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Abstract

The (α, β)-k Feature Set Problem (FSP) is a combinatorial optimization-based approach for select-

ing features. The (α, β)-k FSP selects a set of features such that the set maximizes the similarities

between entities of the same group and the differences between entities of different groups. This

study develops two heuristic algorithms for the (α, β)-k FSP. We tested the algorithms on 11

real-world instances ranging from medium to large. The computational results demonstrate the

proposed heuristics compete well against the standard solver CPLEX.
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1 Introduction

The (α, β)-k Feature Set Problem (FSP) is a combinatorial optimization-based approach proposed

in 2004 for the feature selection (Cotta et al., 2004). The (α, β)-k FSP aims to select the minimum

number of features in order to distinguish two groups (classes) of data such that the selected set of

features maximizes the similarities between entities of the same group and the differences between

entities of different groups. The problem is a generalization of the k-Feature Set Problem, which is

proven NP-Hard (Cotta et al., 2004). Hence, the (α, β)-k FSP is also NP-Hard.

Generally speaking, feature selection, also known as variable selection, attribute selection or vari-

able subset selection, is to choose a subset of features, out of a set of candidate features, such that

the selected set best represents the whole in a particular aspect. Removing irrelevant or redundant

features, and reducing the dimensionality of the dataset are two reasons to perform feature selec-

tion (Paula, 2012). These criteria are both interesting and important because given the size of the

datasets we encounter in many applications, they ease analysis, utilization, and interpretation of high-

dimensional datasets. One such example is the studies by Inostroza-Ponta et al. (2008); Inostroza-

Ponta et al. (2011). The authors modeled a visualization problem as a Quadratic Assignment Problem.

Feature selection has a broad range of applications including machine learning and prediction,

and in a variety of domains such as urban transport network planning (Ferchichi et al., 2009), stock

price prediction (Meiri and Zahavi, 2006; Tsai and Hsiao, 2010), and computational biology and

bioinformatics (Albrecht, 2006; Ravetti and Moscato, 2008; Ravetti et al., 2009; Ravetti et al., 2010;

Fan and Chaovalitwongse, 2010; Paula et al., 2011; Haque et al., 2016).

There are several drawbacks and limitations in the available solution methods of the (α, β)-k FSP.

The major limitation of the exact methods is that they are unable to solve medium and large instances

(see for example Cotta et al. (2004); Berretta et al. (2008)), and not to mention that many applications
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of (α, β)-k FSP involve large datasets. On the heuristic side, the algorithms of Paula (2012) benefit

from general and randomized local searches developed for the traditional combinatorial optimization

problems. Moreover, the algorithms were not tested on large instances. The present study is motivated

by the computational difficulty of the (α, β)-k FSP, and lack of efficient solution methods, as well as

broad range of applications of (α, β)-k FSP. The major contributions of the present study can be

summarized as follow: (1) developing mathematical properties for the (α, β)-k FSP, and (2) proposing

heuristic solutions in order to efficiently solve medium and large instances of the problem.

The remaining of this paper is organized as follows. Section 2 defines the (α, β)-k FSP. Several

mathematical properties of the (α, β)-k FSP are discussed in Section 3. Section 4 develops two heuristic

algorithms for solving the (α, β)-k FSP. Computational results are discussed in Section 5. Finally, the

paper concludes with the outcomes of the study and a few research directions.

2 Problem statement

Assume two groups (classes) of data exist, for example, group 1 and group 2, and a set J =

{1, . . . , n}, |J | = n of features each with a profile Pj , ∀j ∈ J (P = {Pj}, ∀j ∈ J) is given. A

feature profile Pj includes a set of discrete values of either 0 or 1. Furthermore, let S1 and S2

denote the set of all entities in group 1 and group 2, where S1 = {s11, . . . , s1n1}, |S1| = n1, and

S2 = {s21, . . . , s2n2}, |S2| = n2. Let I1 and I2 represent sets of pairs of entities of different groups, and

of the same group. Then I1 includes all pairs of entities (every combination of size two of entities)

belonging to different groups, and I2 includes all pairs of entities belonging to the same group. Sets

I1 and I2 can be formed by using Equations (1) and (2).

I1 = {(s11, s21), . . . , (s11, s2n2), . . . , (s1n1 , s2n2)} (1)

I1 is the set of all pairs of entities (s1t, s2t′), where s1t ∈ S1, ∀t = 1, . . . , n1, and s2t′ ∈ S2, ∀t′ = 1, . . . , n2.

