
i

∂2 log(1 + exp(−yifi))

∂θα∂θβ

=
1

n

∑
i

[ ∂2fi
∂θα∂θβ

exp(−yifi)(−yi)

1 + exp(−yifi)
+

∂fi
∂θα

∂fi
∂θβ

exp(−yifi)

(1 + exp(−yifi))2
]
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Under assumption 5.3, we have n = 2 and f1 = f2, thus,

Hαβ =
1

n

∑
i

[ ∂2fi
∂θα∂θβ

∂L
∂fθ

+
∂fi
∂θα

∂fi
∂θβ

exp(−yifi)

(1 + exp(−yifi))2
]

Suppose at the end of gradient descent training, we can achieve a global minimum.

Then we have, ∂L
∂fθ

= 0, and fi = 0. Thus, the Hessian matrix reduce to,

Hαβ =
1

4n

∑
i

∂fi
∂θα

∂fi
∂θβ

In this case, the eigenvalues of Hessian matrix and NTK have the relation 1
4
λNTK =

λHessian.
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Chapter 6

Wide graph neural networks: aggregation provably
leads to exponentially trainability loss

6.1 Introduction

Recently, Graph Convolutional Networks (GCN) have shown incredible abili-

ties to learn node or graph representations and achieved superior performances for

various downstream tasks, such as node classifications [9, 10, 11, 12], graph classifica-

tions [13, 14, 15, 16, 17, 18], link predictions [19], etc. However, most GCNs achieve

their best at a shallow depth, e.g., 2 or 3 layers, and their performance on those

tasks promptly degrade as the number of layers grow. Towards this phenomenon,

some attempts have been made expecting to deepen understanding of current GNN

architectures and their expressive power. Li et al. [95] showed that GCN mixes

node representations with nearby neighbors. This mechanism potentially posed the

risk of over-smoothing as more layers were stacked together, where node represen-

tations in an extensive range tended to be indistinguishable from each other. Alon

et al. [96] analyzed the propagation mechanism of GCN and attribute performance

deterioration to the over-squashing problem. As each node iteratively aggregates

messages from its neighbors, exponentially-growing information is embedded into a

fixed-length vector, which causes information loss and thus undermines the expres-

sive power of generated representations. Oono et al. [97] investigated the expressive

power of GNNs using the asymptotic behaviors as the layer goes to infinity. They

proved that under certain conditions, the expressive power of GCN is determined by

the topological information of the underlying graphs inherent in the graph spectra.
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More recently, a series of latest works [98, 99, 100, 101, 102] explored the underlying

reasons for performance degrading and corresponding solutions, but rare of them

theoretically investigated the expressivity and trainability of deep GNNs.

To fill this gap, we resort to the infinitely-wide multi-layer GCN. The research

on infinitely-wide networks was originated from a work by [103]. Neal showed the

one hidden layer networks with random weights at initialization (without training)

are Gaussian Processes (GPs). Later, the connection between GPs and multi-layer

infinitely-wide networks with Gaussian initialization [66, 78] and orthogonal weights

[46] was reported. Meanwhile, from a “mean-field theory” perspective [22, 23], the

GP Kernel (GPK) of a deep network can be used to measure the expressivity. As a

result of studying the GPK under mean-field theory, an order-to-chaos expressivity

phase transition split by a critical line was found [22, 23]. It is also hypothesized that

wide networks can be trained successfully when the expressivity is maintained as the

network goes deeper. This ansatz was tested and verified by practical experiments

with a wide range of architectures, including convolutions [26], recurrent networks

[27], and residual networks [25], and more.

Despite the significant development from the mean-field theory, it is beyond the

scope of this study to examine the optimization property of infinitely-wide networks.

Recent trends in Neural Tangent Kernel (NTK) have led to a proliferation of studies

on the optimization and generalization of infinitely-wide and ultra-wide networks.

In particular, Jacot et al. [36] made a groundbreaking discovery that the evolution

of neural networks by gradient descent training with a sufficient small learning rate

or gradient flow in the infinite width limit can be captured by an NTK. Meanwhile,

a considerable literature has grown up around the theme of NTK and gained a

great deal of successes in deep learning theory for ultra-wide (over-parameterized)

networks [37, 38, 39, 40, 41, 42, 43]. Recently, [47] formulated Graph Neural Tangent

Kernel for infinitely-wide GNNs and shed light on theoretical guarantees for GNN.
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Prior to the discovery of GNTK, people had been puzzled by the non-convexity

of graph neural networks, which is analytically intractable. In the learning regime

of GCN governed by GNTK, the optimization becomes an almost convex problem,

making GNTK a promising method to study deep GCN’s trainability.

In this work, we leverage these techniques on infinitely-wide networks and inves-

tigate whether ultra-wide GCNs are trainable in the large depth. In particular, we

formulate the large-depth asymptotics behavior of GPK inspired by recent advances

on network’s expressivity through mean-field theory [22, 23]. Furthermore, we study

the trainability of ultra-wide GCN by computing the GNTK in the large-depth limit

illuminated by innovative works on the deep networks [104, 105]. Besides, we ex-

tend our theoretical framework to the residual connection-like techniques and show

these techniques can mildly slow down the exponential decay instead of overcoming

it thoroughly. Our contributions are as follows:

• We compute the large-depth limiting behavior of GPK to measure expressiv-

ity of deep GCNs. We prove that the infinitely-wide GCNs lose expressivity

exponentially due to aggregation.

• As far as we know, we are the first to investigate the trainability of deep and

wide GCN through GNTK. We prove that all elements of a GNTK matrix

regarding a pair of graphs converge exponentially to the same value, making

the GNTK matrix singular in the large depth. Based on this result, we make

a corollary that ultra-wide GCNs’ trainability exponentially collapses on node

classification tasks.

• We apply our theoretical analysis to the residual connection-resemble tech-

niques for GCNs and show that residual connection can, to some extent, slow

down the exponential decay rate. However, our theory shows that residual

connection can not fundamentally solve the exponential decay problem. This
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result can be used to explain to what extent the recent residual connection-

resemble method works.

• The experiments are conducted to validate our theoretical analysis quantita-

tively. Together with the above findings, we provide comprehensive guidance

for the development of deep GCNs.

6.2 Background

We review the mean-field theory of Gaussian Process Kernel and Neural Tangent

Kernel for infinitely-wide networks. Furthermore, we introduce Graph Convolutional

Networks along with our setup and notation.

