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Abstract: Ghost imaging captures 2D images with a point detector instead of an array sensor. It , therefore, 
offers the opportunity to solve the challenge of building cameras in wavebands where the sensors are difficult 
and expensive to produce. Doing so opens up more routine THz, near-infrared, lifetime and hyperspectral 
imaging simply by using single-pixel detectors. Traditionally, ghost imaging retrieves the image of an object 
offline, by correlating measured light intensities with pre-designed illuminating patterns. Here we present a new 
strategy we call ‘self-evolving’ ghost imaging (SEGI) for imaging objects bypassing offline post-processing. It 
also offers the capability of imaging objects in turbid media. By inspecting the optical feedback, the illumination 
patterns are evaluated by a cost function and offspring illumination patterns are bred that mimic the object’s 
image, bypassing the reconstruction process. At the initial evolving state, the object’s “genetic information” will 
be stored in the patterns. At the following imaging stage, the object’s image (48×48 pixels) can be updated 40Hz 
imaging rate. We numerically and experimentally demonstrate this concept for static and moving objects. The 
frame-memory effect between the self-evolving illumination patterns provided by the genetic algorithm enables 
SEGI imaging through turbid media. We further demonstrate this capability by imaging an object placed in a 
container filled with water and sand. SEGI shows a robust and superior imaging power compared with traditional 
computational ghost imaging. This strategy opens new perspectives for ghost imaging in applications such as 
remote sensing, imaging through scattering media, and low-irradiative biological imaging. 
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1. Introduction 

Computational ghost imaging (CGI) allows image formation with a single-pixel detector that has no spatial 
resolution by applying time-varying illumination patterns to an object of interest [1-2]. The predetermined optical 
patterns are typically generated by a scattering medium or a spatial light modulator and projected onto the object. 
The single-element photodetector records the light intensity fluctuations of illumination patterns after interacting 
with an object. Then the image can be recovered from analysis of the correlations between the patterns and 
measured intensities. Closely related to CGI is a technique called single-pixel imaging, in which the image of the 
object is modulated by a spatial light modulator and then detected by a single-pixel detector [3]. Such a single-
pixel detection strategy has the potential to enable low-cost imaging in the X-ray [4-6], infrared [7], and terahertz 
wavebands [8-10], where detector arrays are often expensive and may have low sensitivity. The technique also 
has the ability to enhance bioimaging deep inside scattering media, since the total fluorescence light detection 
scheme enables higher tolerance for signal scrambling through biological tissues, compared with conventional 
2D pixel-array detection [11]. The sparse illumination patterns used can eliminate the ‘‘out-of-focus” light, seen 
in optical-sectioning microscopy [12]. Single-pixel detection can also enable hyperspectral and time-resolved 
imaging [13-15]. Taking advantage of the object image’s inherent sparsity, CGI can recover an image with fewer 
measurements than required by raster scanning.  Thus, it provides benefits such as improved frame rates with 
lower sampling ratios in applications such as multiphoton microscopy [16], random-access microscopy [17], 
multimode fibre endoscopy [18] and cytometry [19]. 

  Post-processing algorithms of CGI and single-pixel cameras have been proposed to enhance the 
reconstructed image. Compressed sensing provides high image quality at the cost of recovery time [3] for 
applications that permit offline reconstruction. Other algorithms allow for differential ghost imaging (DGI) [20], 
iterative ghost imaging [21], pseudo-inverse ghost imaging (PGI) [22-24], or Gerchberg-Saxton-like [25] data 
treatments, serving different functional needs. Various spatiotemporal illuminating patterns, for instance, the 
random, Hadamard, wavelet, Fourier, and discrete cosine bases have also been proposed to either denoise the 
image by sampling on its inherent sparsity or to enable a computationally fast algorithm [7, 26-28]. However, 
these methods calculate the reconstruction image after at least one sampling cycle or, in most cases, do it offline, 
limiting applications of ghost imaging that need continuous imaging. 
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Recently, there have been international efforts to boost the speed of CGI / single pixel imaging to enable fast 
imaging. Generally, more measurements in one sampling cycle usually lead to higher quality reconstruction but 
lower imaging speed and longer reconstruction times. Benefiting from advances in machine learning, deep-
learning-assisted CGI can substantially improve image reconstruction quality with limited sampling ratios [29-
32]. Deep neural networks, after training using simulated or experimental data, can improve the retrieved image 
quality, especially at a low sampling rate for a high frame rate, or in a scattering condition [33], for 2D imaging 
and 3D depth mapping [34]. However, the nature of offline reconstruction methods intrinsically limits CGI’s 
imaging ability in dynamic imaging, where the object is moving. For instance, a dynamic change in an object or 
its surrounding environment, between each of the illumination of patterns within one sampling cycle, will induce 
artifacts and noise. 

