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Abstract: This study presents a comprehensive review of the history of research and development1

of different damage detection methods in the realm of composite structures. Different fields of2

engineering, such as mechanical, architectural, civil and aerospace engineering, benefit excellent3

mechanical properties of composite materials. Due to their heterogeneous nature, composite4

materials can suffer from several complex nonlinear damage modes, including impact damage,5

delamination, matrix crack, fiber-breakage, and voids. Therefore, early damage detection of6

composite structures can avoid catastrophic events and tragic consequences, like an airplane crash,7

further demanding the development of robust structural health monitoring (SHM) algorithms. This8

study first reviews different non-destructive damage techniques, then investigates the vibration-9

based damage detection methods along with their respective pros and cons, and concludes with a10

thorough discussion of a nonlinear hybrid method termed Vibro-Acoustic Modulation technique.11

Advanced signal processing, machine learning, and deep learning have been widely employed for12

solving damage detection problems of composite structures. Therefore, all these methods have13

been fully studied. Considering the wide use of a new generation of smart composites in different14

applications, a section is dedicated to these materials. At the end of this paper, some final remarks15

and suggestions for future work are presented.16
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1. Introduction51

Structural health monitoring (SHM) seeks to perform several tasks, such as damage52

detection, localisation, and quantification, to maintain the integrity of an entire structure.53

Comparatively, baseline-dependent SHM techniques need data from both “healthy” and54

“damaged" states of structure, whereas baseline-independent SHM techniques seek to55

identify damage through studying structural response to some natural or synthesised56

forces. It is desirable to identify damage in its early time of initiation to undertake57

suitable maintenance procedures, whereby the structural integrity and reliability can be58

ensured. SHM systems are comprised of the three following main elements:59

• A sensing technology that can be deployed on a structure permanently, whereby60

the structural response data could be recorded and transmitted to a control center to61

monitor the health condition of the structure. However, traditional non-destructive62

damage testing is more reliant on scheduled monitoring of the structure at a certain63

time and location.64

• The recorded data are required to be processed through high-performance comput-65

ing facilities in the control center for real-time condition monitoring of the structure.66

This was made possible by the advent of high-performance PCs in the mid-1980s.67

• Robust algorithms needed to study recorded vibration data for damage must68

be resilient to several factors, such as measurement noise and Environmental69

and Operational Variations (EOV) effects. The advanced machine learning, deep70

learning, and signal processing algorithms have made the development of such71

methods possible.72

The need for resilient materials has been increasing more than ever due to the73

advancements in different fields of engineering over the past century. As such, composite74

materials have emerged and have been used in many applications. The idea of composite75

materials was initiated based on mimicking natural materials like wood. They have been76

widely used ever since their emergence in different fields of engineering, including civil77

infrastructures as well as the automotive and aerospace industries. This is mainly due78

to several outstanding and excellent properties of such materials, including increased79

stiffness, strength, corrosion resistance, fatigue life, and wear resistance along with80

enhanced thermal properties and reduced weight. Composite materials are usually81

obtained from combining two or more components to achieve the aforementioned82

enhanced engineering properties.83

Existing damage in a composite can adversely affect its performance and, if not84

identified and fixed in time, can lead to catastrophic consequences, such as total destruc-85
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tion of the structure. There is a variety of failure mechanisms in composite structures,86

which usually develop either during the manufacturing process, such as design errors87

and overheating, or while in service, such as static overload, shock, and fatigue [1–3].88

These mechanisms include fiber failure, buckling, matrix cracking, and delamination.89

Fiber failure is known to be the simplest failure mechanism to detect and quantify in90

composite structures and usually appears when the excitation loads, applied to the com-91

posite structure, cause fractures in the fibers. Matrix damage, on the other hand, usually92

appears in several forms, including voids, cracks between fibers within lamina, or even93

as a single composite layer that is an intralaminar form of defect [4,5]. Another possible94

form of failure is buckling, which commonly appears as shear or compression [6,7]. A95

main failure mechanism is delamination, known to be one of the greatest “weakness”96

of laminated composites [1,8]. Delamination can spreed through a composite laminate,97

resulting in catastrophic consequences if not discovered and fixed swiftly. The stiffness98

of composite structures can be vastly compromised by damage, where in some cases, it99

might result in total destruction of the structure. Therefore, it is important to monitor100

these structures for damage while lowering the maintenance costs. This prompts further101

development of structural damage detection systems to obtain efficient and reliable dam-102

age detection methods. One strategy is to develop advanced Non-Destructive Testing103

(NDT) technologies that can detect such local abnormalities in composite structures.104

There are different types of NDT techniques used for the structural damage identification105

of composite structures, some of which include: visual testing (VT) or visual inspection106

(VI), ultrasonic testing, thermographic testing, infrared thermography testing, radio-107

graphic testing, acoustic emission testing (AE), acousto-ultrasonic, shearography testing,108

optical testing, liquid penetrant testing, magnetic particle testing, and electromagnetic109

testing.110

Advancements of SHM techniques for composite structures widely favor the meth-111

ods developed for other structures. Some examples of such methods can be found in112

[9–13]. Some of these methods are also listed in Table 1.113

This study presents a comprehensive review of some key aspects of damage detec-114

tion in composite structures, including:115

1. laminated composite structures,116

2. types of failure modes in such structures,117

3. various damage detection techniques that are suitable for such structures as well as118

their key properties, and119

4. advantages and disadvantages of such techniques. At the end of this study, some120

updated guidelines for undertaking smart monitoring systems for composite lami-121

nate structure are outlined.122
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Table 1: Some recent advancements in SHM of composite structures.

Refs Method Description Model
[14] Enhanced wave-

field imaging
- A new damage index, termed
first-to-residual energy ratio
(FRER), was developed based
on the first arrived Lamb waves
amplitude signatures and the
residual wave components

A composite plate
(CFRP, T300/3231)

[15] Fiber Bragg Grating
(FBG) sensors

- A damage identification
method of CFRP laminated
plates based on strain informa-
tion

CFRP laminated
plates

[16] Edge-reflected
Lamb waves

- Structural prognosis is made
possible using the proposed
method leveraging the multipath
reflected Lamb waves

A composite plate
(CFRP, T300)

[17] Frequency domain-
based correlation

- The complex frequency do-
main assurance criterion (CF-
DAC) was leveraged to develop
a domain-based correlation ap-
proach

A CFRP laminated
plate

[18] Low frequency
guided waves

- Low excitation frequencies of
guided waves (GW) propagation
in different types of FE mod-
elling of composite laminates are
used for delamination detection
- Two new convergence criteria
are employed to obtain accurate
results

A laminated com-
posite plate

[19] Correlation func-
tion amplitude
Vector (CorV)

- The delamination area can be
determined through calculation
of the relative changes between
the CorVs of the intact and dam-
aged composite laminate plates
- Combining the method with a
statistic evaluation formula re-
sulted in localising damage pre-
cisely

A composite sand-
wich beam

[20] Continuous
wavelet trans-
form and mode
shapes

- Higher order mode shapes or
operational deformation shapes
(ODSs) were employed for dam-
age detection

A composite plate

[21] A Lamb wave-
based nonlinear
method

- An artificial delamination is cre-
ated in a composite laminate us-
ing a thin Teflon sheet to be de-
tected with the proposed lamb
wave-based nonlinear method

A woven fiber com-
posite (WFC) lami-
nate

[22] Ultrasonic guided
waves

- The effective linear and non-
linear guided wave parameters
were extracted through Hilbert
transform (HT), Fourier trans-
form (FFT) and wavelet trans-
form (CWT) analysis to charac-
terize the delamination length

A composite dou-
ble cantilever beam
(DCBs)
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2. Composite structures123