6.2.1 Mean Field Theory and Expressivity

We begin by considering a fully-connected network of depth L of widths ml in

each layer. The weight and bias in the l-th layer are denoted by W (l) ∈ R
ml×ml−1

and b(l) ∈ R
ml . Letting the pre-activations be given by h

(l)
i . Then the information

propagation in this network is governed by,

h
(l)
i =

σw√
ml

ml∑
j=1

W
(l)
ij φ(h

(l−1)
j ) + σbb

(l)
i (6.1)

where φ : R → R is the activation function, σw and σb define the variance scale of

the weights and biases respectively. Given the parameterization that weights and

biases are randomly generated by i.i.d. normal distribution, the pre-activations are

Gaussian distributed in the infinite width limit as m1 → ∞,m2 → ∞, · · · ,mL−1 →
∞. This results from the central limit theorem (CLT). Consider a dataset X ∈
R

n×m0 of size n = |X|, the covariance matrix of Gaussian process kernel regarding

infinitely-wide network is defined by Σ(l)(x, x′) = E[h
(l)
i (x)h

(l)
i (x′)]. According to the

signal propagation Equation (6.1), the covariance matrix or GPK with respect to



112

layer can be described by a recursion relation,

Σ(l)(x, x′) = σ2
wEh∼N (0,Σ(l−1))[φ(h(x))φ(h(x

′))] + σ2
b (6.2)

The mean-field theory is a paradigm to study the limiting behavior of GPK,

which is a measure of expressivity for networks [22, 23]. In particular, expressivity

describes to what extent can two different inputs be distinguished. The property

of evolution for expressivity Σ(l)(x, x′) is determined by how fast it converges to

its fixed point Σ∗(x, x′) ≡ liml→∞ Σ(l)(x, x′). It is shown that in almost the entire

parameter space spanned by hyper-parameters σw and σb, the evolution exhibits

a dramatical convergence rate formulated by an exponential function except for a

critical line known as the edge of chaos [22, 23, 25]. Consequently, an infinitely-

wide network loses its expressivity exponentially in most cases while retaining the

expressivity at the edge of chaos.

6.2.2 Neural Tangent Kernel and Trainability

Most studies on infinitely-wide networks through mean-field theory have only

focused on initialization without training. Jacot et al. [36] took a step further by

considering the infinitely-wide network trained with the gradient descent method.

Let L be the cost function. In the general case, the NTK varies with the training

time, thus providing no substantial insight into the convergence property of neural

networks. Interestingly, as shown by [36], the NTK converges to a limit kernel and

does not change during training in the infinite width limit. This leads to a simple

but profound result when using MSE loss, L = 1
2
‖ft(X)− Y ‖2F , where Y is the label

regarding the input X,

ft(X) = (I − e−ηΘ∞(X,X)t)Y + e−ηΘ∞(X,X)tf0(X) (6.3)

where Θ∞ is the limiting kernel. As the training time t tends to infinity, the output

function fits the label very well, i.e., f∞(X) = Y . As proved by [104] (Lemma 1), the
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network is trainable only if Θ∞(X,X) is non-singular. Quantitatively, the condition

number κ ≡ λmax/λmin can be a measure of trainability as applied and confirmed by

[105].

6.2.3 GCNs

We define a graph as G = (V,E). In this graph the V is a collection of nodes, on

the other hand, E is a set of edges. We denote the number of nodes in graph G by

n = |V |. The node features are denoted as hv ∈ R
d for each v ∈ V , with d being the

dimension of node features. Node classification task is to predict labels of unseen

nodes by learning from a set of graphs G = {Gi}NG
i=1 and their labels Y = {yi}NG

i=1,

where NG is the number of graph in the dataset. In this work, we develop our

theory towards understanding the expressivity and trainability of GCNs on the node

classification task.

GCNs iteratively update node features through aggregating and transforming

the representation of their neighbors. Figure 6.1 illustrates an overview of the in-

formation propagation in a general GCN. We define a propagation unit to be the

combination of a R-layer MLP and one aggregation operation. We use subscript

(r) to denote the layer index of MLP in each propagation unit and use superscript

(l) to indicate the index of aggregation operation, which is also the index of the

propagation unit. L is the total number of propagation units. Specifically, the

node representation propagation in GCNs through a multi-layer perceptron (MLP)

follows the expression,

h
(l)
(0)(u) =

1

|N (u)|+ 1

∑
v∈N (u)∪u

h
(l−1)
(R) (v) (6.4)

h
(l)
(r)(u) =

σw√
m
W

(l)
(r)φ
(
h
(l)
(r−1)(u)

)
+ σbb

(l)
(r) (6.5)

where W
(l)
(r) and b

(l)
(r) are the learnable weights and biases respectively, φ is the ac-

tivation function, N (u) is the neighborhood of node u, and N (u) ∪ u is the union
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MLPAggregation

Propagation Unit

MLPAggregation

Propagation Unit

Figure 6.1 : Overview of the information propagation in a general GCN

of node v and its neighbors. Equation (6.4) describes the node feature aggregation

operation among its neighborhood according to a GCN variant [11]. Equation (6.5)

is a standard non-linear transformation with NTK-parameterization [36], where m is

the width. With regard to the activation function, we focus on both ReLU and tanh,

which are denoted as φ(x) = max{0, x} and φ(x) = tanh(x) respectively. Without

loss of generality, our theoretical framework can handle other common activations.

By comparison, the GNTK work [47] only adopted ReLU activation.

6.3 Theoretical Results

6.3.1 Expressivity of Infinitely Wide GCNs

To investigate the expressivity property of infinitely-wide GCNs, we define the

covariance matrix between two input graphs G,G′ by measuring correlation between

node features as,

Σ
(l)
(r)(G,G′)uu′ ≡ E[h

(l)
(r)(u)h

(l)
(r)(u

′)], (6.6)

where Σ
(l)
(r)(G,G′) ∈ R

n×n′ , |V | = n and |V ′| = n′. According to the CLT, the node

representation h
(l)
(r)(u) is Gaussian distributed in the infinite width limit. Applying

this result to Equation (6.4), we can obtain the recursive expression for covariance

matrix as follows,

Σ
(l)
(0)(G,G′)uu′ = cucu′

∑
v

∑
v′

Σ
(l−1)
(R) (G,G′)

vv′
(6.7)
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where cu = 1
|N (u)|+1

, cu′ = 1
|N (u′)|+1

. This equation is resulting from the neighborhood

aggregation operation.

Next, we apply the GP result of infinitely-wide GCN to Equation (6.5). The

propagation of the covariance matrix corresponds to the R times non-linear trans-

formations, which is expressed as,

Σ
(l)
(r)(G,G′)uu′ = σ2

wEz1,z2

[
φ(z1)φ(z2)

]
+ σ2

b (6.8)

where z1, z2 are drawn from a 2-dimension Gaussian distribution in the previous

MLP layer, i.e., z1, z2 ∼ N (0, Σ̃(l)
(r−1)(G,G′)

) ∈ R
2×2, where the variance Σ̃(l)

(r−1)(G,G′)

is defined as a 2× 2 matrix, where elements are:

Σ̃
(l)
(r)(G,G′)uu′ =

⎛
⎜⎝ Σ

(l)
(r)(G,G)uu Σ

(l)
(r)(G,G′)uu′

Σ
(l)
(r)(G

′, G)u′u Σ
(l)
(r)(G

′, G′)u′u′

⎞
⎟⎠ (6.9)

We study the behavior of Σ(l)
(r)(G,G′) as l → ∞ following the diagram of mean-field

theory. However, both aggregation (Equation 6.7) and transformation (Equation

6.8) contribute simultaneously to the limiting result. To make the analysis easy to

understand, we first disassemble the two operations to study their limiting behaviors

separately.