 
Here we present a feedback-based ghost imaging called self-evolving ghost imaging (SEGI), which can 

update the image of an object (48×48 pixels) at 40 Hz, using 20 evolved illuminating patterns. By highlighting 
the inherent reciprocity between the total light intensity signal from an unknown object and illumination patterns, 
we can create evolved patterns that converge towards the image of an object as the iterated sampling loops. We 
introduce a genetic algorithm that has been used in wavefront optimisation to focus light through scattering media 
[35, 36] to adaptively optimise the patterns in every generation of SEGI adaptively. Our technique enables instant 
imaging without the postponed computation required by other ghost imaging schemes. Additionally, we adapt 
the image denoising method, block-matching and collaborative filtering (BM3D), to numerically denoise the raw 
images to enhance image quality [37]. Finally, we numerically and experimentally demonstrate the imaging of 
an object inside a dynamic turbid environment by SEGI. Compared with five traditional ghost imaging (GI) 
methods, SEGI shows more a robust imaging power and superior image quality. 

 

2. Results 

In typical computational ghost imaging, the illumination patterns 𝐼𝑖(𝑥, 𝑦) are designed prior to an experiment 
taking place and projected by a spatial light modulator, such as a digital micromirror device (DMD). Then the 
signal light intensities 𝑆𝑖 can be recorded by a bucket detector such as a photodiode, photomultiplier tube, or by 
pixel binning in a charge-coupled device, acting as a single-pixel detector, with: 

𝑺𝒊 = ∫ 𝑰𝒊(𝒙, 𝒚) ∙ 𝑶(𝒙, 𝒚)𝒅𝒙𝒅𝒚                  (1) 

where 𝑂(𝑥, 𝑦) is the geometric function of the object. A traditional correlation strategy can retrieve the ghost 
image 𝑅(𝑥, 𝑦) after a sequence of measurements by 

𝑹(𝒙, 𝒚) =  〈𝑺𝑰(𝒙, 𝒚)〉  −  〈𝑺〉〈𝑰(𝒙, 𝒚)〉,   (2) 

where 〈⋯ 〉 is the ensemble average over the distribution of patterns. 

 



 

Fig. 1. Working principle of SEGI with a genetic algorithm. (a) Schematic diagram of SEGI. A 
population of N random parent patterns is generated to illuminate the object. After the cost 
function measurement, these patterns are ranked for breeding N/2 offspring patterns. Each new 
pattern is created by combining the ma and pa patterns with a random breeding template, followed 
by a mutation operation of the pixel values. The mutated offspring patterns replace the lowest-
ranked M (N/2) parent generation patterns. The steps are repeated in every generation. Finally, 
the illumination patterns evolve towards an image of the object (bottom left), as the cost function 
values continue to increase (bottom right, derived from the evolving patterns in SEGI). (b) The 
schematic of traditional computational ghost imaging with predetermined patterns and measured 
single-pixel signals (fluctuating intensity distribution of ghost imaging with random patterns). (c) 
An example of SEGI results from increased numbers of the generation with a population of 30. G 
is the generation number. 

 

In SEGI, the illuminating patterns are dynamically updated towards the shape of the target, compared with 
the predetermined ones in conventional ghost imaging, as shown in Fig. 1. A genetic algorithm, which uses 
principles inspired in nature to “evolve” toward the best solution, is used to iteratively optimise the patterns 
through operations of breeding and mutation according to measured intensities and parent patterns [35, 36], as 

depicted in Fig. 1a. Initially, a population of N parent patterns (𝐼𝑖
1(𝑥, 𝑦), 𝑖 = 1,2, ⋯ , 𝑁) is randomly generated for 

projection onto the object. Then, they are ranked according to the cost function (CF) normalised by the initial 
parents as defined below: 