Common types of engineering materials include metals, polymers, ceramics, and124

composites. Among these, composite materials are often a better alternative for tra-125

ditional materials, such as metals, ceramics, and polymers due to their light weight,126

corrosion resistance, high strength and stiffness, ability to withstand high temperatures,127

and simple manufacturing process [23,24]. Composite structures are used in a range128

of different industries from aerospace, marine, aviation, transport, and sports/leisure129

to civil engineering. For example, advanced composite materials have been used in130

different structures regarding the above industries, such as rotor blades, aircraft main131

body, and wing skins.132

Laminated composites usually consists of a couple of ply termed as lamina. Each133

lamina generally consists of two substances: (1) the matrix, and (2) the reinforcement134

material or fiber, which is immersed in the matrix. Generally, composite materials are135

made of a base material (matrix) and a reinforcement material (fiber) [24–26]. Fiber-136

reinforced composite (FRC) materials are composed of high-strength fibers that are137

embedded in a matrix for two main reasons: (1) to hold the fibers in place, and (2)138

to prevent the fibers from exposure to destructive environmental conditions, such as139

humidity. The different types of composite textures pertain to fibrous composites,140

laminated composites, particulate composites, symmetric laminates, unsymmetrical141

laminates.142

Figure 1 shows the contributions of the matrix and fiber to different properties of a143

ply in composite laminates.144

• Fibrous Composites:145

Fibrous composite is a type of composite materials that includes fibers integrated146

with a matrix, owing its remarkable stiffness and strength to the fibers. Fibers can147

be classified based on their length into long and short fibers. While long fibers148

are usually produced in straight form or woven form, short fibers, also known149

as whiskers, possess better strength and stiffness properties. The geometrical150

properties of a fiber are usually characterised by a high length-to-diameter ratio151

as well as its near crystal-sized diameter. The effectiveness of a fiber is, however,152

determined by its strength-to-density and stiffness-to-density ratios. Fibers can153

effectively improve the fracture resistance of the matrix [27], and the long-dimension154

reinforcement made by fibers stalls the growth of the cracks initiating normal to the155

direction of reinforcement.156

• Laminated Composites:157

Laminated composites consist of several layers of different materials (at least two)158

bonded together. Since layers are usually very thin individually, they are combined159

through lamination to achieve a material with better mechanical properties. Various160

orientations of the layers are typically used to form a multiply laminated composite161

suitable for engineering applications. Some examples of laminated composites162

include bimetals, clad metals, laminated glass, plastic-based laminates, and fibrous163

composite laminates [28].164

A hybrid class of composites, called laminated fiber-reinforced composites, involves165

both fibrous composites and lamination techniques. The fiber direction of each166

layer of fiber-reinforced composites is typically oriented in a direction different than167

the direction of other layers in order to achieve strength and stiffness in different168

directions. Thus, the layering of such composites can be tailored based on specific169

design requirements [29].170

• Particulate Composites:171

Particulate composites, such as concrete, consist of particles of different materials172

with different shapes, sizes or configuration that are randomly suspended in a173

matrix. However, unlike fibers, particulate composites are not usually of long174

dimension (with the exception of platelets), but instead are regarded as isotropic175

materials. Similar to a matrix, particles can be composed of different types of176
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materials, including metallic and nonmetallic. As such, there are four possible177

combinations of fibers and matrices in terms of the type of material used in each178

one: (1) metallic particles in nonmetallic matrix, (2) nonmetallic particles in metallic179

matrix (metal matrix composites), (3) nonmetallic particles in nonmetallic matrix,180

and (4) metallic particles in metallic fibers. Particulate composites are meant to181

reduce the cost of integrating composites with fibers [30]. Notwithstanding, they182

typically do not exhibit the strong load-bearing capability of fibrous composites183

and are not typically resistant to fracture.184

• Symmetric Laminates:185

Symmetric laminates are a laminated composite that is symmetric in geometry and186

material with respect to the geometrical middle surface. Therefore, the layers that187

make up a symmetric pair possess the same properties. Symmetric laminates are188

more common compared with unsymmetrical laminates [31].189

• Unsymmetrical Laminates:190

Unsymmetrical laminates are not symmetric with respect to their middle surface.191

They are used in many applications, depending on the design requirements [32].192

Often times, various types of composite textures can be mixed to obtain six different193

kinds of composite materials as follows:194

• Symmetric-Fibrous composites195

• Symmetric-Laminated composites196

• Symmetric-Particulate composites197

• Unsymmetrical-Fibrous composites198

• Unsymmetrical-Laminated composites199

• Unsymmetrical-Particulate composites200

The load is mainly carried by the fibers that act as reinforcement, while the roles201

of the matrix are: (1) to hold the fibers in place, and (2) to transmit the load to the202

fibers. Typically, fibers are composed of carbon, glass, aramid, boron, and silicon carbide,203

whereas the matrices are usually made from polymers like epoxies and polyimides [32].204

Fig. 2 shows the classification of composite materials based on the type of reinforcement205

and matrix. Therefore, the properties of a composite are generally determined by the206

following factors:207

1. fiber properties,208

2. matrix properties,209

3. fiber Volume Fraction (FVF), which is defined as the ratio of fiber to matrix, and210

4. arrangement of fibers in the composite, such as geometry and orientation.211

The density, stiffness, and strength of the matrix is lower than those of the fibers.212

The combination of the matrix and fibers usually offers very high strength and stiffness213

while maintaining low density [26].214

For further details about the classification of composite structures, the readers are215

referred to [33–36].216

2.1. Failure Mechanisms of Composite Structures217

Various types of defects can occur in composite structures, which can be classified218

based on the size and component of the effected composite structure, as illustrated in219

Figure 3. Some of the most critical types of damage are those caused by cyclic loading220

(fatigue damage) or impact loading. Such damage can significantly reduce the residual221

strength in a part of a composite structure, depending on their type and size [36]. Damage222

can occur in a composite structure in different forms, ranging from defects in the matrix223

or fiber to other forms of damage like breakage of elements or failure of attachments224

that are either bonded or bolted to the body of the structure [5]. The extent of damage225

determines the remaining service life of a composite component and is thus considered a226

factor to identify the damage tolerance of the component. While some types of damage227

can have very little effect on the residual strength, they can become more severe over228
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Figure 1. The contributions of matrix and fibers to different properties of a ply.
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Materials

Figure 2. The classification of composite material.

time when combined with other factors, such as environmental and operational effects229

[37,38].230

Impact damage can reduce the compression, shear, and tensile strength of composite231

materials. As such, compressive residual strength of the laminated composite material232

is dependent on the extent of delamination and fiber failure produced by transverse233

impacts. Fiber failure can subsequently affect the tensile residual strength of the mate-234

rial. However, the effect of impact damage can vary based on the specific design and235

application of the composite member. For example, in aircraft systems, impact damage236

can decline the resistance and integrity of composite components to the environmental237

factors, such as moisture. As such, the core of sandwich panels with thin face sheets238

may be subjected to moisture after the impact, or the impact can bring about fuel leaks239

in stiffened wing panels. Therefore, a good understanding of these effects can guarantee240

a safe and economic application of composite materials.241

Some more details about failure mechanisms in composite materials can be found242

in [10,42–44]. Table 2 lists some studies that investigate common failure mechanisms in243

composite structures.244
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Table 2: Some common failure mechanisms along with recommended damage detection
methods in composite structures.

Refs Failure Description Method
[39] Matrix cracking An NDE method based

on propagation of ultra-
sonic Lamb wave in poly-
meric composites was de-
veloped which is capable
of detecting and classify-
ing matrix cracking in the
material using artificial in-
telligence

Method based on
guided wave propa-
gation and artificial
neural networks

[40] fiber cracking A mixed-mode I/II crack
detection criterion was de-
veloped for fracture detec-
tion of orthotropic mate-
rials with arbitrary crack-
fiber angle

Augmented Strain
Energy Release
Rate (ASER)

[41] Delamination An image processing
methodology, based on
digital radiography, was
developed to characterize
the drilling-induced
delamination damage

Image processing

Coupled micro-macro damageMacro damage

- Delamination

- Transverse crack due to
delamination

Micro damage

- Fibre level  
1. Fibre     
Fracture/Breaking 
2. Fibre Buckling or
Kinking 
3. Fibre Bending 
4. Fibre Splitting 
5. Fibre Radial
Cracking

- Coupled Fibre-Matrix level  
1. Fibre Pullout 
2. Fibre Breakage-Interfacial   
  Debonding 
3. Fibre Failure due to Matrix
Cracking 
4. Transverse Matrix  Cracking

- Matrix level
1.Matrix Cracking 
2.Fibre Interfacial
Cracking

Figure 3. Types of damage in Composite structures.

2.2. Environmental Variations Effects245

One pertinent factor to be considered when designing a composite component is246

the environment that the component is exposed to during service time. This is mainly247

due to the fact that the performance of composite members is significantly affected by248

environmental factors. There are several environmental factors that can have such effects249

- temperature and moisture being the most important of which for polymer composites.250

For example, the modulus and strength of the polymer matrix are highly affected by251

temperature variations, which can further affect the mechanical properties of the lamina252

and laminate. While the modulus and strength of the matrix can be reduced by elevated253

temperature, extreme cold conditions can trigger brittle behavior in some resin systems254

[45–48]. However, the extent of this event highly depends on the type of resin and,255

more generally, all other materials used in the design of the composite component. For256

example, the effect of temperature on glass or carbon fibers is less than that on some257

organic fibers, such as aramid. Likewise, increased moisture content can decrease some258
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Table 3: Influence of environmental conditions on local properties of composite structures.
(+) strong, (◦) average, and (−) weak influence. (Dl) Delamination, (T) Temperature,
(Dt) Dirt, (M) Moisture, (ER) Electromagnetic Radiation, and (ML) Mechanical Load.