I2 = {(s11, s12), . . . , (s11, s1n1), . . . , (s21, s22), . . . , (s21, s2n2)} (2)

Similarly, I2 includes all pairs of entities (s1t, s1t′), where (s1t, s1t′) ∈ S1,∀t, t′ = 1, . . . , n1, t 6= t′, and

(s2t, s2t′) ∈ S2, where (s2t, s2t′) ∈ S2, ∀t, t′ = 1, . . . , n2, t 6= t′.

Given these definitions and notations, the (α, β)-k FSP is defined with three positive integer

parameters α, β, and k. The value of α represents the minimum number of features that must explain

the differences between any pair of entities of different groups. The value of β represents the minimum

number of features that must explain the similarities between any pair of entities of the same group.

Finally, k represents the number of features to be selected. More precisely, the (α, β)-k FSP has

the following characteristics: (1) every element in I1 must be “explained” (covered) by at least α

features, (2) a set J∗ ⊆ J of features with the minimum cardinality, among all alternative sets, must

be selected, and (3) every element in I2 must be “explained” (covered) by at least β features, where

1 ≤ β ≤ β∗, β ∈ Z+, and β∗ is the maximum value of β.

Let us explain how we can build an instance of the (α, β)-k FSP from a dataset with two groups

of data. Table 1 shows a dataset that includes two groups of data. Group 1 consists of three healthy

samples (or entities), and group 2 consists of three disease samples (the number of entities in the

groups do not need to be equal). The last row in Table 1 states the label of groups. Furthermore,

the dataset includes five features, which may represent genes, probes, etc. The entities of Table 1

may refer to discretized gene expression levels. Here, a feature may be up-regulated (associated with
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Table 1: The dataset with two groups (classes) of data.
Feature Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6
A 0 0 0 0 1 0
B 1 1 1 1 0 1
C 1 1 1 0 1 0
D 1 1 1 1 0 0
E 0 0 1 0 0 0
Group 1 1 1 2 2 2

a value of 1) or down-regulated (associated with a value of 0) in a sample.

Applying Equations (1) and (2) results in I1 = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}
and I2 = {(1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (5, 6)}. The profile of feature j can be modeled by a set of

binary values. More precisely, Pj = {aij ∈ {0, 1}, ∀i ∈ I1 ∪ I2,∀j ∈ J}. Therefore, for element i ∈ I1
(pairs of entities of different groups), if feature j has different values of expression level for the pair

(for example, one entity has a value of 1 and the other 0), then aij = 1. Otherwise, aij = 0.

Following the problem’s statement that a minimum cardinality set of features must be selected

such that the similarities between entities of the same group and the differences between entities of

different groups are maximized. We follow a three-phase decomposition-based approach for solving

the (α, β)-k FSP, which has also been used in the study by Paula (2012). This three-phase approach

decomposes the (α, β)-k FSP into three combinatorial optimization problems:

• Phase 1. Obtaining the maximum value of α (i.e. α∗ ∈ Z+) such that there exists a feasible

solution for an instance of the (α, β)-k FSP. The value of α∗ depends on the instance, however,

α∗ can be derived in polynomial time: α∗ = mini∈I1(αi), where αi = Σj∈Jaij ,∀i ∈ I1.

• Phase 2. Obtaining the minimum number of features k∗ necessary to explain the dichotomy

between the groups, considering that at least α∗ features do so for each pair of entities of different

groups. This problem is known the Min k (α, β)-k Feature Set Problem (FSP) (Paula, 2012).

Any positive integer value less than α∗ is still possible and will lead to a different value for k∗.

• Phase 3. Obtaining the maximum value of β (i.e. β∗ ∈ Z+) such that a set of k∗ features are

selected to explain the dichotomy between the groups, and at least α∗ features do so for each pair

of entities of different groups. This problem is known the Max β (α, β)-k Feature Set Problem

(FSP). This phase maximizes the internal consistency of the entities in the same group (a more

robust feature set). Here, α∗ and k∗ are parameters.

3 Mathematical properties

We developed several properties for the Min k (α, β)-k FSP and Max β (α, β)-k FSP. Later in Section 4

we will utilize these properties in order to solve those problems.

Proposition 1. An alternative optimal solution for the Min k (α, β)-k FSP can be obtained by in-

cluding Equation (3) in integer program of the problem, and performing a re-optimization, where k∗

is the optimal objective function value, and J∗ is the set of features in an existing optimal solution.