Consider a GCN without non-linear transformation, i.e. R = 0 and Σ
(l)
(r)(G,G′) =

Σ(l)(G,G′). In order to facilitate calculation, we rewrite Equation (6.7) as the fol-

lowing format,

�Σ(l)(G,G′) = A(G,G′)�Σ(l−1)(G,G′) (6.10)

where �Σ(l)(G,G′) ∈ R
nn′×1 is the result of being vectorized, and A(G,G′) = A(1)(G,G′) =

· · · = A(l)(G,G′) ∈ R
nn′×nn′ is a probability transition matrix, and the limiting be-

havior of Σ(l)(G,G′) is shown by the following lemma,

Lemma 6.1 (Convergence of aggregation). Assume R=0, then

lim
l→∞

Σ(l)(G,G′)uu′ = π(G,G′)�Σ(0)(G,G′)



116

where π(G,G′) ∈ R
1×nn′, satisfying,

π(G,G′)A(l)(G,G′) = π(G,G′)

In Lemma 6.1, we demonstrate that the propagation of the transition matrix

A(G,G′) conforms to the transitions of the Markov chain [106, 107]. In the limit-

ing case, i.e. l → ∞, the transition of the A(G,G′) evolves as a stationary state

π(G,G′)A(G,G′) = π(G,G′). As a result, according to Equation (6.10), the covari-

ance matrix Σ(l)(G,G′) collapses exponentially to a constant matrix.

Then we consider a network with only non-linear transformation, which is known

as a pure MLP. This leads to Σ
(l)
(r)(G,G) = Σ(r)(G,G), where we use subscript (r)

to denote the layer index. The large depth behavior has been well studied in [29],

and we introduce the result when the edge of chaos is realized. In particular, we set

the value of hyper-parameters to satisfy,

σ2
w

∫
Dz[φ

′(
√
q∗z)]2 = 1 (6.11)

where q∗ is the fixed point of diagonal elements in the covariance matrix, and
∫ Dz =

1√
2π

∫
dze−

1
2
z2 is the measure for a normal distribution. For the ReLU activation,

Equation (6.11) requires σ2
w = 2 and σ2

b = 0.

The key idea is to study the asymptotic behavior of the normalized correlation

defined as,

Cr(G,G′)uu′ ≡ Σ(r)(G,G′)uu′√
Σ(r)(G,G)uu Σ(r)(G′, G′)u′u′

. (6.12)

Lemma 6.2 ( Proposition 1 and 3 in [29]). Consider an infinitely-wide fully-

connected network with a Lipschitz nonlinearity φ, then,

• φ(x) = max{0, x}, 1− Cr(G,G′)uu′ ∼ 9π2

2r2
as r → ∞

• φ(x) = tanh(x), 1− C(r)(G,G′)uu′ ∼ β
r
as r → ∞ where β =

2
∫ Dz [φ′(

√
q∗z)2]

q∗Dz [φ′′(
√
q∗z)2] .
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Lemma 6.2 shows the covariance matrix converges to a constant matrix at a

polynomial rate of 1/r2 for ReLU and of 1/r for tanh activation on the edge of

chaos. This implies that a network without aggregation could retain its expressivity

at a large depth.

Taking both aggregation and transformation into consideration, we derive our

theorem on the asymptotic behavior of infinitely-wide GCN in the large depth limit,

which is as follows:

Theorem 6.1 (Convergence rate for GPK). If A(G,G′) is ireducible and aperiodic,

with a stationary distribution vector π(G,G′), then there exist constants 0 < α < 1

and C > 0, and constant vector v ∈ R
nn′×1 depending on the number of MLP

iterations R, such that

|Σ(l)
(r)(G,G′)uu′ − π(G,G′)v| ≤ Cαl

In Theorem 6.1, we rigorously characterize the convergence properties of GCNs’

expressivity in the large depth limit. It reveals the covariance matrix Σ
(l)
(r)(G,G′)

converges to a constant matrix at an exponential rate. Notably, the vector v de-

pends on the number of non-linear transformations R, which implies that non-linear

transformation may mildly slow down the convergence rate.

6.3.2 Trainability of Infinitely Wide GCNs

According to the definition of NTK (Equation 5.6), we can formulate the prop-

agation of GNTK with respect to aggregation (Equation 6.4) and non-linear trans-

formation (Equation 6.5) as follows,

Θ
(l)
(0)(G,G′)uu′ = cucu′

∑
v

∑
v′

Θ
(l−1)
(R) (G,G′)vv′ (6.13)

and,

Θ
(l)
(r)(G,G′)uu′ =Θ

(l)
(r−1)(G,G′)uu′Σ̇

(l)
(r)(G,G′)uu′ + Σ

(l)
(r)(G,G′)uu′ (6.14)
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where Σ
(l)
(r)(G,G′)uu′ is defined by Equation (6.8) and Σ̇

(l)
(r)(G,G′)uu′ is governed by,

Σ̇
(l)
(r)(G,G′)uu′ ≡ σ2

wEz1,z2

[
φ̇(z1)φ̇(z2)

]
. (6.15)

Note that the propagation of the GNTK corresponding to aggregation (Equation

6.13) is the same as that of GPK (Equation 6.7). Meanwhile, the GNTK with

regarding to non-linear transformation (Equation 6.14) can be computed in closed

form in terms of GPK. The following theorem demonstrates that the aggregation

leads to an exponential decay of GNTK as the depth becomes large.

Theorem 6.2 (Convergence rate for GNTK). If A(G,G′) is ireducible and aperi-

odic, with a stationary distribution π(G,G′), then there exist constant matrix v and

v′ depending on R, such that

|Θ(l)
(r)(G,G′)uu′ − π(G,G′)

(
Rlv + v′

)| ≤ Cαl

As depth l goes to infinity, all elements in the GNTK converge to a unique

quantity at an exponential rate. This result is a little different to the convergence

result of the GPK in Theorem 6.1, in which the convergence limit of the GPK is a

constant rather than a quantity that varies with depth. We thus have Θ(L)
(R)(G,G′) ≈

π(G,G′)(RLv)1nn′ as L → ∞, where 1nn′ is the (n× n′)-dimensional matrix whose

elements are one. The exponential convergence rate of Θ(L)
(R)(G,G′) implies that the

trainability of infinitely wide GCNs degenerate dramatically, as shown in following

corollary.

Corollary 6.1 (Trainability of ultra-wide GCNs). Consider a GCN of the form

(6.4) and (6.5), with depth L, non-linear transformations number R, an MSE loss,

and a Lipchitz activation φ(x), trained with gradient descent on a node classification

task. Then the output function follows,

ft(G) = e−ηΘ
(L)
(R)

(G,G)tf0(G) + (I − e−ηΘ
(L)
(R)

(G,G)tY)
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where Θ
(L)
(R)(G,G) ∈ R

∑NG
i=1 ni×

∑NG
i=1 ni with the expression,

Θ
(L)
(R)(G,G) =

⎛
⎜⎜⎜⎜⎝

Θ
(L)
(R)(G1, G1) · · · Θ

(L)
(R)(G1, GN)

... . . . ...

Θ
(L)
(R)(GN , G1) · · · Θ

(L)
(R)(GN , GN)

⎞
⎟⎟⎟⎟⎠

There exists a positive integer L0 such that, Θ
(L)
(R)(G,G) is singular when L > L0.

Moreover, there exist a constant C > 0 such that, ‖ft(G)− Y‖ > C.

According to the above corollary, as L → ∞, the GNTK matrix will become a

singular matrix. This would lead to a discrepancy between outputs ft(G) and labels

Y , which means GNTK loses the ability to fit the label. Therefore, an ultra-wide

GCN with a large depth cannot be trained successfully on node classification tasks.