Condition
Influence

Notch Matrix
crack

Fiber
crack

Dl T Dt M ER ML

Material
Stiffness

◦ ◦ + ◦ + − + − −

Mass − − − − − + + − −
Damping − ◦ ◦ ◦ ◦ + ◦ − −
Material
Conductivity

+ ◦ + ◦ ◦ − ◦ ◦ ◦

Boundary
Formation

+ − − + − ◦ − − −

mechanical properties of materials, such as the resin’s modulus and strength. Moreover,259

matrix swelling is another effect caused by moisture uptake, resulting in increased260

residual stresses within the laminate. Except for most spacecrafts, moisture swelling261

effects are not as severe as those pertaining to temperature and, therefore, are usually262

neglected at the design stage.263

Table 3 outlines the effect of different environmental, operational, and damage264

mechanisms on the mechanical properties of composite structures based on reviewing265

references [33,34,49–51]. For instance, the composite material stiffness is highly sensitive266

to the temperature and moisture variations as well as the presence of fiber cracks.267

Another factor that is highly sensitive to moisture, as an environmental effect, is the mass268

of composite components. As such, the boundary formation is the item least influenced269

by the environmental variations, i.e. temperature and humidity. The mechanical load270

and electromagnetic radiation have relatively moderate effects on composite material271

conductivity. However, their impact on other mechanical properties of the composite272

structure is negligible.273

Table 4 indicates the review of several studies on the environmental and operational274

effects on different types of structures. Some further references on this topic include275

[52–55].276
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Table 4: Some references studying the environmental and operational effects.

Effect Refs Description
Temperature
effects [56]

[57]

[58]

[59]

[60]

[61]

[62]

Vibration test conducted on five bridges in the UK
indicated that bridge responses are sensitive to the
structural temperature

The movement of a point in the experimental
model with respect to its expected location in the
analytical model confirmed a significant expansion
of the bridge deck due to the elevated temperature.

5% variation in the first mode frequency of
the bridge, during the 24 h cycle, was detected

The frequency–temperature and displace-
ment–temperature correlations using long-term
monitoring data were investigated

Dempster–Shafer data fusion technique was
employed to investigate the correlation between
modal data and temperature

The regression analysis in conjunction with
Principal Component Analysis (PCA) was employed
to purify natural frequency from the environmental
and operational variations effects

The back-propagation neural network (BPNN)-
based approach was employed to clean the identified
natural frequencies from temperature effects

Boundary
condition
effects

[63]

[64]

The effect of crack and beam’s length on the natural
frequencies was investigated

The changes in the natural frequencies caused
by the freezing bridge supports were investigated

Mass load-
ing effects [65]

[66]

It was noted that a heavy traffic on a 46 m long
simply supported plate girder bridge decreased the
natural frequencies of the bridge by 5.4%

The effect of the traffic mass on the damping
ratios becomes evident when the vibration of the
deck due to the traffic exceeds a certain level

Wind-
induced
variation
effect

[67]

[68]

The alleviated wind velocity can reduce the natural
frequency and decrease the modal damping of a
suspension bridge

A quadratic function can be established to map the
vertical amplitude of the bridge response to the
wind speed. It was also noted that the damping
ratio is dependant on the vibration amplitude
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3. SHM of Composite Structures277

Structural health monitoring (SHM), as a well-established tool, is currently used278

extensively for damage diagnosis in different types of composite structures, such as279

bridges. SHM methods can be categorised into two groups in terms of the extent of the280

area they are applied to on a structure: local and global techniques. Global techniques281

are of more interest when it comes to monitor a large area on structures, whereas local282

methods, also termed non-destructive evaluation (NDE) techniques, have been widely283

used for damage identification of different structures such as composite materials.284

Non-destructive testing (NDT) refers to a family of damage identification methods285

that do not pose damage onto the structure under investigation. As such, they are valu-286

able techniques in terms of saving money and time in system evaluation. Alternatively,287

these techniques may be termed nondestructive examination (NDE), nondestructive in-288

spection (NDI), or nondestructive evaluation (NDE) [69–73]. The advantages, limitations,289

and range of applications of different NDT methods are listed in Table 5. Accordingly,290

thermography and ultrasonic testing are the most suitable NDT methods for damage291

identification in composite materials. NDT aims to detect the presence of and charac-292

terise damage in the interior or on the surface of materials without cutting or piercing293

through the materials that can otherwise lead to changing the material properties. NDT294

techniques can be categorised in several ways based on the type of the composite to be295

tested and testing conditions.296

According to Table 5, NDT is widely employed in forensic engineering of different297

systems, including mechanical engineering, petroleum engineering, electrical engineer-298

ing, civil engineering, systems engineering, aeronautical engineering, medicine, and art299

[86,86]. For instance, medical imaging techniques, such as echocardiography, medical300

ultrasonography, and digital radiography, are NDT techniques that have had a profound301

impact on medicine.302

Ultrasonic testing (UT) techniques belong to another family of NDT techniques,303

which are used to investigate materials by studying the propagation of ultrasonic waves.304

Typically, UT devices transmit very short ultrasonic impulses with center frequencies305

ranging from 0.1 to 15 MHz and, in some cases, up to 50 MHz. The recorded signals306

at the receiver side are studied for internal flaws or in order to characterize materials307

[5,87–89]. For example, UT is used to measure thickness of the test object to determine308

the extent of corrosion in a piping system.309

Shearography or Speckle pattern shearing interferometry is an NDT technique that310

uses coherent light or coherent sound waves for the quality assessment of materials in311

different problems, such as nondestructive testing, strain measurement, and vibration312

analysis. It has a wide range of applications in the aerospace and wind turbine industries,313

among other areas [5,29,90,91]. The shearography techniques present several advantages314

over traditional NDT techniques, including: (1) capable of testing large area on the315

structure (up to 1 m2 per minute [92]), (2) contact-less techniques, (3) relatively insensitive316

to environmental variations effects, and (4) perform well on honeycomb materials [93].317

Eddy-current testing (ECT) is an electromagnetic NDT method that exploits electro-318

magnetic induction in conductive materials for the detection/characterisation of surface319

and sub-surface defects [94].320

Thermographic inspection is a technique to monitor the thermal changes in the321

surface of an object. It can be also used to provide images from thermal patterns on322

the surface of an object. The infrared thermography technique is non-intrusive and323

contact-less that is used to provide mapping from thermal patterns (thermograms) on324

an object’s surface through an infrared detector [95].325

Radiographic Testing (RT), on the other hand, is an NDT technique to inspect326

the interior of a material for hidden flaws. In order to penetrate into the material, RT327

applies short wavelength electromagnetic radiation [96], which can be produced by328

some equipment, like X-ray machines. To provide high-energy photons, the machine is329

equipped with a source of radioactive material, such as Ir-192, Co-60, or in some rare330
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Table 5: The advantages, limitations and ranges of applications of different NDT tech-
niques.

NDTE tech-
nique Advantages Limitations Ranges of ap-

plication
Neutron
imagine (NI)
[74]

- Simple
- Quick
- Economically viable
- Easy to handle
- Flexible

- Good method for detec-
tion of surface imperfec-
tions, only
- Effective when used to
detect macroscopic flaws.
Not a good method for
micro-damage detection.
- Highly subjective and
suffers from low repeata-
bility of results and high
reproducibility of errors
- Requires multiple en-
gineering approaches for
subsurface defect detec-
tion

- Civil Engineer-
ing
- Aerospace in-
dustries
- Health Moni-
toring of com-
posite structures

Acoustic
emission
(AE) [75]

- Good for real-time
Structural health moni-
toring
- Applies highly sensi-
tive sensors to detect
stress waves
- Applicable in situ
Supports large vol-
umes of measurement
- Effective for micro-
scale damage detection
- It is simple, fast and
cost-effective

- Sample must be stressed.
- Sensitive to surrounding
noise
- Not effective for thick
sample
- Hard to explain and char-
acterise damage modes
- High-cost in terms of con-
sumables and equipment
- Limited in terms of off-
shore application
- High acquisition rates,
and measurements on test
sample are critical
- Provides a qualitative
damage detection only

- Civil Engineer-
ing
- Automobile in-
dustries
- Machining
- Aerospace in-
dustries
- Health Moni-
toring of com-
posite structures
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Table 5, to be continued.