Proof. Observe that adding Equation (3) to the integer program of Min k (α, β)-k FSP ensures that

the so obtained optimal solutions will not be explored.
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∑
j∈J∗

xj 6= k∗ (3)

After performing a re-optimization two outcomes are possible: (1) the re-optimization process leads to

a new optimal solution for the Min k (α, β)-k FSP, which implies that we may keep obtaining a pool

of optimal solutions (one new optimal solution per each re-optimization) or (2) the re-optimization

process leads to an infeasible status, which means we have obtained all optimal solutions. �

Proposition 2. The Max β (α, β)-k FSP is the problem of selecting the best solution, among all

optimal solutions of the Min k (α, β)-k FSP, according to the objective function of z = maxβ.

Proof. The proof is followed by observing that any optimal solution for the Min k (α, β)-k FSP is also

feasible for the Max β (α, β)-k FSP. This is observed by the proposed three-phase solution method. �

Proposition 3. Given an optimal solution for the Min k (α, β)-k FSP, a feasible solution for the Max

β (α, β)-k FSP may be obtained in polynomial time.

Proof. Given an optimal solution for the Min k (α, β)-k FSP, we know that this solution is feasible

for the Max β (α, β)-k FSP. Then, we need to calculate the value of β. Equation (4) shows this.

β = min
i∈I2

(
∑
j∈J∗

aijxj) (4)

Finally, notice that Equation (4) may easily be calculated in O(n). �

Proposition 4. Given all optimal solutions for the Min k (α, β)-k FSP, the Max β (α, β)-k FSP will

reduce to a sorting problem, and hence, can be solved in polynomial time.

Proof. Proposition 2 states that the Max β (α, β)-k FSP is to select the best solution, according to

maximizing the value of β, among all optimal solutions of the Min k (α, β)-k FSP. Given all optimal

solutions of the Min k (α, β)-k FSP, we have a pool of all feasible solutions for the Max β (α, β)-k FSP,

from which the solution with the maximum value of β can be performed by a sorting algorithm. �

It should be noted that because the Min k (α, β)-k FSP is an integer program, obtaining all optimal

solutions is generally NP-Complete. Nevertheless, we discuss in Section 5 that even obtaining a few

optimal solutions may lead to very good quality solutions for the Max β (α, β)-k FSP.

4 Proposed solution methods

This section develops heuristic algorithms to solve these problems.

4.1 Solving the Min k (α, β)(α, β)(α, β)-k Feature Set Problem

Algorithm 1 summarizes a heuristic algorithm for the Min k (α, β)-k FSP. The algorithm obtains a

lower bound, and constructs a feasible solution by repairing the lower bound. The feasible solution is
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improved by applying a local search algorithm.

Algorithm 1: The heuristic algorithm for solving the Min k (α, β)-k FSP.

Input: An integer program of the problem; set J of features, and set I1 of elements; parameter α.

Output: A feasible solution (set J∗) for the Min k (α, β)-k FSP.

Step 1: Solve linear programming relaxation, and let x∗ = {xj ,∀j ∈ J} be the optimal solution;

if xj ∈ {0, 1},∀j ∈ J then
Stop, an optimal solution is obtained;

end

else
Step 2: Set certain xj to take a value of 1, and solve a sub-problem over the set of available

features and “yet to be covered” elements;

if the solution is not optimal then
Step 3: Apply the removal local search algorithm to remove redundant features;

end

end

4.1.1 Obtaining a lower bound

In order to obtain a lower bound for the Min k (α, β)-k FSP we solve the linear programming relaxation

of the Min k (α, β)-k FSP. Because the Min k (α, β)-k FSP is an unweighted problem where all features’

costs are one, then a tighter integer lower bound may be obtained by dz∗e ∈ Z+. Notice that solving

the linear programming relaxation may not lead to an integer solution. If 0 < xj < 1, ∃j ∈ J , we have

at least one non-negative variable. Therefore, this solution is not feasible for the Min k (α, β)-k FSP.

Nevertheless, this procedure may result in a partially built solution for the Min k (α, β)-k FSP.