6.3.3 Analysis on techniques to deepen GCNs

We have characterized the expressivity and trainability of deep GCNs through

GPKs and GNTKs, respectively. We show that both expressivity and trainability of

ultra-wide GCNs drop at an exponential rate. Recently, enormous efforts have been

made to deepen GCNs, of which residual connection-resemble techniques are widely

applied to resolve the overs-moothing problem, including PPNP [108], DropEdge

[109], and residual GCN [110].

Analysis on PPNP and DropEdge

We first consider techniques of PPNP and DropEdge. Although they are formed

with different principles, the core idea is the same under the infinite-width limit.

From the perspective of probability flow, it reduces the probability flow from neigh-

boring nodes to itself, and correspondingly, increases the probability flow from the

node to itself. PPNP is based on personalized PageRank, and has a similar mech-

anism as DropEdge [108]. Therefore, DropEdge and PPNP actually lead to the
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same consequence, which is to preserve node locality to make node representations

discriminative. We formulate aggregation of PPNP and DropEdge as follows,

h
(l)
(0)(u) = (1− δ)cu

∑
v∈N (u)∪u

h
(l−1)
(R) (v) + δh

(l−1)
(R) (u) (6.16)

where cu = 1
N (u)+1

, and 0 < δ ≤ 1. Here δ is teleport (or restart) probability in

PPNP [108], and drop rate in DropEdge [109]. Then the propagation of aggregation

with Equation (6.16) can be reformulated as,

�Σ(l)(G,G′) =(1− δ̃)A(G,G′)�Σ(l−1)(G,G′) + δ̃�Σ(l−1)(G,G′), (6.17)

where 0 < δ̃ < 1 is an effective drop rate or teleport probability after re-normalization.

This is equivalent to the residual connection between aggregations. Thus we at-

tribute these techniques as residual connection-resemble methods. We take Equation

(6.17) as a new aggregation operation matrix, �Σ(l)(G,G′) = Ã(G,G′)�Σ(l−1)(G,G′),

where Ã(G,G′) = (1− δ̃)A(G,G′)+ δ̃I. We prove that Ã(G,G′) is also a transition

matrix with a greater second largest eigenvalue compared to the original matrix

A(G,G′).

Theorem 6.3 (Convergence rate for residual connection-resemble aggregation).

Consider a covariance matrix of GPK with the form (6.17) without non-linear trans-

formation, i.e., R = 0. Then with a stationary vector π̃(G,G′) for Ã(G,G′),

|Σ(l)
(r)(G,G′)uu′ − π̃(G,G′)�Σ(0)(G,G′)| ≤ Cαl

Furthermore, we denote the second largest eigenvalue of Ã(G,G′) and Ã(G,G′) as

λ2 and λ̃2, respectively. Then,

λ̃2 > λ2

Remark 6.1. In Theorem 6.3, we show that the second largest of the new transition

matrix Ã(G,G′) is greater than that of the original transition matrix A(G,G′). This

is consistent with what demonstrated in Theorem 1 of [109] that DropEdge alleviates

the ε-smoothing issue.
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Figure 6.2 : Convergence rate for the GPK and the GNKT. (a) Value changes of

the GPK elements as the depth grows; although their initial values are different,

they all tend to the same value as depth increases. (b) The distance changes be-

tween GPK elements and their limiting value as the depth grows; the converge rate

can be bounded by a exponential function y = exp(−0.15x). (c) Value changes

of re-normalized GNTK elements as the depth grows. (d) The distance changes

between re-normalized GNTK elements and a random element from GNTK as

the depth grows. The converge rate can be bounded by a exponential function

y = exp(−0.15x).

Since the decay speed is determined by the second largest eigenvalue of the

transition matrix [106, 107], the DropEdge, PPNP methods can slow down the

decay rate.

Analysis on residual-connection GCN

We firstly consider residual connection that is only applied on non-linear trans-

formations (MLP). In this case, the signal propagation change from Equation (6.5)

to:

h
(l)
(r)(u) = h

(l)
(r−1)(u) +

σw√
m
W

(l)
(r)φ
(
h
(l)
(r−1)(u)

)
(6.18)

As a result, the recursive equation for the corresponding GNTK can be expressed

as,

Θ
(l)
(r)(G,G′)uu′ =Θ

(l)
(r−1)(G,G′)uu′

(
Σ̇

(l)
(r)(G,G′)uu′ + 1

)
+ Σ

(l)
(r)(G,G′)uu′ (6.19)
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This formula is similar to the vanilla GNTK in the infinitely wide limit. Only an ad-

ditional residual term appears according to the residual connection. It turns out that

this term can help to slow down the convergence rate for non-linear transformation.

We then consider the effect made by the residual connection on aggregation.

Theorem 6.4 (Convergence rate for GNTK with residual connection between trans-

formations). Consider a GCN of the form (6.4) and (6.18). If A(G,G′) is irreducible

and aperiodic, with a stationary distribution π(G,G′), then there exist constant ma-

trix v and v′ depending on R, such that,

|Θ(l)
(r)(G,G′)uu′ − π(G,G′)

(
Rl(1 +

σ2
w

2
)Rlv + v′

)| ≤ Cαl

Theorem 6.4 demonstrates that even though the residual connection can slow

down the decay during non-linear transformation, it cannot stop the exponential

decay rate resulting from aggregation.

Finally, we consider the residual connection applied to both aggregation and

non-linear transformation simultaneously:

Corollary 6.2 (Convergence rate for GNTK with residual connection between ag-

gregation and transformations). Consider a GCN of the form (6.16) and (6.18). If

Ã(G,G′) is irreducible and aperiodic, with a stationary distribution π̃(G,G′), then

|Σ(l)
(r)(G,G′)uu′ − π̃(G,G′)(1 +

σ2
w

2
)Rlv| ≤ Cβl

|Θ(l)
(r)(G,G′)uu′ − π̃(G,G′)

(
Rl(1 +

σ2
w

2
)Rlv
)| ≤ Cβl

According to Corollary 6.2, the residual connection-resemble techniques can slow

down the decay speed to a certain extent, though they cannot solve exponential

trainability loss for node classification.
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Figure 6.3 : Train and test accuracy depending on the depth on different datasets.

Solid lines are train accuracy and dashed lines are test accuracy.

6.4 Experiments

6.4.1 Setup

We illustrate empirically the theoretical results obtained in section 6.3. We use

one bioinformatics dataset (i.e., MUTAG) and three citation network datasets. We

summarize the properties of datasets in Table 6.1. To verify Theorems 6.1, 6.2, and

6.4 in general, i.e., G,G′ can be two different graphs, we use the MUTAG data set.

At the same time, the dataset with only one graph, i.e., G = G′, is a special case

and can be described by our theorems in this work. The remaining three data sets

are used to verify the trainability of the network on node classification tasks.

6.4.2 Convergence Rate of GPKs and GNTKs

Theorems 6.1 and 6.2 provide theoretical convergence rates for the GPK Σ(G,G′)

and the GNTK Θ(G,G′), respectively. We demonstrate these results in Figure 6.2.