𝑪𝑭(𝒊, 𝒈)  =  
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the pattern weight determined by summing the pixel values and 𝑆𝑖
𝑔
 is the corresponding light intensity in the 𝑔 

generation (𝑔 ∈ [1, … , 𝐺], G is the final generation number.). 𝑘 is a weight coefficient for 𝑺𝑖
𝑔
, p is the pixel index 

of the points on each pattern, Px is the total pixel number of each pattern (e.g. Px=64×64 for Fig. 1c). Each 
offspring pattern is created from two randomly chosen parent patterns, pa and ma, from a random binary 
template T: Offspring =  ma ∙ 𝑇 +  pa ∙ (1 − 𝑇), according to the cost function, with higher CF values indicating 
higher rankings and a correspondingly higher probability to be chosen. Similar to the natural evolution principle, 
the offspring pattern will mutate at partial pixels, with a decreasing mutation rate along with the generation 
number. M mutated offspring patterns are generated by repeating the process (from parent selecting to mutation) 
M times, here 𝑀 = 𝑁/2. These offspring patterns will replace the M lowest-ranked patterns in the last generation 
N patterns to create a new generation of N patterns that self-evolve towards the object image. 
 



Fig. 1c illustrates SEGI with letters ‘GI’ as the object in a 64×64- pixel image. With 𝑁 = 30, a rough outline is 
shown by the 100th generation and continuously improves with G. Compared with the fluctuating intensity 
distribution (Fig. 1b) seen in conventional computational ghost imaging, the enhancement of CF, during the 
optimisation of SEGI, sustainably increases and is quadrupled by the 10000th generation with a high-quality 
image (Fig. 1a). Note that a useful generation number is not necessarily as large as 10000, especially for 
dynamic imaging where the structural continuity between the multiple frames can serve as a priori knowledge to 
assist pattern updates. 

 

 

Fig. 2. Numerical results of SEGI for a binary object with 𝑘 = 1. (a) Original object. (b) SEGI raw 
(top) and median filtered results (bottom) after G = 1000 in a population of 30. (c) PSNR of SEGI 
raw results with (top) a population number range from 10 to 50 and (bottom) a generation number 
range from 10 to 10000. (d) Example of object frames (52nd and 112th) in a 112-frame image 
series and corresponding SEGI raw and median filtered results (e) with ∆𝐺 = 100 and N = 30. (f) 
The PSNR and CF enhancement values of the dynamic SEGI. A video of the moving object is  

shown in Visualization 1.  



Fig. 2 overviews our simulations of SEGI for static and dynamic binary objects.  Fig. 2b shows the raw and 
filtered SEGI image of a static binary object (Fig. 2a) with N = 30 and G = 1000. By applying a median filter with 
a 3 × 3 kernel to the retrieved image, we can eliminate the salt-and-pepper noise, preserve the object’s edges 
and improve its peak signal-to-noise ratio (PSNR) from 6.95dB to 14.08dB. To explore the contribution of N and 
G in SEGI, we plot the PSNR of the raw SEGI images for increasing N and G in Fig. 2c. The result shows higher 
values in the upper-right part, which indicates G has a higher impact than N with the same 𝑁 × 𝐺 number in the 
evolution process. 

 
Fig. 2e and Visualization 1 show the SEGI image of an object that is dynamically changing through translation 

and rotation (Fig. 2d). The movement has been split into 112 individual frames to be imaged. For the simulation 
of dynamic objects, we use ∆G to define the used generation number for each frame of the dynamic object image 
series. Strikingly, with a limited sampling number of ∆𝐺 = 100 and 𝑁 = 30, SEGI can still create a recognisable 
image of the translated object in frame 52; the image quality (PSNR 6.37 for the unfiltered image) is comparable 
with that for imaging static object under 𝐺 = 1000 and 𝑁 = 30. This enhancement comes from the continuity of 
object structures along the time dimension, as the output image from the previous frame can serve as a priori 
knowledge to guide image evolution in the next frame. As a result, the image quality increases with the tracking 
time/frame, and the required sampling ratio is greatly reduced. The PSNR reaches as high as 8.24dB (raw) at 
frame 112 with a sampling ratio of ~36.6% (see Supplement 1 Note 2 for the details).    