4.1.2 Obtaining a feasible solution

We build a feasible solution by keeping certain features into the solution, and solving a sub-problem

(of the original problem) over available features and “yet to be covered” elements. Notice that because

we keep a set of features in the solution, and that we do not have a guarantee that this set is part of

an optimal set, redundant features may be forced into the solution. Hence, we may further improve

the solution by removing redundant features. This is discussed in Section 4.1.3.

4.1.3 Improving the feasible solution

This procedure includes looking for redundant features in a feasible solution, and removing them in

order to further improve the solution by investigating whether removing feature j from the feasible

solution leaves the solution feasible. The stopping criterion of the algorithm is whenever removing

features does not lead to a feasible solution or as soon as there is no redundant feature.

4.2 Solving the Max βββ (α, β)(α, β)(α, β)-k Feature Set Problem

We utilize Proposition 2, which states that the optimal solution for the Max β (α, β)-k FSP lies in the

pool of all optimal solutions of the Min k (α, β)-k FSP, in order to design and implement an efficient

heuristic algorithm for the Max β (α, β)-k FSP. The proposed heuristic algorithm combines both exact

and heuristics, and has two major steps. Step 1 heuristically generates a feasible initial solution, and
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Step 2 improves the solution by an exact method. Algorithm 2 summarizes the proposed procedure.

Algorithm 2: The heuristic algorithm to solve the Max β (α, β)-k FSP.

Input: Integer programs for the problems; set J of features; set J∗ = {}, J∗ ⊆ J of selected features;

sets I1 and I2 of elements; parameters α and p.

Output: An improved solution (set J∗ ⊆ J of features) for the Max β (α, β)-k FSP.

Step 1. Constructing a feasible initial solution.

Obtain a pool P = {P1, . . . , Pp} of optimal solutions for the Min k (α, β)-k FSP;

Given J̃ ⊂ J the set of common features across all solutions of the pool, construct a partially built

solution for the Max β (α, β)-k FSP by including J̃ , i.e. J∗ = J∗ ∪ J̃ ;

if J∗ is not feasible then
Solve a sub-problem (of the original problem) over the sets of available features and yet to be

covered elements; let J̃ be the set of features in the optimal solution of the sub-problem;

J∗ = J∗ ∪ J̃ ;

end

Step 2. Improving the feasible initial solution.

Apply an exact solver/algorithm to solve the original Max β (α, β)-k FSP, given the set J∗ of features

as a starting solution;

Report J∗;

4.2.1 Constructing a feasible initial solution

From the pool of p optimal solutions the algorithm extracts those features that are common across all

optimal solutions. Because these features may have a high probability to be in an optimal solution

for the Max β (α, β)-k FSP, or at least it can be argued that they are part of a very good quality

feasible solution. Let J̃ ⊂ J denotes the set of common features. Notice that J̃ may not be a feasible

solution. Therefore, we need to add additional features in order to obtain a feasible solution.

Adding additional features may be performed by solving a sub-problem of the original Max β

(α, β)-k FSP, which has a reduced number of features and elements because a set of features have

already been chosen to be in a solution. Indeed, the sub-problem is generated by including sets of

available features and yet to be covered elements. The union of the set of features obtained through

solving this sub-problem and J̃ forms a feasible (initial) set of features for the Max β (α, β)-k FSP. If

the sub-problem of Step 1 is large, and therefore cannot be solved in a short time, recursive applications

of Algorithm 2 can be performed. If we cannot solve the Min k (α, β)-k FSP to optimality, we can

utilize the best obtained solutions.

4.2.2 Improving the feasible initial solution

After generating a feasible solution for the Max β (α, β)-k FSP we can further improve the solution.

Because our focus has been on benefiting the available standard solvers for this purpose, we provide

the feasible initial solution as a starting solution to the solver CPLEX. In other words, Step 2 solves

the original Max β (α, β)-k FSP, and may yield proven optimal solutions. It is worth emphasizing

that according to our computational results of Section 5, the solver CPLEX is unable to solve large

instances of Max β (α, β)-k FSP in a reasonable amount of time; even worse, it is unable to obtain

feasible solutions for several instances within 10 hours of running. Having said that, Step 1 leads to

very high quality solutions, particularly for large instances of Max β (α, β)-k FSP.
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Table 2: Basic information of 11 real-world datasets.
Instance No. of