We select two graphs denoted as G3 and G7 from the MUTAG dataset. The GPK
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Table 6.1 : Details of Datasets

Dataset Graphs Nodes Classes Features Avg. nodes

MUTAG 188 - 2 - 17.9

Citeseer 1 3327 6 3703 -

Cora 1 2708 7 1433 -

Pubmed 1 19717 3 500 -

and GNTK are generated from the infinitely-wide GCNs with ReLU activation∗,

with R = 3, and L = 300. Figure 6.2(a) shows all elements of a covariance ma-

trix kernel (GPK) converge to an identical value as the depth goes larger. Figure

6.2(b) further illustrates the convergence rate of the GPK is exponential, as pre-

dicted by Theorem 6.1. Then we demonstrate the exponential convergence rate of

GNTK in Theorem 6.2 by comparing the distance between elements of the GNKT

matrix, summarized in Figure 6.2(c,d). Additionally, we verify the convergence re-

sults of GCNs with residual connection demonstrated in Theorem 6.4 and leave the

demonstration in the appendix.

6.4.3 Trainability of Ultra-Wide GCNs

We examine whether ultra-wide GCNs can be trained successfully on node clas-

sification. We conduct the experiment on a GCN [9], where we apply a width of

1000 at each hidden layer and the depth ranging from 2 to 29. Figure 6.3 displays

the train and test accuracy on various datasets after 300 training epochs. These

results show the dramatic drop on both train and test accuracy as the depth grows,

comfirming that wide GCNs lose trainability significantly in the large depth on node

classification as predicted by Corollary 6.1.

∗We use the implementation of GNTK available at https://github.com/KangchengHou/gntk

[47].
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6.5 Conclusion

We have characterized the asymptotic behavior of GPK and GNTK to respec-

tively measure the expressivity and trainability of infinitely-wide GCNs in the large

depth. We prove that both expressivity and trainability of infinitely-wide GCNs

drop at an exponential rate due to the aggregation operation. Furthermore, we ap-

ply our theoretical framework to investigate the extent to which residual connection-

resemble techniques could alleviate over-smoothing problem on node classification

tasks, including PPNP, DropEdge, and residual GCNs. We demonstrate that these

techniques can only slow down the decay speed, but unable to solve the exponential

decay problem in essence. Our theory is finally verified by the experimental results.

6.6 Proof

This section is dedicated to provide proofs of all lemmas and theorems in this

article

Lemma 6.1. Assume R=0, then for ∀u, u′,

lim
l→∞

Σ(l)(G,G′)uu′ = π(G,G′)�Σ(0)(G,G′)

where π(G,G′) ∈ R
1×nn′, satisfying,

π(G,G′)A(l)(G,G′) = π(G,G′)

Proof. When R = 0 and cu = 1
|N (u)|+1

, equation (6.7) reduces to,

Σ
(l)
(0)(G,G′)uu′ =

1

|N (u)|+ 1

1

|N (u′)|+ 1

∑
v∈N (u)∪u

∑
v′∈N (u′)∪u′

Σ
(l−1)
(0) (G,G′)vv′

In order to facilitate calculation, we define the fraction and sum operation in the

format of matrix,

�Σ
(l)
(0)(G,G′) = A(l)�Σ

(l−1)
(0) (G,G′)
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where �Σ
(l)
(0)(G,G′) ∈ R

nn′×1, is the result of being vectorized. Thus the matrix

operation A(l) ∈ R
nn′×nn′ .

This implies that the aggregate operation is the same for each layer. The next

step is to prove A(l) is a stochastic matrix (transition matrix):

∑
j

A(l)(G,G′)ij = 1.

According to Equation 6.7, we know that A(l) is a Kronecker product of two matrix,

A(l)(G,G′)uu′ =
[B(G)C(G)

]⊗ [B(G′)C(G′)
]

where B(G), C(G) ∈ R
n×n and B(G′), C(G′) ∈ R

n′×n′ .

(1) B(G) and B(G′) are diagonal matrix, which correspond to the factor 1
N (u)+1

or 1
N (u′)+1

.

B(G) =

⎛
⎜⎜⎜⎜⎝

1
N (u1)+1

. . .

1
N (un)+1

⎞
⎟⎟⎟⎟⎠

(2) The element of matrix C(G) and C(G′) are determined by whether there is a

edge between two vertexes,

C(G)ij = δ̃ij

where δ̃ij = 1 if i == j or there is edge between vertex i and j, else δ̃ij = 0.

We first use the property of matrix B and C before Kronecker product,

∑
j

[B(G)C(G)
]
ij
=

1

N (ui) + 1

∑
j

δ̃ij =
1

N (ui) + 1
(N (ui) + 1) = 1

According to the definition of Kronecker product,

∑
j

A(l)(G,G′)ij =
∑
b

∑
d

[B(G)C(G)]ab[B(G ′)C(G ′)]cd = 1

where i = a+ (c− 1)n, and j = b+ (d− 1)n.
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So far, we have proved that A(l)(G,G′) is a stochastic matrix. According to the

Perron-Frobenius Theory,

π(G,G′)A(l) = π(G,G′)

The convergence rate is governed by the second largest eigenvalue.

Since liml→∞ Al
ij(G,G′) = πj(G,G′), we have,

lim
l→∞

�Σ(l)(G,G′) = lim
l→∞

Al(G,G′)�Σ(0)(G,G′)

= Π(G,G′)�Σ(0)(G,G′)

where Π(G,G′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

π(G,G′)

π(G,G′)
...

π(G,G′)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is the nn′ × nn′ matrix all of whose rows are the

stationary distribution. Then, we can see that every element in �Σ(l)(G,G′) converges

exponentially to an identical value, depending on the stationary distribution and

initial state,

lim
l→∞

Σ(l)(G,G′)uu′ = π(G,G′)�Σ(0)(G,G′)

Lemma 6.2 ( Proposition 1 and 3 in [29]). Assume L = 0, with a Lipschitz non-

linearity φ, then,

• φ(x) = (x)+, 1− Cr(G,G′)uu′ ∼ 9π2

2r2
as r → ∞

• φ(x) = tanh(x), 1− C(r)(G,G′)uu′ ∼ β
r
as r → ∞ where β = 2E[φ′(

√
q∗z)2]

qE[φ′′(
√
q∗z)2] .

Proof. We first decompose the integral calculation in the equation 6.8 into two parts,

one is diagonal element and the other is non-diagonal element:

Σ(r)(G,G)uu = σ2
w

∫
Dz

φ2(
√
Σ(r−1)(G,G)uuz) + σ2

b
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Σ(r)(G,G′)uu′ = σ2
w

∫
Dz1Dz2

φ(u1)φ(u2) + σ2
b

For simplicity, we define qr(G) = Σ(r)(G,G)uu, qr(G
′) = Σ(r)(G

′, G′)u′u′ , and

cr(G,G′) = C(r)(G,G′)uu′ .

When φ(x) = max{0, x}. The first integration for qr(G) reduces to,

qr(G) =
σ2
w

2
qr−1(G) + σ2

b

Next step is to find the fixed-point,

lim
r→∞

qr(G) = q(G)

For all G,G′ there exists r0 such that |qr(G)− qr(G
′)| < δ for all r > r0. Then the

second integration for cr(G,G′) becomes,

cr(G,G′) =
σ2
w

∫
Dz1Dz2

φ
(√

qr−1(G)z1
)
φ
(√

qr−1(G)(cr−1(G,G′)z1 +
√
1− cr−1(G,G′)2z2)

)
+ σ2

b

qr−1(G)

To investigate the propagation of cr(G,G′), we set qr(G) = qr(G
′) = q for any r > r0,

and define,

f(x) =
σ2
w

∫
Dz1Dz2

φ
(√

qz1
)
φ
(√

q(xz1 +
√
1− x2z2)

)
+ σ2

b

q

(1) when σ2
w < 2, there is a unique fixed point cr(G,G′) = 1.