 
 
 Fig. 2f shows the PSNR enhancement during the entire movement. Under small translations (frames 1-40), 

the latter frame will inherit image information from the former, which allows SEGI to enhance the PSNR from 
3.16dB to about 7dB. The CF value, correlating with the image quality, shows the same trend with PSNR (raw), 
rising from 1 to 3. When the displacement is larger (frames 41-68), the newly generated images for each frame 
inherited less information from previous frames. In this case, the PSNR shows a slightly decreasing trend, even 
though the PSNR increased during the 100 generations for each frame (inset, Fig. 2f). With a small rotational 
displacement (frames 69-112), the PSNR increases with the same trend as in small translations. Note that the 
filtering process can substantially enhance the PSNR for the rotation object. 

 
 
Our imaging process can be organised into an “initial evolving state” and “imaging state”, as shown in Fig. 

S18. The initial state allows object information to be accumulated, and then imaging will start to operate close to 
normal imaging but without post-reconstruction. The initial evolving state usually takes more generations (G) 
than the imaging state to produce an initial image, e.g. G = 1000 for 64×64 pixels (Fig. 2b and 2f), with more 
generations providing better image quality. Subsequent imaging states rapidly update all changes in the image 
for each generation, maintaining the image quality. Larger displacements of the object require more updating 
generations to image, e.g. ∆G=100 is required if the object (Fig. 2f) has a speed of 1pixel/frame. The initial 

evolving state only needs to be conducted once for each object. The imaging sampling rate depends on ∆G. 
 
 
We further investigate the role of the weight coefficient k in image quality. Fig. 3a shows the SEGI images of 

a static object with k = 2, 3, and 4, where increasing k results in a faster grain-filling rate shown than that in Fig. 
2b with the same N and G, while the noisy pixels also increase significantly. This phenomenon is more obvious 
for higher generations (see Supplement 1, Fig. S1). The reason is that an increased 𝑘 increasingly highlights the 
contribution of ‘1’ pixels located inside the object. The SEGI images of a dynamic object (Fig. 3b) shows the 
same phenomenon, and the filtered image (Fig. 3c) indicates the image dilation tendency appears to decrease 
image quality. Fig. 3d compares the PSNR for k = 1, 2, 3, and 4 for both static and dynamic object (see 
Supplement 1, Fig. S2 for the filtered results).  When the generations are less than 3800, the 𝑘 = 1 cost function 
yields better image quality due to its faster growth rate than the other three for static images, and its PSNR value 
is generally higher than that for 𝑘 = 2, 3, 4. When the generation number is beyond 3800, 𝑘 = 2 becomes the 
best option for the static object. In terms of dynamic imaging, the superiority of 𝑘 = 1 under small generation 
numbers gives much higher image quality. 



 

 

Fig. 3. Characteristic of different k values in the designed cost function. (a) SEGI raw results for 
static imaging after 1000 generations when 𝑘 = 2, 3, 4. (b) SEGI raw results of 112th frame for 

dynamic imaging with different k values (∆G=100) and corresponding median filtered images (c). 
The movement is the same as that in Fig 2. (d) PSNR of SEGI results for static and dynamic 
imaging in the evolution processes. The population number N is 30 in a - d. The movement of the 
object is the same as that in Fig. 2. 

 

We further employ SEGI to capture 64×64- pixel, 8-bit grayscale images, shown in Fig. 4. In order to balance 
the numerator and denominator and involve the comparable contribution of detected light intensities and pattern 
weights, we modify the cost function for grayscale imaging as: 

𝑪𝑭(𝒊, 𝒈)  =  
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Here we choose 𝑘 = 2, as other k values overweight contributions of either large or small pixel values, leading 

to binary-like image results. Fig. 4a shows our grayscale object made of three blocks with different shapes above 
a chequered background; the colour indicates the grayscale value. We use the BM3D algorithm for noise 
reduction [37] and the structural similarity index measure (SSIM, higher is better) to quantitatively analyse the 
SEGI images. SSIM can perceive changes in structural information between the objects, which is more sensitive 
to human perception than the change of pixels’ absolute values. Two filtered SEGI results with 𝐺 =  200, 𝑁 =
 40, and 𝐺 = 300 and 𝑁 = 100, are shown in Fig. 4a middle and right, with sampling ratios of 99% and 369%, 
respectively. The standard deviation of the filter noise is set to 60 in the filter. A detailed study of the SEGI raw 
and filtered images is shown in Supplement 1 Section 2, Fig. S4 & Fig. S5.  