Ultrasonic
testing (UT)
[76]

- Applicable to differ-
ent material systems
- Enables the identifi-
cation, quantification,
and localisation of
internal defects
- Permits one-sided
inspection
- Fast scanning
- Long-range inspec-
tion capability
- Suitable for assembly
lines
- Good for in situ
inspection due to
portable and compact
equipment
- Often affordable
- Non-ionizing radia-
tion
- Minimal preparation
requirement
- Sensitive to both
surface and subsurface
discontinuities

- Complex setup and
transducer design
- Requires skills to inter-
pret multi-modes and
complex features
- Sensitive to operational
and environmental varia-
tions
- Difficult to identify dam-
age in the close vicinity of
probe
- Restricted resolution
imposed by the limitation
of algorithms and com-
puting power
- Requires accessible
surface to transmit ultra-
sound

- Material re-
search
- Weld inspec-
tion
- Quality assur-
ance
- Bridges
- Aerospace
industries
- Gas trailer
tubes
- Health Mon-
itoring of
composite struc-
tures
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Table 5, to be continued.

Nonlinear
acoustics
(NLA) [77]

- A robust method
to detect microscopic
damage
- Capable of fatigue
monitoring prior to
crack initiation

- Difficult implementation - Civil Engineer-
ing
- Automobile in-
dustries
- Medicine
- Machining
- Aerospace in-
dustries
- Health Moni-
toring of com-
posite structures

Digital
image corre-
lation (DIC)
[78]

- Affordable
- Easy to implement
- Adjustable temporal
and spatial resolution
- Insensitive to ambient
changes

- Requires high quality
speckle patterns
- Resolution is limited by
speckle pattern
- Can be applied for iden-
tification of subsurface de-
fects

- Civil Engineer-
ing
- Automobile in-
dustries
- Medicine
- Machining
- Aerospace in-
dustries
- Health Moni-
toring of com-
posite structures

X-ray radio-
graphy and
X-ray tomog-
raphy (XRI)
[79]

- Good for different
materials
- Can identify both sur-
face and bulk damage
- Detailed shape of
damage can be re-
vealed through 2D and
3D images
- Specific resolution at
sub-micron level
- High efficiency
- Great image process-
ing ability

- Not good for large size
structure
- Not good for in situ tests
- Requires access to both
sides of the test specimen
- Dangerous ionizing radi-
ation and, therefore, needs
protection
- Limit access to facilities
- Can endanger human
health

- Civil Engineer-
ing
- Health Moni-
toring of com-
posite structures
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Table 5, to be continued.

Resistivity
[80] - Self-sensing capabil-

ity
- Real-time monitoring

- Requires electrodes
- Can be applied to electri-
cally conductive materials

- Civil Engineer-
ing
- Health Moni-
toring of com-
posite structures

Infrared ther-
mography
(IRT) [81]

- Can be implemented
real-time
- Can visualise damage
- Applicable to wide
range of materials
- One-sided inspection
is possible
- Easy and safe opera-
tion (Non-ionizing ra-
diation)
- Fast and cost effective

- Vulnerable and sensitive
equipment, not suitable
for in situ tests
- Restricted by the cost and
availability of excitation
sources in the field
- The accuracy depends on
the complexity of the spec-
imen geometries
- Data processing time de-
pends on the computing
power and algorithms
- Implementation is lim-
ited for offshore structure
- More automation from
footage is needed for crack
identification

- Civil Engineer-
ing
- Medicine
- Optimising
processes
- Surveillance
- Aerospace
industries
- Health Mon-
itoring of
composite struc-
tures

Shearography
(ST) [82] - Surface strain

measurement via
non-contact full-field
tests
- Flexible to environ-
mental disturbance
- Applicable to large
composite structures
- High-speed capability
- Automated inspec-
tion capability

- Requires external excita-
tion sources
- Sensitive to rigid-body
motion
- Not ideal for subsurface
defect identification
- Not resilient to uncertain-
ties

- Civil engineer-
ing
- Machining
- Aerospace in-
dustries
- Health Moni-
toring of com-
posite structures

Terahertz
(THz) [83] - Robust and repeat-

able
- Great scan rate with
imaging
- Great accuracy, sensi-
tivity and resolution
- Great penetration
depths
- Non-ionizing radia-
tion

- Low speed examination
- Limited to nonconduc-
tive materials
- Costly

- Civil Engineer-
ing
- Aerospace in-
dustries
- Health Moni-
toring of com-
posite structures
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Table 5, to be continued.

Eddy current
testing (ET)
[84]

- Fast
- Contact-less

- Can be applied to only
electrically conductive ma-
terials
- Applicable for surface
analysis

- Civil Engineer-
ing
- Aerospace in-
dustries
- Health Moni-
toring of com-
posite structures

Neutron
imagine (NI)
[85]

- Applicable to differ-
ent materials
- Applicable for in situ
tests
- Good for both surface
and bulk damage de-
tection
- Detailed shape of
damage can be re-
vealed in 2D and 3D
images
- High resolution of
sub-millimeter level
- High image process-
ing ability
- Provides greater pen-
etration depth than X-
rays
- High sensitivity to
light elements

- Not good for in situ tests
- Requires access to both
sides
- Requires protection
against dangerous ioniz-
ing radiation
- Acquisition efficiency
lower than XRI
- Access to facilities is
limited
- More expensive than XRI

- Civil Engineer-
ing
- Automobile in-
dustries
- Aerospace in-
dustries
- Health Moni-
toring of com-
posite structures

cases Cs-137. Neutron imaging is a variant of radiographic testing that produces an331

image with neutrons, while neutron radiography is a technique that applies neutrons,332

instead of photons, to penetrate through materials. The neutron attenuation determines333

the properties of the obtained image. Despite some similarities, it might not be possible to334

see some details in the resulting images of neutron radiography that could be otherwise335

detected through X-ray imaging techniques, and vice versa. For instance, neutrons can336

pass through lead and steel easily, but not through plastics, water, and oils [97]. The337

thickness or composition of a material is determined by measuring the variations of338

the radiation detected in an opposite side of the material as waves penetrate and pass339

through.340

Electromagnetic testing (ET) is a family of NDT techniques that monitors the elec-341

tromagnetic response of a test object by applying electric currents and/or magnetic fields342

inside the object. Figure 4 lists different types of non-destructive testing and evaluation343

techniques (NDTE) along with their subcategories. Each of these techniques can be344

applied to a specific range of damage in composite structures, as shown in Figure 5.345

As a main disadvantage of these techniques, the evaluation process cannot be346

carried out without any prior knowledge about the approximate location of the damage.347

The SHM system should ideally fulfil the following requirements:348

• Cheap349

• Enables continuous assessment350

• Can detect low level damage351

• Can detect different damage types352
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Figure 4. Categories of different non-destructive testing and evaluation techniques (NDTE).
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Figure 5. The range of damage to which different types of NDTE techniques can be applied.

• Resilient to ambient loading conditions353

• Resilient to measurement noise354

• Resilient to environmental variations355

3.1. Characteristics of Sensors for SHM356

Any SHM system requires a data collection mechanism, for which different types357

of sensors can be selected depending on the type of data required for damage detection.358

Some commonly-used sensors include strain gauges [98], accelerometers [99], tempera-359

ture gauges [100], acoustic emission sensors [101], and fiber optic-based sensor systems360

[102]. Several factors to be considered prior to select sensors for an SHM system are361

described as follows:362

• type of sensors,363

• sensor cost(s),364

• number of sensors and their installation procedure,365

• damage protection against mechanical and chemical factors,366

• reducing the effect of noise,367

• data collection procedure, and368
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Table 6: Fundamental characteristics of sensors used for damage detection of composite
materials.

Specifications Description
Range The variation of measurements is limited

between a minimum and maximum value,
termed the range of a sensor

Sensitivity The sensors should be sensitive enough to the
response of a system to the applied load

Accuracy The value shown by a sensor might be slightly
off by a factor, whereby the accuracy of the
sensor can be characterised

Stability The durability of sensors for long–term condi-
tion monitoring of structure

Repeatability The measurement made by the sensor on the
structure subjected to the same load should
not vary much from the previous measure-
ments

Energy Harvesting Energy harvesting capability of sensors is es-
sential for sensors used for long–term condi-
tion of structures

Compensation due to
change of temperature
and other environmental
parameters

The signal conditioning feature of the sensors
should be capable of reducing the environ-
mental variations effects

• sensitivity of sensors to long-term environmental effects, such as moisture and369

humidity.370

Therefore, sensors need to be protected against harsh environmental effects for371

obtaining decent measurements. Sometimes, powerless sensors may be desired [103–372

106], especially for long-term condition monitoring of structures. These sensors do not373

require a source of power to operate and are usually equipped with an energy harvesting374

mechanism. Some of the main characteristics of sensors are listed in Table 6.375

The type of sensor to be employed for damage detection is determined based on376

the type of data to be measured. Table 7 presents different types of sensors that could be377

used for monitoring different mechanical properties of a component. Also, some criteria378

to be considered prior to sensor selection are listed in Table 8 based on the authors’379

extensive review of the literature.380

Optimum sensor placement is an important task that needs to be addressed prop-381

erly for any successful SHM system. As such, the extraction of sufficient and useful382

information, from the structural response to some applied forces, can be guaranteed383

through the deployment of the sensor network on the identified optimal locations on the384

structure [127].385

3.2. Damage Detection using Ambient Vibration Data386

Ambient vibration data provide information on the functions of a structure’s phys-387

ical properties and, thus, are widely used for damage identification in different types388

of structures. Damage can reduce the mass and stiffness of a structure while increasing389
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Table 7: Types of different sensors for damage detection of composite materials.