(2) when σ2
w = 2. The derivative of f(x) satisfies,

f ′(x) = 2

∫
Dz1Dz2

1z1>01xz1+
√
1−x2z2>0

So using the equation above and the condition f ′(0) = 1
2
, we can get another

formation of the derivative of f(x),

Since
∫
arcsin = x arcsin+

√
1− x2 and f(1) = 1, then for x ∈ [0, 1],

f(x) =
2x arcsin(x) + 2

√
1− x2 + xπ

2π



129

Substituting f(x) = cr(G,G′) and x = cr−1(G,G′), into expression up here, we have,

cr(G,G′) =
2cr−1(G,G′) arcsin(cr−1(G,G′)) + 2

√
1− c2r−1(G,G′) + cr−1(G,G′)π

2π

Now we study the behavior of cr(G,G′) as r tends to infinity. Using Taylor

expansion, we have,

f(x)|x→1− = x+
2
√
2

3π
(1− x)3/2 +O((1− x)5/2)

By induction analysis, the sequence cr(G,G′) is increasing to the fixed point 1.

Besides, we can replace x with cr(G,G′),

cr+1(G,G′) = cr(G,G′) +
2
√
2

3π
(1− cr(G,G′))3/2 +O((1− cr(G,G′))5/2)

Let γr = 1− cr(G,G′), then we have,

γr+1 = γr − 2
√
2

3π
γ3/2
r +O(γ5/2

r )

so that,

γ
−1/2
r+1 = γ−1/2

r (1− 2
√
2

3π
γ1/2
r +O(γ3/2

r ))−1/2 = γ−1/2
r +

√
2

3π
+O(γr)

As r tends to infinity, we have,

γ
−1/2
r+1 − γ−1/2

r ∼
√
2

3π

It means,

γ−1/2
r ∼

√
2

3π
r

Therefore, we have,

1− cr(G,G′) ∼ 9π2

2r2

When φ(x) = tanh(x), a Taylor expansion near 1 yields,

f(x) = 1 + (x− 1)f ′(1) +
(x− 1)2

2
f ′′(1) +O((x− 1)5/2)
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Denote γr = 1− cr(G,G′), then we have,

γr+1 = γr − γ2
r

β
+O(γ

5/2
l )

where β = χ2. Therefore,

γ−1
r+1 = γ−1

r (1− γr
β

+O(γ3/2
r )) = γ−1

r +
1

β
+O(γ1/2

r ).

Thus, we have,

1− c(r)(G,G′) ∼ β

l
as l → ∞

Theorem 6.1. If A(G,G′) is ireducible and aperiodic, with a stationary distribution

vector π(G,G′), then

|Σ(l)
(r)(G,G′)uu′ − π(G,G′)v| ≤ Cαl

Proof. We prove the result by induction method. For l = 0, according to the

Cauchy-Buniakowsky-Schwarz Inequality

Σ
(0)
(0)(G,G′)uu′ = h(0)

u h
(0)
u′ ≤ ||h(0)

u ||2||h(0)
u′ ||2 = 1

Thus over feature initialization, such that,

|Σ(0)
(0)(G,G′)uu′ − π(G,G′)v| < C

Assume the result is valid for Σ(l)
(r)(G,G′)uu′ , then we have,

|Σ(l)
(r)(G,G′)− π(G,G′)v| ≤ Cαl

Now we consider the distance between Σ
(l+1)
(r) (G,G′) and Cαl+1. To compute this,

we need to divide the propagation from l layer to l + 1 layer into three parts:

(i) Σ
(l)
(r) → Σ

(l)
(r+1) → · · · → Σ

(l)
(R)
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(ii) Σ
(l)
(R) → Σ

(l+1)
(0)

(iii) Σ(l+1)
(0) → Σ

(l+1)
(1) → · · · → Σ

(l+1)
(r) .

For (i), we first prove that the correlation term C(r)(G,G′)uu′ is close to 1 suffi-

ciently. Recall that,

C(r)(G,G′)uu′ = Σ(r)(G,G′)uu′/
√
Σ(r)(G,G)uuΣ(r)(G′, G′)u′u′

then we have,

1− C(r)(G,G′)uu′ =

√
Σ(r)(G,G)uuΣ(r)(G′, G′)u′u′ − Σ(r)(G,G′)uu′√

Σ(r)(G,G)uuΣ(r)(G′, G′)u′u′
(αl)

The last equation is due to the fact that every element is exponentially close to a

bounded constant.

Recall the property of MLP propagation function f(x) for x = C(r)(G,G′)uu′ ,

when C(r)(G,G′)uu′ is close to 1:

f(x)|x→1− = x+
2
√
2

3π
(1− x)3/2 +O((1− x)5/2)

This implies,

1− C(r+1)(G,G′)uu′ = 1− C(r)(G,G′)uu′ − 2
√
2

3π
(1− C(r)(G,G′)uu′)

3
2

+O(1− C(r)(G,G′)uu′)
5
2 ≤ 1− C(r)(G,G′) = O(αl)

From this result, we have,

|Σ(l)
(r+1)(G,G′)uu′ − π(G,G′)v|

= |Σ(l)
(r+1)(G,G′)uu′ − Σ

(l)
(r)(G,G′)uu′ + Σ

(l)
(r)(G,G′)uu′ − π(G,G′)v|

≤ |Σ(l)
(r)(G,G′)uu′ − π(G,G′)v|

≤ C ′αl.

Repeat the proof process, we have a relation for Σ
(l)
(R)(G,G′)uu′ at the last step of

(i),

|Σ(l)
(R)(G,G′)uu′ − π(G,G′)v| ≤ Cαl.
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Secondly, (ii) we go through an aggregation operation A(G,G′), then we have,

�Σ
(l+1)
(0) (G,G′) = A(G,G′)�Σ(l)

(R)(G,G′) = A(G,G′)(Π(G,G′)v + �O(αl))

where �O(αl) denotes a vector in which every element is bounded by αl.

Because Π(G,G′)v can be seen as a result of Al(G,G′), with a standard argument

for convergence Theorem of stochastic matrix [111], we can obtain

�Σ
(l+1)
(0) (G,G′) = Π(G,G′)v + �O(αl+1)

Therefore,

|Σ(l+1)
(0) (G,G′)− π(G,G′)v| ≤ Cαl+1.

Finally, (iii) Repeat the result in step (i), we have,

|Σ(l+1)
(r) (G,G′)− π(G,G′)v| ≤ Cαl+1.

Theorem 6.2. If A(G,G′) is ireducible and aperiodic, with a stationary π(G,G′),

then

|Θ(l)
(r)(G,G′)uu′ − π(G,G′)

(
Rlv + v′

)| ≤ Cαl

Proof. This proof has the same strategy to that of Theorem 6.1. The first step is to

under the equation 6.14 in the large-depth limit.