 

 



Fig. 4. Numerical results of SEGI for a grayscale object. (a) Original object image with coded 
pseudocolor (left) and filtered SEGI results with 𝐺 =  200, 𝑁 =  40 (middle), and 𝐺 = 300 and 𝑁 =
100 (right). (b) and (c) show the 162nd and 256th frames selected in a 256-frame object image 
series (left) and corresponding filtered SEGI results with ∆𝐺 =  100, 𝑁 =  30 (middle) and ∆𝐺 =
200 and 𝑁 = 100 (right). (d) SSIM values of raw and filtered SEGI results for dynamic imaging 

(see Visualization 2 and Visualization 3 for the first two cases.). 

 

For dynamic imaging, we extend the object image to a 256-frame image series by translating and rotating the 
elements and background (see Supplement 1, Fig. S6, Visualization 2 and Visualization 3 for the details). The 
162nd and 256th original images are shown in the left of Fig. 4b and Fig. 4c. The middle images are generated 
under ∆𝐺 =  100  with 𝑁 =  30 . The right images are generated under ∆𝐺 =  200  with 𝑁 =  100 . Thus, the 
sampling ratios are 36.6% and 244 %, respectively. The rough structures in the object image are retrieved in the 
middle SEGI images with the sampling ratios of 36.6%, while for the static case, it needs a sampling ratio of 
about 369%. The SSIM values of dynamic SEGI imaging under ∆𝐺 = 100, 𝑁 = 30; ∆𝐺 = 100, 𝑁 = 50; ∆𝐺 = 100, 

𝑁 = 100 and ∆𝐺 = 200, 𝑁 = 100 are shown in Fig. 4d. The image quality could be further improved by increasing 
∆𝐺 or N but at the cost of a longer sampling time. More details are provided in Figs. S7-S12. Visualisation 4 
further shows the ability of SEGI with unidirectionally moving objects.   

 
A comparison between SEGI and traditional GI methods: GI, DGI, PGI, compressive sensing with the sparse 

representation prior (CS-Sparse) and the total variation regularisation (CS-TV) method [38] is shown in Fig. 5. 
Here, we use SEGIini to represent the first frame of the image of “initial evolving” (frame=1, ∆G=100), and SEGI 
to represent the image at “imaging state” (frame=183, ∆G=100). For a 64×64 pixel object image with N=30 and 
∆G=100, 25-50 frames are required for the initial evolving state. The turning point on the imaging quality curve 
(such as Fig. 4d) represents the start of imaging state. Note that the start frame number of imaging state varies 
with different pixel number, population and ∆G. One could redefine the start of imaging state according to their 
requirement of imaging quality, as the images are continuously observed and updated. Here the object remains 
static during each imaging frame. The traditional GI methods show better image quality than SEGIini, as SEGIini 
has yet to benefit from the evolving process. The “imaging state” starts from the 50th frame as shown in 
Visualization 2 and Visualization 3. SEGI shows a comparable image quality to the CS method. For all methods, 
a higher sampling ratio (Fig. 5b) produces better image quality than a lower sampling ratio (Fig. 5a). Compared 
with traditional GI methods, the disadvantage of SEGI is the necessary initial evolving time (Fig. 4d), which is 
similar to the training time for machine learning. However, this initial evolving time does not affect the imaging 
rate (Fig. S17). The inherited genetic information from the initial evolving state provides advantages in imaging 
objects through dynamic obstructions, as the rapidly changing scattering noise cannot be inherited, as 
investigated below.  
 

 
 

 
Fig. 5. Numerical comparison between imaging results of grayscale objects with sampling ratio 
of (a) 36.6% with N = 30 and (b) 61% with N=50. The imaging method includes GI, DGI, PGI, 
CS-Sparse, CS-TV, and SEGI. SEGIini is the first imaging frame in the “initial evolving” state and 
the SEGI is the 183th image in the “imaging state”. 

 



We further investigate the imaging ability of SEGI when dealing with an object in which dynamic obstructions 
are present. Fig. 6 depicts the numerical simulation of imaging with dynamic obstructions by SEGI and traditional 
GI methods. The object is a Cameraman image (64×64- pixel) with intensities ranging from 0 to 150, shown in 
Fig. 6a. This object is disturbed by randomly distributed particles that are 4×4- pixels in size, have an intensity 
range of 150~255, and an update frequency of 122Hz. An intensity noise (about 6%) has been added to mimic 
real experimental situations. Fig. 6b shows two typical disturbed objects at different times.  

 
We first compare the methods of DGI, PGI and CS-TV with SEGI in “operation mode 1” (orange lines in Fig. 