Measurement Type Refs
Displacement Magnetic Optical

Ultrasonic
Acoustic emission
Inductive
Capacitive
Gyroscope

[107]
[108]
[109]
[110]
[111]
[112]

Velocity Magnetic induction
Optical
Piezoelectric

[113]
[114]
[115]

Acceleration Capacitive
MEMS
Piezoelectric
Piezoresistive

[116]
[117]
[118]
[119]

Strain Piezoresistive
Optical

[120]
[121]

Force Piezoresistive
Optical

[122]
[102]

Temperature Acoustic
Optical
Thermoresistive
Thermoelectric

[1]
[123]
[124]
[125]

Pressure Piezoresistive [126]

its damping ratio locally. Hence, any information about damage can be retrieved from390

studying structural modal data. Usually, information about all modal parameters, such391

as natural frequencies, mode shapes, and modal damping ratio or some combinations392

of them, are employed for damage detection. Among all structural properties, damp-393

ing and mass are respectively the most and the least sensitive parameters to damage394

[128–132]. Sincedamping cannot be easily modelled like mass and stiffness, proportional395

damping is a preferred alternative often used for damage detection [133–135]. Surface396

measurements of a vibrating structure can carry information about the health condition397

of internal members. Hence, the majority of such methods exploit lower-frequency398

modal data to characterise the global behaviour of structures. Also, measurement points399

can be customized in these techniques due to their global nature. These methods also400

favor cheap-to-obtain and easy-to-extract properties of the modal information.401

However, these methods present some limitations, such as:402

1. sensitivity only to some particular forms of damage,403

2. usually require baseline data extracted from a healthy model of the structure to be404

compared against data obtained from a damaged state for damage characterisation,405

3. succumb to some structural conditions, such as closely-situated eigenvalues–a406

phenomenon occurred in composite structures [136],407

4. require large data storage capacity derived from complex structures, such as com-408

posite structures, and409

5. not capable of extracting information about small defects from global features.410

Table 9 summarises different modal features used for damage detection of composite411

structures along with the type of damage that can be detected and the advantages and412

disadvantages of each based on the authors’ extensive review of the literature.413

3.2.1. Natural Frequency414

It is known that damage can reduce the stiffness of a structure, causing its natural415

frequencies to decline. Therefore, such natural frequencies provide good parameters to416
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Table 8: The criteria based on which the type of sensors need to be decided.

Characteristic Description Influence
Amplitude
range

- Response levels are sen-
sitive to excitations levels

- Sensors can be overloaded or
burst by high levels of response
- Low levels of response can pro-
duce poor data
- Certain response levels may not
contain damage information
- Response level in one frequency
range can prevail the response in
other ranges

Frequency
range

- Excitations in differ-
ent frequency ranges trig-
ger different response fre-
quencies and deflection
patterns in a structural
component

- Narrowband data contains
short frequency bandwidths
- Lower frequency excitations are
less capable of revealing small
damage
- Certain frequencies excitation
are more sensitive to damage
- Traveling waves combined with
vibrations can reveal damage in
specific locations

Nature of data - Constant excitation am-
plitude produce station-
ary frequency and phase
responses, whereas time-
varying excitation ampli-
tude results in nonstation-
ary frequency and phase

- Stationary response data re-
quire less data for diagnostics as
they are more repeatable
- Stationary data also exhibit
cyclic nature that sometimes
does not reveal damage in data
- Nonstationary response re-
quires averaging as it is not as
repeatable
- Nonstationary data can expose
more types of damage due to it’s
transient nature causing to excite
a broader frequency range

Temperature
range

- Temperature fluctuation
can affect operating com-
ponents

- Temperature shifts change sen-
sor calibration
- Can limit sensors positioning
- Sensors and attachment mech-
anisms can fail due to high/low
temperatures

Acoustic excita-
tion

- Air pressure fluctuations
can trigger vibration and
wave responses

- Acoustic excitations can di-
rectly excite sensor housings

Electromagnetic
interference

- Converting a measured
signal to an electrical sig-
nal can produce electric
and magnetic fields

- Shielding, such as coaxial ca-
bles, is needed to prevent electro-
magnetic interference
- Minimizing the noise effect
through preamplification of sig-
nals is a common practice
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Table 9: Characteristics of different modal data employed for damage detection of
composite structures.

Features Types of Dam-
ages

Advantages Disadvantages

Natural fre-
quency - Delamination

- Cracks
- Stiffness reduc-
tion
- Circular holes
- Debonding
- Impact damage

- Cost effective
- Can be conveniently
measured from just a
few accessible points
on the structure
- Less sensitive to mea-
surement noise

- Can not be used alone
for damage localisa-
tion
- Sensitive to envi-
ronmental and opera-
tional variations

Mode shapes
and curva-
ture

- Delamination
- Cracks
- Stiffness Reduc-
tion
Cutout
- Impact damage

- More sensitive to lo-
cal damage
- Less sensitive to envi-
ronmental effects

- Requires a series of
sensors for measure-
ment
- They are more prone
to measurement noise,
compared to the natu-
ral frequencies

Modal strain
energy - Delamination

- Surface cracks
- Stiffness Reduc-
tion

- Suitable for damage
localisation
- Effective and practical
for detection and quan-
tification of single or
multiple damage
- Less sensitive to envi-
ronmental effects

- More sensitive to lo-
cal damage and small
cracks
- Not much suitable for
damage quantification

Damping - Delamination
- Micro buckling
- Debonding
- Fiber fracture
- Kink bands
- Cracks

- Sensitive to even
small cracks
- Not very sensitive to
noise

- Very sensitive to envi-
ronmental conditions
such as temperature

Frequency
Response
Function
and Curva-
ture

- Delamination
- Debonding
- Impact damage
- Cracks

- Suitable for structure
with many closely-
situated eigenvalues
- Does not require
matching and pairing
of the mode shapes
- Less sensitive to
measurement noise
and the accumulation
of computation errors

- Measurement of the
Frequency Response
Function requires a
series of sensors
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be studied for damage detection and classification. Classical vibrational measurement417

data are usually employed for the identification of structural natural frequencies, thus418

allowing the procedure to be a very cheap experimental practice. Therefore, being cheap419

and easy to measure, natural frequencies are an easy choice for conducting damage detec-420

tion. Another advantage comes from the level of confidence in the accurate measurement421

of frequencies, where uncertainties in the measured frequencies can be considerably422

reduced by a perfect control of the experimental conditions. Moreover, selection of423

adequate measurement points for efficient detection of the changes in frequencies can be424

performed by studying numerical models, such as finite element models, which further425

enhance the simplicity of identifying the damage location and severity. According to426

Doebling et al. [137], the first attempt to identify damage through studying the shift427

in structural natural frequencies was made by Lifshitz and Rotem [138]. Specifically,428

the latter authors analyzed the shifts in the natural frequencies made by changes in the429

dynamic moduli for damage detection of elastomers. Notwithstanding, it is known that430

natural frequencies are highly sensitive to environmental effects, such as temperature431

fluctuations.432

For more information about damage detection in composite structures via natural433

frequencies, the readers are referred to [139–142].434

3.2.2. Mode Shapes435

Mode shapes are relatively less influenced by environmental effects than frequen-436

cies, making them a better choice for damage assessment of structures [143]. Moreover,437

this type of spatial information has been proved to enable damage localisation (Level 2438

as per [144]). Modal Assurance Criterion (MAC) is a statistical technique developed on439

the basis of structural mode shape data and has been widely used for damage detection440

[145]. This method favors the orthogonality property of eigenvectors. Coordinate Modal441

Assurance Criterion (COMAC) is an advanced version of MAC that uses modal node442

displacement for damage detection and localisation [145]. It has been demonstrated that443