Θ
(l)
(r)(G,G′)uu′ = Θ

(l)
(r−1)(G,G′)uu′Σ̇

(l)
(r)(G,G′)uu′ + Σ

(l)
(r)(G,G′)uu′

According to the result of Theorem 6.1, we have already known,

Σ
(l)
(r)(G,G′)uu′ = π(G,G′)v +O(αl)

To proceed the proof, we need to work out the behavior of Σ̇(l)
(r)(G,G′)uu′ in the

large depth.
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(i) when φ(x) = max{0, x}

Recall that we define c(r+1) = f(c(r)), and we have,

f ′(x) =
1

π
arcsin(x) +

1

2

Then, at the critical line,

Σ̇(r)(G,G′)uu′ = f ′(cr(G,G′)) =
1

π
arcsin(cr(G,G′)) +

1

2

= 1− 2

π
(1− cr(G,G′))1/2 +O(1− cr(G,G′))3/2

= 1 +O(αl/2)

(ii) φ(x) = tanh(x), we have

f ′(x) = 1− (x− 1)f ′′(1) +O((x− 1)2)

At the critical line,

Σ̇(r)(G,G′)uu′ = 1 +O(αl)

Now we prove the result by induction method. For l = 0, according to the

definition and the result in Theorem 1,

Θ
(0)
(0)(G,G′)uu′ = Σ

(0)
(0)(G,G′)uu′ ≤ ||h(0)

u ||2||h(0)
u′ ||2 = 1

Thus there is a constant C, depending on G(V,E), G′(V ′, E ′), and the number of

MLP operation R, over feature initialization,

|Θ(0)
(0)(G,G′)uu′ − π(G,G′)v′| < C

Assume the result is valid for Θ(l)
(r)(G,G′)uu′ , then we have,

|Θ(l)
(r)(G,G′)uu′ − π(G,G′)(Rlv + v′)| ≤ Cαl

Now we consider the distance between Θ
(l+1)
(r) (G,G′)uu′ and π(G,G′)(R(l+1)v+ v′).

To prove this, we need to divide the propagation from l layer to l+1 layer into three

parts:
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(i) Θ
(l)
(r) → Θ

(l)
(r+1) → · · · → Θ

(l)
(R)

(ii) Θ
(l)
(R) → Θ

(l+1)
(0)

(iii) Θ(l+1)
(0) → Θ

(l+1)
(1) → · · · → Θ

(l+1)
(r) .

For (i),

|Θ(l)
(r+1)(G,G′)uu′ − π(G,G′)((lR + 1)v + v′)|

= |Σ(l)
(r+1)(G,G′)uu′ + Σ̇

(l)
(r+1)(G,G′)uu′Θ

(l)
(r)(G,G′)uu′ − π(G,G′)((lR + 1)v + v′)|

= |π(G,G′)v(1 +O(αl)) + (1 +O(αl/2))Θ
(l)
(r)(G,G′)uu′ − π(G,G′)((lR + 1)v + v′)|

≤ Cαl

Repeat the process, we have a relation for Θ
(l)
(R)(G,G′)uu′ at the last step in (i),

|Θ(l)
(R)(G,G′)uu′ − π(G,G′)((lR +R− r)v + v′)| ≤ Cαl.

Secondly, (ii) we go through an aggregation operation. Since it is can seen as a

Markov chain step,

|Θ(l+1)
(0) (G,G′)uu′ − π(G,G′)((Rl +R− r)v + v′)| ≤ Cαl+1.

(iii) Repeat the result in step (i), we have,

|Θ(l)
(R)(G,G′)uu′ − π(G,G′)((Rl +R)v + v′)|

=|Θ(l)
(R)(G,G′)uu′ − π(G,G′)(R(l + 1)v + v′| ≤ Cαl+1.

Corollary 6.1 (Informal). Consider a GCN of the form (6.4) and (6.5), with depth

L, non-linear transformations number R, an MSE loss, and a Lipchitz activation

φ(x), trained with gradient descent on a node classification task. Then the output

function follows,

ft(G) = e−ηΘ
(L)
(R)

(G,G)tf0(G) + (I − e−ηΘ
(L)
(R)

(G,G)tY)
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where Θ
(L)
(R)(G,G) ∈ R

∑NG
i=1 ni×

∑NG
i=1 ni with the expression,

Θ
(L)
(R)(G,G) =

⎛
⎜⎜⎜⎜⎝

Θ
(L)
(R)(G1, G1) · · · Θ

(L)
(R)(G1, GN)

... . . . ...

Θ
(L)
(R)(GN , G1) · · · Θ

(L)
(R)(GN , GN)

⎞
⎟⎟⎟⎟⎠

There exists a positive integer L0 such that, Θ
(L)
(R)(G,G) is singular when L > L0.

Moreover, there exist a constant C > 0 such that for all t > 0,

‖ft(G)− Y‖ > C

Proof. According to the result from [36], GNTK Θ
(l)
(r)(G,G) converges to a determin-

istic kernel and remains constant during gradient descent in the infinite width limit.

We omit proof procedure for this result, since it is now a standard conclusion in the

NTK study.

Based on the conclusion above, Lee et al. [37] proved that the infinitly-wide

neural network is equivalent to its linearized mode,

f lin
t (G) = f0(G) +∇θf0(G)|θ=θ0ωt

where ωt = θt − θ0. We call it linearized model because only zero and first order

term of Taylor expansion are kept. Since we know dynamics of gradient flow using

this linearized function are governed by,

ω̇t = −η∇θf0(G)T∇f lin
t (G)L

ḟ lin
t (G) = −ηΘ

(l)
(r)(G,G)∇f lin

t (G)L

where L is an MSE loss, then the above equations have closed form solutions

f lin
t (G) = e−ηΘ

(l)
(r)

(G,G)tf0(G) + (I − e−ηΘ
(l)
(r)

(G,G)tY)

Since Lee et al. [37] showed that f lin
t (G) = ft in the infinite width limit, thus we

have,

ft(G) = e−ηΘ
(l)
(r)

(G,G)tf0(G) + (I − e−ηΘ
(l)
(r)

(G,G)tY) (6.20)
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In theorem 6.2, we have shown Θ
(l)
(r)(G,G′) converges a constant matrix at an expo-

nential rate when l and r are fixed. the GNTK Θ̂
(l)
(r)(G,G) can be written as,

Θ̂
(l)
(r)(G,G) =

⎛
⎜⎜⎜⎜⎝

Θ
(l)
(r)(G1, G1) Θ

(l)
(r)(G1, G2 · · · Θ

(l)
(r)(G1, GN)

...