6e-g) where the images are acquired within each dynamic time unit (the time period when the particles retain 
steady). The sampling ratio for mode 1 is a constant value that has a time consumption (pattern number × single 
pattern illumination time) equal to  the dynamic time unit. The mode 1 sampling ratio is 2% (82 patterns) to match 
the 122Hz noise update rate. The traditional GI methods have low SSIM values (Fig. 6e-g) over the entire 
measuring period (1-6000 frames), with average values around 0.03, 0.03 and 0.1 for DGI, PGI and CS-TV, 
respectively. The 1st and the 6000th frames calculated using DGI, PGI and CS-TV are shown as DGI I & DGI II, 
PGI I & PGI II, CS-TV I & CS-TV II; none of them show a recognisable image, due to low sampling ratios and 
the image disturbances.  

 
In contrast, SEGI shows increased image quality (Fig. 6c-d) with increasing frame numbers. The SSIM value 

starts from a low value (about 0) and gradually increases to about 0.56 (6000th frame of SEGI-f). The 6000th 
frame (denoted ‘SEGI-r II’ and ‘SEGI-f II’ in Fig. 6c-d) shows a much clearer image than the first frame (denoted 
‘SEGI-r I’ and ‘SEGI-f I’) and the standard GI methods. The enhanced image quality benefits from the genetic 
frame-memory effect, where the updated illumination patterns in SEGI inherit most of the object image 
information from their parental generation. This, in turn, enables the image evolving process to mitigate the 
influence from the disturbance introduced by the moving particles. Here SEGI evolves one generation with 20 
illumination patterns (M = 20 and N = 40, ∆G=1) within one dynamic time unit.  

 
To produce a more equitable comparison between SEGI and the standard GI methods, we demonstrate 

‘mode 2’ (green line in Fig. 6e-g) that has a much higher sampling ratio. In this mode, the sampling ratio increases 
with increasing frame number. For instance, the sampling ratio is 100% by the 50th frame, as 2% of samples will 
be measured within one frame. For the sampling ratio in between 2% and 100%, increasing the sampling ratio 
is not able to improve the image quality (as shown by the decreased SSIM) for PGI and CS-TV, as the dynamic 
particles prevent this. DGI, however, does have an increased SSIM with an increased sampling ratio. When the 
sampling ratio increases to more than 100%, the image quality starts to improve (increased in SSIM, Fig. 6e-g), 
as this results in repeatable information that uses an averaging process to reduce noise. As a result, DGI, PGI 
and CS-TV could generate a recognisable image at the 1000th frame, with a sampling ratio of 2000%, as shown 
at DGI III, PGI III, and CS-TV III, respectively. SEGI-f III is the 1000th frame image by SEGI and still shows a 
better image quality (SSIM 0.41) than standard GI methods. Note that, with a sampling ratio of 2000%, the image 
recovery time for standard GI methods are extremely long, with 2.14s, 114.54s, and 27.98s for DGI, PGI and 
CS-TV respectively. SEGI, on the other hand, does not require a recovery time. Additional imaging comparisons, 
including GI and CS-Sparse are shown in Fig. S13. 

 



 

 

 

 

Fig. 6. Comparison of SEGI and CGI in dynamic particles disturbances condition. (a) The 
Cameraman image is used as the original object. (b) Example frames with dynamic particle 
disturbance. During the measurement time of both methods, the target is scattered by randomly 
distributed particles with a frequency of 122Hz and ~6% detection noise. The illumination patterns 



have a frequency of 10 kHz. The SSIM indexes, compared with the original target, of SEGI-r (raw) 
and SEGI-f (BM3D filtered) are shown on the left of (c) and (d). The 1st, 6000th and 1000th SEGI 
image are shown on the right. Here M = 20 and N = 40 in SEGI. (e)-(g) The results acquired from 
DGI, PGI and CS-TV methods. ‘Mode 1’ (orange line) recovers the image from the measurements 
in each dynamic time unit. The images recovered from the 1st and 6000th images (with a sampling 
ratio of 2%) are shown in the middle. ‘Mode 2’ (green line) combines all former and current 
measurements and corresponding illumination patterns to recover the image. The 1000th image 
(with a sampling ratio of 2000%) and corresponding computation time are shown on the right. The 
dynamic time unit means that disturbing particles maintain a static state in this period.  