MAC and COMAC can be successfully used to detect and localise different types of444

damage Salawu and Williams [146]. COMAC, either alone or in conjunction with other445

methodologies, seems to be a popular damage detection method across different disci-446

plines of engineering. Table 10 presents some recent developments in the application of447

mode shapes for damage detection of composite structures.448

More information about damage detection in composite structures via modal shapes449

refer to [151,152].450

3.2.3. Modal Curvature451

The Modal Curvature Method (MCM) is a technique based on the expanded mode452

shape monitoring theory, which concerns the second derivative of mode shapes. The453

method was first developed by Pandey et al. [153] based on the relationship between454

curvature and flexural stiffness (EI). As such, the loss of stiffness due to damage can455

be sought through monitoring increased modal curvature values. The high level of456

sensitivity of MCM to damage was demonstrated by [154]. Ho and Ewins [155] improved457

MCM by amplifying the curvature variations in the Modal Curvature Squared Method458

(MCSM), which can be employed to more easily discern abnormal changes compared to459

MCM. However, MCM introduces some drawbacks, such as requiring many sensors to460

identify higher modes and limited performance due to the number of modes considered461

in analysis [156]. The central difference approximation used in MCM can magnify the462

effect of errors in displacement mode shapes. This effect can also amplify high-frequency463

noise, resulting in an increase in the variance of the extracted damage features [157].464

On the other hand, using larger sampling frequency to avoid noise can bring about465

truncation error [158]. Additionally, calculating the curvatures from measured strain466

values has shown to be less informative [159]. Given the above drawbacks and to467
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Table 10: Some methods developed for damage detection in composite structures using
mode shapes.

Ref Description Model
[147] The coefficients of the continuous

wavelet transform extracted from differ-
ence between mode shapes of undam-
aged and a damaged structures was
used for damage detection
Mathematical techniques were em-
ployed to mitigate the edge effect of
wavelet transform, reduce experimen-
tal noise in mode shapes, and identifi-
cation of virtual measuring points.
The method was validated through
studying steel beams with different
cracks sizes and locations experimen-
tally.

Composite beam-type
structures.

[148] Experimentally identified modal pa-
rameters were used for damage detec-
tion.
New damage indicators based on the
change of natural frequencies and
mode shapes were developed.

A composite cantilever
beam

[149] The mode shape difference curvature
(MSDC) analysis method was proposed
for estimating damage location and
severity in wind turbine blades. The
method make the use of an FEM for dy-
namics analysis.
The mode shape difference curvature
(MSDC) information was used for dam-
age detection/diagnosis.

Multi-layer composite ma-
terial of wind turbine
blades

[150] The proposed method implements on-
line structural health monitoring using
modal data used in technologies such
as Machine Learning, Artificial Intelli-
gence
The commercial FE code Ansys was
employed to develop a novel tech-
nique, termed node-releasing tech-
nique, through FE analysis (FEA) of per-
pendicular and slant cracks, of various
depths and lengths, in different Uni-
directional Laminate (UDL) composite
layered configurations.

laminated composite
plates

enhance the credentials of MCM, it is usually coupled with other sub-optimal modal468

parameters, such as natural frequencies [160].469

Table 11 presents some of the recent developments in the application of MCM for470

damage detection in composite structures.471

For more information about using MCM for damage detection in composite struc-472

tures, the readers are referred to [150].473
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Table 11: Some recent developments in application of MCM in damage detection of
composite structures.

Ref Description Model
[161] The method exploits two-dimensional

Chebyshev pseudo spectral of modal
curvature to address undesirable prop-
erties of the two-dimensional Fourier
spectral modal curvature in damage de-
tection.
As such, the proposed method is anal-
ogous to the two-dimensional Fourier
spectral modal curvature. Therefore,
it extends the wavenumber domain fil-
tering to the pseudo wavenumber do-
main.

Composite plates

[162] A modal frequency curve method com-
bined with wavelet analysis has been
proposed for damage detection.
It was shown both numerically and
experimentally more robust and un-
ambiguous results can be obtained
through using the proposed damage in-
dicator compared to when the wavelet
coefficients of the studied modes are
solely used.
Moreover, the size of defect was identi-
fied satisfactorily.

A beam-like structure

[163] A flexible printed circuit board (FPCB)
sensor membrane with polyvinylidene
fluoride (PVDF) arrays was developed
for accurate extraction of modal curva-
ture to be used for damage detection of
in-situ aerospace structure.
The proposed structure was proved to
offer a strong self-sensing performance,
where the modal curvature informa-
tion can be extracted without any calcu-
lation of differential equation numeri-
cally.

Composite beam structure

3.2.4. Modal Strain Energy474

Modal strain energy is the energy stored in a structure when it undergoes a defor-475

mation in its mode shape patterns [156]. Referring to the Euler-Bernoulli beam theory,476

damage compromises the ability of the structure to store as much energy, due to a477

loss of stiffness, as it would in its healthy state. An assessment of the application of478

the method to Finite Element (FE) modelled beams demonstrates its superior perfor-479

mance in damage localisation compared to frequency-based damage indicators [164].480

According to the same study, modal strains were proposed to be reasonably capable of481

estimating crack size and, thus, exhibit potential for damage quantification. In another482

study, Yam et al. [165] indicated the higher sensitivity of strain modes to local structural483

changes compared with the displacement modes in a tested plate structure. However,484

the identified strain response of higher modes was not as strong as in lower modes,485

which limits the use of higher modes strain energy for damage detection. Similar to486

MCM, the modal strain energy relies on the central difference approximation method487
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Table 12: Some recent developments in application of modal strain energy in damage
detection of composite structures.

Ref Description Model
[168] A damage index is proposed based

on the ratio of pre– and post–damage
modal strain energies
The ratio of modal strain energies of dif-
ferent modes before and after damage
was introduced as a damage index.
Accordingly, the local areas of the struc-
ture was scanned through moving the
developed damage indices.

Cylinder

[169] The mathematical fundamentals of a
modal strain energy method was devel-
oped and then numerically tested when
data were contaminated by 5% noise.
The proposed method was proved
more accurate, convergent and efficient
when compared with its predecessors.

A beam structure

[170] A damage detection method based on
genetic algorithm and finite element
model updating was developed.
The proposed objective function was
developed based on weighted strain en-
ergy.
It was shown that the proposed objec-
tive function is more sensitive to dam-
age when compared with other meth-
ods.

Laminated composite
plates

that can magnify the effect of noise. Moreover, in order to obtain continuous strain488

values between sensors, curve fitting techniques must be employed to smooth out the489

curve resulting in concealed local damage [156].490

Application of the modal strain energy method was extended to 2-dimensional491

bending structures by Cornwell et al. [166]. Subsequently, Duffey et al. [167] advanced492

the method for structures featuring axial and torsional responses. However, both of these493

methods require numerous sensors and defy from the original relationship between494

curvature and flexural stiffness. Table 12 presents some of the recent developments of495

modal strain energy use for the damage detection of composite structures.496

For more information about damage detection in composite structures via modal497

strain energy, the readers are referred to [171].498

3.2.5. Modal Damping499

Although damping is one structural parameter that can be influenced by damage, it500

is less commonly considered for damage detection due to its complex nature that does not501

simply allow its simulation and study for damage. In a study conducted by Franchetti502

et al. [172], the nonlinear damping of a concrete structure was identified from ambient503

vibration responses and further used for damage localisation in the structures without504

requiring any baseline information available from the undamaged structure. In another505

study, Mustafa et al. [173] developed an energy-based damping evaluation method for506

identifying the location of damage in structures. Ay et al. [174] studied the statistical507

framework of free-vibration of a dynamic system to estimate the damage-induced508

changes in the overall damping behaviour of the system. Conclusively, damping-based509

methods are dependent on the specified damping model. For more information about510
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using modal damping for damage detection in composite structures, the readers are511

referred to [175,176].512

3.2.6. Modal Flexibility513

Another popular modal parameter for structural damage detection is modal flexibil-514

ity, which was first proposed by Pandey and Biswas [177] and further applied to bridge515

structures by Toksoy and Aktan [178]. The modal flexibility method (MFM) is based516

on the flexibility matrix obtained as the inverse of the structural stiffness matrix. The517

MFM method can be reconstructed out of fewer modes compared to the stiffness matrix518

and, thus, has a greater sensitivity to damage, as guaranteed by the reconstruction of the519

flexibility matrix out of more easily extracted lower modes. Also in light of higher sensi-520

tivity, MFM characterises damage based on a single feature extracted from information521

embedded in many frequency modes. This has been confirmed in a study conducted by522