features
No. of
entities

|J | |I1| |I2| α∗ Reference

ADMF 686 83 686 1720 1683 86 Paula et al. (2011)
DS 73 15 73 56 49 50 Lockstone et al. (2007)
PD1 17099 105 17097 2750 2710 3970 Scherzer et al. (2007)
PD2 1674 25 1674 144 156 760 Lesnick et al. (2007)
PC 3556 171 3556 7290 7245 229 Chandran et al. (2007)
SM 525 1219 525 273834 468537 22 Charlesworth et al. (2010)
Class 0-vs-all 1969 450 1969 32400 68625 354 Haque et al. (2016)
Class 1-vs-all 3304 450 3304 32400 68625 683 Haque et al. (2016)
Class 2-vs-all 4243 450 4243 32400 68625 1016 Haque et al. (2016)
Class 3-vs-all 5436 450 5436 32400 68625 1394 Haque et al. (2016)
Class 4-vs-all 2005 450 2005 32400 68625 387 Haque et al. (2016)

5 Computational results

We implemented Algorithm 1 and Algorithm 2 in the programming language Python 2.7 via the

solver CPLEX 12.5.0 Python API. The computing resource has Linux Ubuntu 14.04 LTS operating

system with 32 GB of memory and 12 cores of Intel R©Xeon CPU E5-1650 at 3.5 GHz; however,

for all computational experiments we utilized only one thread (processor). Two sets of real-world

instances were considered to evaluate the performance of the algorithms. The first set, which includes

six biological instances ranging from small to large, was previously studied by Paula (2012), and the

second set, which includes five large face recognition instances, truly represents actual size of the

datasets we may encounter in applications of the (α, β)-k FSP. Obtaining optimal solution for the

instances of the second set, or even good quality solutions, has been a challenge for the CPLEX.

Basic information regarding these instances is shown in Table 2. The first three columns show the

instance name, number of features, and total number of entities/samples (of both group 1 and group

2). In each dataset, we have two groups of data: group 1 (e.g. Healthy or Control) and group 2 (e.g.

Disease or Case; see Section 2 for more details). The next four columns provide parameters of the

Min k (α, β)-k FSP and Max β (α, β)-k FSP associated with each instance. Here, column “|J |” gives

the total number of features, column “|I1|” and “|I2|” are total number of pairs of entities of different

and of the same groups. Column “α∗” shows the optimal value of parameter α.

5.1 Results of solving the Min k (α, β)-k Feature Set Problem

Table 3 reports the computational results of Algorithm 1 on those 11 instances. The heuristic algorithm

is very competitive compared to the standard solver CPLEX, and obtains very high quality solutions.

Several points are worth discussing. First, performance of the heuristic algorithm is very close to

the solver CPLEX, whereas it requires almost 14 times less computation time. Second, on average,

Algorithm 1 obtains solutions within 0.02% from optimality, which is quite promising. Third, the

number of non-integer variables (shown in column “No. of non-integers”) is a tiny fraction of the

total number of variables, in particular, for large instances. This shows the role of the lower bound

in constructing a partially built solution. Fourth, the reported lower bound (shown in column “LB”)

is of excellent quality: except for instances SM and Class 4-vs-all, for the remaining instances the

value of lower bound equals the optimal solution. More importantly, for these two instances the lower

bound is very close to the optimal solution.

Columns “CPLEX” refer to the outcomes of the solver CPLEX including the objective function
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Table 3: Computational results for solving 11 instances of Min k (α, β)-k FSP, where α = α∗.

Instance α∗ k∗ CPLEX Heuristic (Algorithm 1)
k Time(s) Gap(%) k Time(s) Gap(%) No. of non-integers LB

ADMF 86 292 292 0.57 0 292∗ 1.29 0.00 21 292
DS 50 65 65 0 0 65∗ 0.03 0.00 0 65
PD1 3970 9807 9807 106.59 0 9808 80.36 0.01 39 9807
PD2 760 1265 1265 0.11 0 1265∗ 0.88 0.00 0 1265
PC 229 725 725 118.41 0 726 21.94 0.14 39 725
SM 22 128 128 593.12 0 128∗ 129.87 0.00 42 127
Class 0-vs-all 354 1116 1117 36000 0.11 1116∗ 155.96 0.09 53 1116
Class 1-vs-all 683 2220 2220 375.16 0 2220∗ 284.75 0.00 38 2220
Class 2-vs-all 1016 3154 3154 1998 0 3155 651.47 0.03 38 3154
Class 3-vs-all 1394 4395 4395 3305.22 0 4395∗ 1368.77 0.00 32 4395
Class 4-vs-all 387 1324 1324 208.14 0 1324∗ 150.33 0.00 33 1323
Average 3882.30 0.01 258.70 0.02

value, computation time in second, and optimality gap in %. For Algorithm 1, column “k” is the best

objective function value obtained by the algorithm (the optimal solutions were highlighted by an “∗”),

“Time(s)” denotes the computation time in second, and “Gap(%)” is calculated as k−k∗
k∗ × 100, where

k∗ is the best available solution for the Min k (α, β)-k FSP. Also, “No. of non-integers” is the number

of fractional variables (of solving the linear programming relaxation), and “LB” is the lower bound.