  
To experimentally verify the SEGI concept, we use a DMD (ViALUX GmbH V-7001) for pattern projection, 

collecting light from the object on a silicon photodetector (Fig. S14). Custom python-based algorithms are used 
to generate and update DMD patterns. To speed up data transfer to the DMD, we use a 48×48- pixel area on 
the DMD for SEGI, with an illumination time of 94µs per illumination frame and 25ms per generation (40Hz). 
Thus, the illumination time for each generation is 1.88ms. The rest time ~23ms of every generation time is 
consumed in pattern-loading and calculation of the genetic algorithm (see Supplement 1, Fig. S19 for the details). 
Fig. 7a shows SEGI imaging results of a static 3D printed mask (~8mm in diameter ‘smiling face’). With a pattern 
number N=20, the object outline appears when the generation number approaches 500 (see Supplement 1, Fig. 
S15-17 for more details). Fig. 7b validates SEGI on imaging a moving object (1951 USAF target) with a 
translation speed of 50μm/s (~0.5% of the field of view (FOV) per second). Four selected frames of dynamic 
SEGI indicates the position of object change from “1” to “4”.  

  
Fig. 7c-f further examines the imaging power of SEGI through a dynamic turbid layer. Fig. 7c-i shows the 

experimental diagram where sand and water are placed in a small transparent tank. The size of sand grains is 
between ~0.1-2mm (Fig. S20). The object (a ~10mm ‘T’ mask) is placed inside the tank, and the surrounding 
fluid becomes turbid when the stir bar inside the tank starts rotating. The turbidity level (denoted as ranging from 
0 to 5) is controlled by the rotational speed of the bar. Fig. 7c-ii and iii are the photos of the tank without and with 
disturbance, respectively (photos of the tank for different turbid levels are shown in Fig S21). A higher turbid 
level (more randomly scattering particles moving with higher speeds) introduces random deviation with higher 
amplitude from true intensities to measured ones, decreasing the reconstruction image quality. Fig. 7d indicates 
the measured single-pixel intensities with the same illumination patterns (used in CGI) at different turbid levels, 
where the turbid layer induced intensity fluctuation is as much as three times higher than the signal amplitude.  

 
Fig. 7f compares SEGI images with those reconstructed by traditional GI methods including DGI, PGI, and 

CS-TwIST. Here the CS-TwIST stands for a two-step iterative shrinkage/ thresholding algorithm [39] with a total 
variation in the compressed sensing framework to provide state-of-art denoising. Here we use a 100% sampling 
ratio for DGI, and a 50% sampling ratio for PGI and CS-TwIST, as a higher sampling ratio will decrease the 
image quality for PGI and CS-TwIST. As shown in Fig. S22 and S23, PGI, CS-Sparse, CS-TV and CS-TwIST 
show better imaging with a 50% sampling ratio than 100%, due to accumulation of noise: higher sampling ratios 
show a trade-off between more signal and more noise information. SEGI shows the best image quality. All 
methods produce recognisable images for lower turbid levels (0~2), and SEGI and CS-TwIST recover a high-
quality image. At turbid levels 3~5, the image quality from traditional GI methods is decreased, SEGI can still 
resolve the basic shape of the object and CS-TwIST shows a considerable distortion. This inferior image quality 
for traditional GI methods stems from the scatter induced fluctuation and distorted illumination patterns. Once 
traditional GI methods have a measuring time of more than one dynamic time unit, a longer measuring time 
results in more fluctuation that disturbs the image. Keeping the measuring time within the dynamic time unit 
could help traditional GI methods to image the object obscured by the moving sand. However, due to the high 
speed of the scattering particles (sand grains), the sampling ratio of traditional GI for one dynamic time unit (e.g. 
0.87% for 2ms) is too low to recover the object image. By contrast, SEGI can reduce the effect of the illumination 
patterns’ distortion / objects’ distortion due to the genetic frame-memory effect. Here we use a 10 kHz illumination 
frequency of the DMD for 48×48- pixel patterns. The illumination time of each generation in SEGI is 1.88ms, 
which enables the generation of effective offspring patterns if the disturbing particles maintain their static state 
with a time longer than 1.88ms. Additional comparisons of imaging results, including CS-sparse and original GI 
method, are shown at Fig. S22 and Fig. S23. 