Wang et al. [179], which demonstrated that the advanced damage sensitivity of MFM is523

superior to other modal-based damage indicators. Moreover, the damage localisation524

capabilities of MFM were demonstrated in beam and plate structures through a dynamic525

computer simulation [180]. The good performance of MFM can be attributed to the526

usage of mass-normalised mode shapes. The displacement pattern of the structure,527

therefore, can be portrayed per unit applied force by the flexibility matrix. This will528

enhance damage localisation results, as damage events can be uniformly assessed across529

different parts of the structure. However, since mass-normalised mode shapes require530

knowledge about the load effect, MFM’s performance can be compromised by the ambi-531

ent or unknown conditions effects. Zhang and Aktan [181] employed a hybrid method532

of MFM and MCM to monitor changes in structural flexibility. The authors devised this533

method considering that damage increases flexibility and local curvature concurrently at534

the same location and, therefore, combining these two effects will increase the sensitivity535

of damage indices. Lu et al. [182] also applied the hybrid MFM-MCM method to a536

beam and demonstrated the decent sensitivity of the modal flexibility to local damage.537

However, in the presence of multiple damages, localisation was made difficult, as the538

flexibility peaks merged together. The results of this study also indicated that, in the539

case of multiple damage events with varying magnitudes, changes in the flexibility540

occurred in locations other than the damage sites. Notwithstanding, the results showed541

that the hybrid MFM-MCM method obtained superior results in localising closely dis-542

tributed damage and differentiating between damage events with different magnitudes.543

Table 13 lists some recent developments of modal flexibility use for damage detection of544

composite structures.545

Additional information about the application of MFM in damage detection of546

structures can be found in [186].547

3.3. Frequency Response Function548

Unlike modal data, Frequency Response Functions (FRFs) are obtained over a wide549

range of frequencies, providing more information about damage, and have been widely550

used as input in optimisation-based model-updating problems [187,188]. Nevertheless,551

FRFs have also been utilised to obtain damage sensitive features in damage detection552

problems. For example, in a study conducted by Limongelli [189], a damage sensi-553

tive feature based on the difference between the FRF and its spline interpolation was554

proposed.555

The major challenge, however, lies in the choice of a proper frequency range for556

excitation. Furthermore, the FRF requires knowledge about the expiation force and the557

corresponding structural response. Transmissibility is a substitute for the FRF, which is558

defined based on the relationship between two sets of responses, and thus is independent559

of input excitations. Since transmissibility is a local quantity, it is highly sensitive to560

damage.561
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Table 13: Some recent development of using modal flexibility in damage detection of
composite structures.

Ref Description Model
[183] Two vertical and lateral damage inde-

ces based on the MFM was proposed
for damage detection and localisation
in the main cables and hangers of a sus-
pension bridge.
The proposed vertical damage index re-
quires only the first few modes to accu-
rately detect damage in real suspension
bridges.

A suspension bridge

[184] The MFM was employed to evaluate its
performance using the displacement of
nodes for damage detection
According to the obtained results, the
modal flexibility method was capable
of damage detection through the dis-
placement of nodes.

A honeycomb composite
beam structure

[185] The MFM was employed for damage
detection of cantilever beam-type struc-
tures through estimation of the damage-
induced inter-storey deflection (DIID).
The proposed approach can directly
identifies damage location(s) as it relies
on a clear theoretical base and does not
require an FEM.

Cantilever beam-type
structures

Table 14 presents some recent developments of the FRF applications for damage562

detection in composite structures. For more information about damage detection using563

FRFs, the readers are referred to [194,195].564

3.4. Model Updating565

Model updating methods aim to synchronise the responses from a finite element566

(FE) model of a structure with measured responses by updating the physical parameters567

of the FE model on an elemental or sub-structural level. Different static and dynamic568

responses, or a combination of both, have been used in model-updating problems569

[188,196]. There are generally two types of model-updating methods: (1) sensitivity-570

based methods, and (2) optimisation-based methods.571

Table 15 lists some recent advances of model-updating techniques for damage572

detection of composite structures.573

3.4.1. Sensitivity-based model updating methods574

Sensitivity-based model updating methods are set to minimise a penalty function575

of errors constructed based on the difference between the measured and simulated576

data [207]. These methods characterise the sensitivity of the FE model parameters by577

measuring changes in the FE model response caused by a unit change in the model input578

via iterations. On the other hand, sensitivity-based methods are capable of updating579

the FE model and reproducing the measured responses robustly [201]. However, these580

methods also suffer from modifying the most sensitive element and overlook the element581

with error. To tackle this problem, it is recommended to localise the errors first and then582

changes in the corresponding elements to be sought [207].583
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Table 14: Some recent development in applications of FRFs for damage detection in
composite structures.

Ref Description Model
[190] A method based on the modelling of

nonlinear Auto-Regressive Moving Av-
erage with eXogenous Inputs (NAR-
MAX) and the Nonlinear Output Fre-
quency Response Functions (NOFRFs)-
based analyses was proposed for dam-
age detection

Plate structures

[191] Artificial neural networks were em-
ployed to develop a damage detection
method using FRFs. The proposed
method is capable of nonlinear damage
detection effectively when the excita-
tion is set at a specific level

A three-story structure

[192] A Frequency Response Function (FRF)-
based damage detection strategy based
on the usage of measured FRF was pro-
posed. Graphical diagrams were used
to identify the exact location of defec-
tive element(s)

Cantilever beam-type
structures

[193] Three Fractal Dimention (FD)-based
damage indices, i.e. Higuchi, Katz, and
Sevcik, based on the FD analysis of FRF
data in frequency domain were pro-
posed

Beam-type structures

[188] A modified sensitivity equation was
proposed to solve the problem of dam-
age detection structures with closely-
situated eigenvalues.
The capability of the proposed method
in damage detection of structures
with closely-situated eigenvalues was
demonstrated when incomplete noisy
measurements were used.

Three-layered laminated
composite plate

3.4.2. Optimisation-based Model Updating Methods584

Traditional gradient-based optimisation methods are limited in a sense that they585

require a good initial value. Modern optimisation-based model updating methods favor586

the development of computational intelligence techniques, such as the Genetic Algo-587

rithm (GA), Artificial Neural Network (ANN), particle Swarm Optimization (PSO), and588

Artificial Bee Colony (ABC). Since these algorithms do not rely on a fixed mathematical589

structure for optimisation, they can overcome the aforementioned shortcomings of tradi-590

tional methods. Moreover, these algorithms are capable of dealing with the uncertainties591

and insufficient information of structural damage detection problems. The three main592

categories of population-based metaheuristic algorithms include: evolutionary-based,593

swarm-based, and bio-inspired algorithms [208].594

Table 16 indicates some recently developed optimisation-based methods for damage595

detection of composite structures.596
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Table 15: Different types of features employed in some recent model-updating techniques
for damage detection of composite structures.

Methods Features Refs
Conventional model updat-
ing

- FRFs
- Frequencies and mode shape
- Dynamic strain
- Accelerations
- Static strains, displacements

[197]
[198]
[199]
[200]
[201]

Substructuring techniques - Frequencies and mode
shapes
- Accelerations

[202]
[203]

Regularisation techniques - Accelerations
- Frequencies and mode
shapes
- Frequencies

[204]
[205]
[206]

Table 16: Different types of features employed in some recent optimisation-based meth-
ods for damage detection of composite structures.

Algorithms Features Refs
GA - Mode shapes and Stiffness matrix

- Natural frequencies
- Natural frequencies and accelerations

[209]
[210,211]
[212]

DE - Mode shapes
- Natural frequencies and mode shape

[213]
[214]

PSO - Natural frequencies and mode shapes
- Frequency response function

[215]
[215]

ABC - Natural frequencies and mode shapes
- Natural frequencies

[216]
[217]

4. Advanced Hybrid Vibration Methods597

The low-frequency structural vibration-based methods present several advantages,598

such as: (1) the structural responses are relatively easy to interpret; (2) they can be easily599

applied to complex and larger structures; and (3) they do not necessarily require full600

access to the structure [11]. Nevertheless, these methods face some limitations. For601

instance, they have a lower sensitivity to local defects compared to higher frequency-602

based approaches and require the installation of numerous sensors in order to be able603

to describe standing wave patterns [218]. Some researchers have employed nonlinear604

dynamic analysis to feature local defects [219]. Although classical linear methods have605

been successfully used in various applications [220], they succumb to various properties606

of nonlinear features, such as high sensitivity to local damage [221] and robustness607

to environmental effects [222]. Some frequently-used nonlinear features for damage608

identification include the sub-/higher harmonics modulation in the structural response,609

waveform distortions, correlation between frequency shifts and the excitation amplitude,610

coherence functions, vibro-acoustic modulation, and so on [222].611
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4.1. Vibro-Acoustic Modulation Techniques612