5.2 Results of solving the Max β (α, β)-k Feature Set Problem

Table 4 shows the outcomes of the proposed heuristic presented in Algorithm 2 over 11 instances

of Table 2. According to Table 4, the heuristic algorithm obtains proven optimal solutions for all

instances in the first set, as well for all instances in the second set except Class 0-vs-all. In addition to

this, for all instances of the second set including Class 0-vs-all, the algorithm obtains better solutions

than the CPLEX, and that in a much shorter time. We should emphasize that the instances of the

second set are those that the solver CPLEX encounters a great difficulty in solving them.

We also reported the outcomes of the solver CPLEX (here, “-” denotes the CPLEX was stopped

at the time limit of 36,000 seconds without obtaining even a feasible solution). Column |J̃ | shows

the number of common features across all solutions of the pool, β0 is the initial value of β, which

is calculated for the feasible solution obtained in Step 1 of Algorithm 2, and β is the best value of

the objective function, which is obtained in Step 2 (optimal values were highlighted by an asterisk).

Columns “Time(s)” and “Gap(%)” denote the computation time in second, and gap calculated as
β−β∗
β∗ × 100, where β∗ is best values of β.

Note that the proposed heuristic algorithm obtains proven optimal solutions for 10 instances out

of 11, whereas the solver CPLEX obtains optimal solution for only 6 instances. Furthermore, for

instances Class 0-vs-all and Class 2-vs-all, the CPLEX is unable to deliver feasible solutions within

10 hours of running. Also, the average computation time of the heuristic algorithm is less than the

CPLEX, while it solves large instances more quickly. Finally, observe that while the average optimality

gap of CPLEX is 0.8% (calculated over nine solved instances), that of the heuristic algorithm is 0.06%.
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Table 4: Computational results of solving 11 instances, where α = α∗, and p = 20 (20 optimal solutions
for each instance of the Min k (α, β)-k FSP were obtained).

Instance α∗ β∗ CPLEX Heuristic (Algorithm 2)

β Time(s) Gap(%) |J̃ | β0 β Time(s) Gap(%)
ADMF 86 118 118 5.84 0.00 101 114 118∗ 13.11 0.00
DS 50 51 51 0.02 0.00 51 51 51∗ 0.16 0.00
PD1 3970 4325 4325 2013.78 0.00 8858 4324 4325∗ 3489.94 0.00
PD2 760 645 645 0.4 0.00 1265 645 645∗ 14.56 0.00
PC 229 233 233 18539.13 0.00 225 233 233∗ 3657.76 0.00
SM 22 40 40 10577.19 0.00 37 39 40∗ 6579.08 0.00
Class 0-vs-all 354 471 - 36000 - 998 471 471 2466.08 0.63
Class 1-vs-all 683 989 987 36000 0.41 2120 982 989∗ 2428.11 0.00
Class 2-vs-all 1016 1394 - 36000 - 3005 1394 1394∗ 3801.78 0.00
Class 3-vs-all 1394 1965 1964 11044.41 0.33 4215 1962 1965∗ 7642.15 0.00
Class 4-vs-all 387 549 549 1877.36 0.00 501 536 549∗ 3935.98 0.00
Average 13823.47 0.08 3093.52 0.06

6 Conclusion

This study contributed into the solution methods for the (α, β)-k Feature Set Problem (FSP). In

order to solve the (α, β)-k FSP, we followed an existing three-phase approach. We solved the Phase

1 in polynomial time, and developed two heuristic algorithms for Phases 2 and 3. The proposed

heuristic algorithms were tested over a set of 11 real-world instances. We showed that the outcomes of

algorithms are superior than those of solver CPLEX, in terms of both solution quality and computation

time, and additionally they include solving several instances that the CPLEX has shown to be unable

to deliver feasible solutions within 10 hours of running.
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