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Abstract

The horizontal axis wind turbine (HAWT) is considered as the forefront of modern
technology due to its reliability and cost-effectiveness. However, the efficiency of wind
turbines is sometimes not at the desired level due to inefficient extraction of power from
the wind by the turbine blades. Small wind turbines have emerged as a popular renewable
energy source for remote sites and rural areas. Critical parameters influence the
aerodynamics performance of small-sized HAWT, such as atmospheric conditions and
the wind blade’s geometry. The location also wields a significant effect on the annual
energy production of wind turbines. When designing the HAWT for a specific area or
region, accounting for environmental conditions could improve the power produced.
This study aims to optimize the performance of a small HAWT with 20 kW capacity
under local wind conditions in rural New South Wales (NSW). Five rural locations in
NSW have been selected for this study according to wind data availability. This study
addresses the gap in our knowledge of combining wind turbine shape design and the
available wind resources in Australia using updated and refined methodologies to
maximize the annual energy production (AEP). One of the key objectives of this study is
to understand the aerodynamics performance of small-scale HAWT under different
conditions. The topic was investigated using computational fluid dynamics (CFD)
modelling to understand the main aerodynamics characteristics of each section along the
blade. Ansys Fluent (version 18.2, Canonsburg, PA, USA) was used to examine the
aerodynamics performance of the HAWT. Four Reynolds Averaged Navier-Stokes
(RANS) turbulence models, namely the Realizable k-¢, k-0 SST, Spalart-Allmaras and
Transition SST models, are specifically researched. This is done to assess the ability to
predict the flow over the wind turbine under different wind velocities where the flow
varies from the attached to separated flow conditions. The CFD model was validated
using the NREL CER measurement data. The results demonstrate that all RANS models
expect Realizable k-& can well predict the pressure coefficient in the area where the flow
is still attached. The differences between turbulence models become significant as wind
speed increases. The Transition SST model does agree with the experimental data on the
prediction of pressure coefficient airfoil. The best performing CFD model will examine
the mechanical output with different rotational speeds and variable pitch angles for the
baseline wind turbine based on this numerical validation.

This study also highlights the feasibility of wind potential at five rural sites in NSW,
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specifically Ballina, Merriwa, Deniliquin, Yanco, and Bega areas. The local wind
conditions can fluctuate daily in many rural environments, and seasonal variations are
significant. Therefore, accurate wind data models are necessary to find the best possible
location for a wind turbine in an urban environment. The types of wind speed distribution
function dramatically affect the output of the available wind energy and wind turbine
performance at a particular site. Consequently, the accuracy of applying the four
probability density functions was evaluated, namely Rayleigh, Weibull, gamma, and
lognormal distributions. The outcomes showed Weibull provided the most accurate
distribution.

Several numerical methods are applied to estimate the Weibull parameters depending on
wind data measurement at the five sites. The accuracy and performance of numerical
models have been evaluated using statistical indicators. The results showed that
Deniliquin employed the maximum scale and shape parameters, while the minimum scale
and shape parameters were utilized at the Bega area. Assessment of power density
indicated that Deniliquin had a marginal wind speed resource, while Ballina, Bega, and
Merriwa had poor wind resources. The wind data model of shape and scale parameters of
2.096 and 5.042 m/s, respectively, were used to improve the overall optimization process.
The aerodynamics shape of the rotor was optimized to maximize the AEP in the
Deniliquin region. The HARP_ Opt (National Renewable Energy Laboratory, Golden,
CO, USA) specifically enhanced the design variables concerning the shape of the blade,
rated rotational speed, and pitch angle. The pitch angle remained at 0° while the rising
wind speed improved rotor speed to 148.4482 rpm at rated speed. This optimization
improved the AEP rate by 9.068% when compared to the original NREL design.
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X opserved Frequency of observations
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Xpredicted Frequency of predicted value from probability density function
E,; Energy pattern factor
U3 Mean of wind speed cubes
A Area of actuator disc
p Output power
Ve Free wind speed
a Axial induction factor
Cpower Power coefficient
c(r) Chord length
B(r) Twist angle
0 Flow angle
a Tangential induction factor
o Angle of attack
0, Pitch angle
F, Projected normal aerodynamics force on the rotor blade
F, Projected tangential aerodynamics force on the rotor blade
I Lift force
d Drag force
C Tangential force coefficient
dT Thrust force
Cr Thrust coefficient
B Number of blades
o(r) Local solidity
Ugut.in Cut-in wind speed
Ut out Cut-out wind speed
X, . Lower limit for the chord length and the twist angle
rmn
X; max Upper limit for the chord length and the twist angle
PD Wind power density
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Reference height

Power exponent

Desired height

Xix



	Title Page
	Certificate of Original Authorship
	Acknowledgements
	List of Publications
	Abstract
	Contents
	List of Tables
	List of Figures
	Definitions and Abbreviations