Θ
(l)
(r)(GN , G1) Θ

(l)
(r)(GN , G2 · · · Θ

(l)
(r)(GN , GN)

⎞
⎟⎟⎟⎟⎠

According to equation 6.20, we know that,

||ft(G)− Y|| = ||e−ηΘ
(l)
(r)

(G,G)t(f0(G)− Y)||

According to Theorem 6.2, there exists a l0 such that, for any l > l0 GNTK

between any two graphs converges to a constant matrix,

Θ
(l)
(r)(Gi, Gj) = Θ(Gi, Gj)

Then the whole GNTK Θ̂
(l)
(r)(G,G) is singular. Let Θ̂

(l)
(r)(G,G) = QTDQ be the

decomposition of the GNTK, where Q is an orthogonal matrix and D is a diagonal

matrix. Because Θ̂
(l)
(r)(G,G) is singular, D has at least one zero value dj = 0, then

||ft(G)− Y|| = ||QT (ft(G)− Y)Q|| ≥ ||[QT (f0(G)− Y)Q]j||

Theorem 6.3. Consider a covariance matrix of GPK with the form (6.17) without

non-linear transformation, i.e., R = 0. Then with a stationary vector π̃(G,G′) for

Ã(G,G′), such that

|Σ(l)
(r)(G,G′)uu′ − π̃(G,G′)�Σ(0)(G,G′)| ≤ Cαl

Furthermore, we denote the second largest eigenvalue of Ã(G,G′) and Ã(G,G′) as

λ2 and λ̃2, respectively. Then,

λ̃2 > λ2
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Proof. According to the aggregation function for covariance matrix, we have

�Σ(l)(G,G′) = (1− δ)A(G,G′)�Σ(l−1)(G,G′) + δ�Σ(l−1)(G,G′)

= ((1− δ)A+ δI)�Σ(l−1)(G,G′)

:= Ã(G,G′)

Since new aggregation matrix Ã(G,G′) is a stochastic matrix, which can seen from,

∑
j

Ã(G,G′)ij = (1− δ)
∑
j

A(G,G′)ij + δ
∑
j

Iij = 1

The new aggregation can slow down the convergence rate can seen from considering

their eigenvalues. Suppose the eigenvalues of original matrix A(G,G′) are {λ1 >

λ2 > · · · > λnn′}. We already know that the maximum eigenvalue is λ1 = 1, and the

converge speed is governed by the second largest eigenvalue λ2. Now we consider

the second largest eigenvalue λ̃2 of matrix Ã:

λ̃2 = (1− δ)λ2 + δ = λ2 + δ(1− λ2) > λ2

Since λ2 < λ̃2 < 1, the convergence speed will be slow down, through it is still

exponential convergent.

For the limit behavior of Σ(l)
(r)(G,G′)uu′ as l tends to infinity, we can directly use

the proof strategy from Theorem 1 and 2.

Theorem 6.4. Consider a GCN of the form (6.4) and (6.18). If A(G,G′) is irre-

ducible and aperiodic, with stationary π(G,G′), then

|Θ(l)
(r)(G,G′)uu′ − π(G,G′)

(
Rl(1 +

σ2
w

2
)Rlv + v′

)| ≤ Cαl

Proof. According to the signal propagation equation 6.18. We have,

qr(G) = qr−1(G) +
σ2
w

2
qr−1(G) = (1 +

σ2
w

2
)qr−1(G)

Since σ2
w > 0, qr(G) grows at an exponential rate.
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Now, we turn to compute the correlation term cr(G,G′). For convenience, we

suppose qr(G) = qr(G
′). Then,

cr+1(G,G′) =
Σr+1(G,G′)
qr+1(G)

=
1

1 + σ2
w

2

Σr(G,G′)
qr(G)

+
1

1 + σ2
w

2

σ2
w

2
f(cr(G,G′))

=
1

1 + σ2
w

2

cr(G,G′) +
σ2
w

2

1 + σ2
w

2

f(cr(G,G′))

Using Taylor expansion of f near 1, as have been done in the proof of Lemma 2,

f(x)|x→1− = x+
2
√
2

3π
(1− x)3/2 +O((1− x)5/2)

we have,

cr+1(G,G′) = cr(G,G′) +
2
√
2

3π

σ2
w

2

1 + σ2
w

2

[
(1− cr(G,G′)3/2 +O((1− cr(G,G′)5/2))

]

Note that it is similar to the case of MLP without residual connection:

cr+1(G,G′) = cr(G,G′) +
2
√
2

3π

[
(1− cr(G,G′)3/2 +O((1− cr(G,G′)5/2))

]

Following the proof diagram in Theorem 1 and 2, we can obtain the behavior of

Σ
(l)
(r)(G,G′)uu′ and Θ

(l)
(r)(G,G′)uu′ in the large depth limit,

|Σ(l)
(r)(G,G′)uu′ − π(G,G′)

(
(1 +

σ2
w

2
)Rlv
)| ≤ Cαl

|Θ(l)
(r)(G,G′)uu′ − π(G,G′)

(
Rl(1 +

σ2
w

2
)Rlv
)| ≤ Cαl
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In Chapter 3, we studied the expressive power of deep dropout networks under

the mean-filed theory. Both information propagation with feed-forward and gra-

dient back-propagation were studied in the infinite width limit. In particular, we

characterized the back-propagation process without gradient independence assump-

tion and found that both gradients metric with a single input and a pair of inputs

are determined by a same quantity. Furthermore, a better empirical formula that

can describe the trainable length for deep dropout networks was figured out through

performing experiments on the finite-width but wide networks with gradient descent.

In Chapter 4, we investigated the optimization property of orthogonally-initialized

networks through the neural tangent kernel. In the infinite wide limit, the NTK of

networks with orthogonal initialization converges to the same deterministic kernel of

a Gaussian initialized network both before training and under gradient descent train-

ing. With this result, we found the dynamics including training loss and training

accuracy of orthogonally initialized networks behave similarly to those of networks

with Gaussian initialization. We further confirm this conclusion by conducting ex-

periments on finite-width networks with orthogonal and Gaussian initialization.

In Chapter 5, we worked on the optimization and generalization of deep linear

networks for binary classification in the large learning rate regime. With help of

NTK, we derived a formula that can describe the dynamics of both linear predictor

and linear network with wide width. We showed that there is a catapult phase
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for deep linear networks with logistic loss. In this phase, the gradient descent can

find a flatter minimum than that can be found in small learning rate phase. With

empirical evidence, we found that best generalization performance can be obtained

in the catapult phase. Besides, the best performance is typically achieved with

learning rate annealing strategy.

In Chapter 6, we characterized the expressivity and trainability of deep and

wide graph convolutional networks (GCNs). Under the mean-field theory and NTK

theory, we found that both expressivity and trainability described by Gaussian pro-

cess kernel and Graph neural tangent kernel respectively, drop at an exponential

rate, in the infinite-width limit. In addition, we extend our theoretical framework

to the techniques that can deepen GCNs, such as DropEdge and residual connec-

tions. Even though, these techniques can mitigate the exponential decay problem,

they can solve it in essence. We use several experiments to support our theoretical

conclusions.

7.2 Future Work

In addition to the study on the ultra-wide networks (Chapters 3, 4, 5 and 6)

in this thesis, there are several directions where we can make breakthroughs in the

future, which are summarized as follows,

i. For learning setting discussed in Chapters 3, 4, and 5 that deal with the

optimization property of ultra-wide networks focus on the supervised learning

setting which is too basic with limited application scenarios. On the contrary,

unsupervised learning can produce richer applications. However, it is a difficult

thing to study its optimal properties. Therefore, it would be meaningful to

apply NTK technology to unsupervised learning.

ii. While the work introduced on Chapter 5 concentrates on the large learning
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rate for linear networks in the binary classification, there are several remaining

open questions. For non-linear networks, the effect of a large learning rate is

not clear in theory. In addition, the stochastic gradient descent algorithm also

needs to be explored when the learning rate is large. We leave these unsolved

problems for future work.

iii. In Chapter 6, we show that deep GCN suffer from the exponential decay prob-

lem on both expressivity and trainability at large depth. The fundamental

reason for this problem is that the matrix describing the information trans-

mitted by the neighbor nodes of the graph network is a probability transition

matrix. How to solve the problem of rapid loss of information is currently the

most core problem in the graph network. It is a potential direction to use

percolation model to try to solve this problem.
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