 
 



Fig. 7e(i) shows the quantitative analysis of image quality (SSIM index) for SEGI, DGI, PGI and CS-TwIST. 
SEGI shows a high ability to resist higher turbid levels, especially for turbid level 4. The CF values for SEGI in 
turbid levels 0~5 (Fig. 7e-ii) indicate the self-optimising ability with a different environment toward high image 
quality. With turbid levels 0~4, SEGI can continuously improve by itself over increasing generations. For turbid 
level 5, the self-improving pauses for 40000 generations due to the improved turbidity, but the self-improvement 
continued again when the fluctuations became acceptable (from about 40000th generation). This result proves 
SEGI is robust to environmental conditions. 

 

 

Fig. 7. Experimental results of SEGI and comparison of SEGI and CGI in turbid media. (a) SEGI 
for static objects (~10mm masks) with 𝑁 = 20  and 𝐺 = 100, 200, 500, 2000  from left to right, 
respectively, and 𝑘 = 2. The results are with a Gaussian blur filter. (b) For dynamic SEGI, a 1951 
USAF test target (R3L3S1N, Thorlabs) mounted on a translation stage (DDSM100, Thorlabs) is 
used for unidirectional motion across the FOV. Four selected frames of dynamic SEGI results are 
shown on the right, which corresponds to the indicated positions in the coloured position. (c) The 
schematic diagram of scattering imaging of the object ‘T’ with turbid sand. The object is placed at 
the middle of a 10cm long plastic tank (Fig. S21). A magnetic stirrer is used to control the turbid 
level from ‘0’ to ‘5’ with increased rotation speed. The measured mean free path for turbid levels 
‘1’ to ‘5’ are 592.3, 265.1, 109.5, 86.3 and 57.7 mm, respectively, as shown in Table 1 in 
Supplement 1. The example pictures show the camera images of the object without and with 
turbid disturbance. (d) Measured single-pixel intensities in traditional CGI with the same 
illumination patterns at different turbid levels. (e) Top: SSIM of SEGI and traditional GI at different 
turbid levels. Bottom: cost function enhancements in SEGI at different turbid levels. ( f) The image 
result by SEGI, DGI, PGI, and CS-TwIST at different turbid levels. All the images are taken with 
Gaussian filters.  

 



3. Discussion 

In conclusion, we present a new class of ghost imaging, SEGI, that allows image formation of objects in the 
display patterns of the spatial light modulator without post-reconstruction. A genetic algorithm is used to generate 
‘self-evolving patterns’. Genetic optimisation methods such as microgenetic algorithms [40] may further improve 
the pattern generation efficiency of SEGI, reducing the required generation number. Other advanced feedback 
algorithms, including the simulated annealing method [41] and the reinforced hybrid algorithm [42] can be directly 
incorporated into the strategy by replacing the genetic algorithm. A machine learning-based approach could be 
implemented into the pattern optimisation process by using trained neural networks [43]. Note that this work uses 
48×48 pixels in experiments for a shorter DMD data loading and faster imaging rate. Images with more pixels 
could be conducted with a longer imaging time. Optimizing the controlling program and hardware could improve 
the imaging speed and pixel size. For instance, using a field-programmable gate array (FPGA) to transport data 
to the DMD could decrease the consuming time by about 900 times [44]. Moreover, the 3D imaging ability could 
be further explored by combining SEGI with digital holography [45] or time-of-flight [46] techniques. The SEGI 
strategy can be directly adapted to other ghost imaging modalities, e.g., phase imaging [47] or optical encryption 
[48]. Due to the frame-memory effect within the self-evolving illumination patterns, SEGI can be further applied 
to improve single-pixel/ghost turbid imaging, especially in high-dynamic turbid conditions. The ability of 
reconstruction-free illumination shaping could be used to create an adaptive illumination pattern, by locally 
adjusting the illumination intensities according to the sample; for low-irradiative biomedical imaging to reduce 
the photobleaching or phototoxicity in fluorescence microscopy [49]. Moreover, the SEGI can physically project 
the object image by beam-splitting the outgoing light from the illuminating spatial light modulator, which could be 
used for optical visualisation of single-pixel imaging, especially for imaging at invisible wavelength bands. For 
example, by splitting the light beam into a transparent film embedded with lanthanide ions doped upconversion 
materials [50] would allow human eyes to directly see near-infrared images [51]. We, therefore, anticipate that 
this work will open opportunities for developing integrated single-pixel cameras and novel ghost imaging based 
modalities. 
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