Thanks to the advancement of various NDT methods, the damage detection of613

composite structures has immensely progressed over the past decades. Some of these614

methods, which include visual inspection, ultrasonic testing, acoustic emission, X-rays,615

and vibro-thermography [223], use a web of integrated sensors with the structure under616

study. Among all methods, guided ultrasonic waves [224] are of particular interest as617

they require a smaller number of transducers to inspect large structures. Nonlinear dam-618

age features have been sought through concurrent application of mechanical vibrations619

and acoustic waves [225]. A review on such non-linear interactions can be found in620

[226].621

Vibro-acoustic modulation (VAM) is a nonlinear NDT method that is widely used622

for structural damage evaluation in different materials, such as composites. The method623

is based on the application of two types of signals: (1) a more intense low-frequency624

vibration (pumping signal), and (2) a high-frequency acoustic wave (probing signal).625

First, the composite component is excited via a low-frequency mechanical signal, then626

concurrently, a high-frequency acoustic signal is transmitted through the material. The627

low-frequency vibration signal causes cyclic opening and closing of microscopic defects,628

producing modulations in transmitted acoustic signals - a phenomenon termed Contact-629

Acoustic Nonlinearity [227]. The recorded vibration signal carries information about630

damage in the form of Higher Harmonics (HH) modulations and Side-Bands (SB).631

Demodulation techniques are used to isolate the high-frequency content of the recorded632

signal that has information about damage. VAM is shown to be sensitive to damage633

severity in complex structures [77].634

Numerous studies in the literature have been conducted on the application of VAM635

in featuring different types of damage in composite materials, such as impact damage636

[228], delamination [229,230], and debonding [231].637

The existing theories of VAM are developed based on one-dimensional spring-mass638

models [226]. As such, the nonlinear signal of VAM is caused by the nonlinearity of639

the spring constant, which can stem either from the inherent material nonlinearity or640

the bilinear behaviour due to the opening and closing of the crack [226]. A generic641

three-dimensional (3D) body theory of VAM has yet to be developed [232].642

4.2. Data Analysis Techniques643

Traditional signal processing techniques are generally based on the bold assumption644

that the signals are generated through a stationary and linear process. Table 17 lists645

some of the advantages and disadvantages of some methods. These methods can result646

in false information once they are employed for fault detection in signals. The main647

reason is that the effect of the damage on mechanical responses may be non-stationary,648

generating a transient effect in the response signals [233]. To deal with non-stationary649

signals, several advanced time-frequency analysis techniques have been developed and650

further employed for fault diagnosis of rotating machinery [234]. Time-frequency (TF)651

methods can provide an improved representation of energy variation in a signal caused652

by damage and, thus, have attracted much research in the SHM community over the653

past decades.654

The raw data obtained from the deployment of sensors on a structure cannot be655

used for damage detection on its own and, instead, must be treated to extract meaningful656

information about the structural health condition. Hence, it is vital to employ some657

analysis techniques to process the recorded data. One method is to transform the data658

into various domains whereby hidden information, which is not usually accessible in659

the raw data, can be extracted. To this end, various frequency-domain analysis (FDA)660

and time-frequency analysis (TFA) signal processing techniques have been employed.661

While FDA methods are more suitable for stationary signal analysis, TFA are typically662

employed to tackle the problem of information extraction out of nonstationary signals.663

Examples include Short Time Fourier Transformation (STFT), Wavelet Transformation664
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Table 17: The advantages and disadvantages of frequency domain versus time domain
damage detection methods.

Methods Advantages Disadvantages Feature
Frequency
Domain (FD)

- Simple and rapid
identification
- Can be cou-
pled with a half
power bandwidth
approach for damp-
ing ratio extraction
- They are an accu-
rate, while simple,
method for system
identification and
is widely used in
structural modal
analysis
- Can be used in
output-only meth-
ods for identifying
system parameters
- They are appro-
priate technique
for information
extraction from
closely spaced
modes

- Are limited in
terms of frequency
resolution of the
estimated spectral
data
- They are inaccu-
rate and unreliable
for the analysis of
non-linear/non-
stationary signals
- They can provide
resolution in low-
frequency ranges
and, therefore,
fewer numbers
of modes can be
incorporated
- Can not be used
to detect the modal
parameters in cable-
stayed bridges

- Peak picking (PP)
- Complex mode
indication function
(CMIF)
- Least squares
complex frequency-
domain (LSCF)

Time Do-
main (TD)

- They are more
appropriate for con-
tinuous monitoring
- Extracted infor-
mation are more
complete compared
to FD methods
- They can provide
resolution in larger
frequency ranges,
and therefore, a
large number of
modes can be
incorporated
- Higher computa-
tional complexity
than FD methods
- They are direct
methods and,
therefore, are not
reliant on any data
pre-processing
stage to work out
correlation func-
tions

- The results can be
unreliable for a pair
of closely-spaced
natural frequencies
- Generated data
from output-only
modal analysis can
be more scattered
- Can not detect
damage for earth-
quake induced
excitation
- Require human
judgment

- Natural excitation
technique (NExT)
- Auto-Regressive
moving average
(ARMA)
- Subspace system
identification (SSI)
- Canonical variate
analysis (CVA)
- Numerical algo-
rithms for state
space/subspace
system identifica-
tion (N4SID)
- Multivariable
output error state-
space (MOESP)
- Data-driven
subspace system
identification (SSI-
DATA)
- Covariance-driven
subspace system
identification (SSI-
COV)
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(WT), Empirical Mode Decomposition (EMD), Variational Mode Decomposition (VMD),665

and so on. Some of the most common types of TFA methods employed in composite666

structures are reviewed in the following sections.667

4.2.1. Wavelet Transformation668

Wavelet transformation (WT) has been of great interest for SHM due to its high669

sensitivity to anomalous observations in measured vibration signals. The first studies on670

the application of wavelet analysis in the damage detection of structures were conducted671

in the early 1990’s during the initial stages of its development. As the first attempt,672

Surace and Ruotolo [235] employed WT to analyze vibration signals for damage detec-673

tion. Spatial WT, based on Continuous WT (CWT) with a Haar wavelet, was initially674

used for crack detection and localisation in beams [236]. Additionally, Sung et al. [237]675

first employed Discrete WT (DWT) for the damage detection of composite laminates,676

using Daubechies wavelets for impact damage detection through studying acoustic677

emission waves. Chang and Chen [238] expanded the work by Wang and Deng [239] on678

the use of spatial CWT for detection and localisation of damage in Timoshenko beams679

using Gabor wavelets. The proposed method was further generalised by the authors for680

spatial damage detection of plate structures [240]. Chang and Chen [241] proposed a681

CWT-based approach for estimation of crack position and depth in beam-type structures.682

Rucka and Wilde [242] presented a comparative study on the application of various683

WT techniques for damage detection of beams and plates through experimental study.684

To this end, several parameters of WT, including number of the vanishing moments,685

symmetry and width of the effective support, were considered. The results indicated686

that Gaussian and reversed bi-orthogonal wavelets were most effective for CWT-based687

damage identification. Zhong and Oyadiji [243] demonstrated the superiority of Sta-688

tionary WT (SWT) over Continuous WT (CWT) in terms of computational efficiency by689

employing symlet wavelets of order 4 for damage detection of simply supported beams,690

following the same approach taken by [244]. Gökdağ and Kopmaz [245] developed a691

method based on the calculation of modal assurance criterion through combining CWT692

and DWT for damage detection of beam-type structures. In all such methods, a metric693

was sought through sensitivity analysis of wavelet-based methods in damage identifica-694

tion problems in a bid to estimate the presence and location of damage. Bayissa et al.695

[246] proposed energetic zeroth-order moment approach based on Daubechies wavelets696

of order 8 for damage identification of a concrete plate and steel plate girder in a bridge697

structure. Katunin et al. further developed DWT-based algorithms for damage detection698

of composite beams [247,248] and plates [249,250] through making the use of B-spline699

wavelets. As such, the application of B-spline wavelets provides higher sensitivity to700

damage compared with all other compactly supported orthogonal wavelets such, as701

DWT [249].702

Using WT methods in conjunction with other supporting methods has proven to703

provide better solutions to damage detection problems. For instance, Rucka and Wilde704

[251] presented a CWT-based algorithm supported by the ANN. Hein and Feklistova705

[252] used wavelet transform along with ANN for delamination detection in composite706

beams. Xiang and Liang [253] proposed a two-step 2D DWT-based algorithm along with707

particle swarm optimisation for damage detection of plate structures. XU et al. [254]708

introduced a new damage detection method using CNN and WT for damage detection709

of composite structures and verified the results of the proposed method via experimental710

studies. Sha et al. [255] employed the Teager Energy operator (TEO) in conjunction with711

WT to process mode shapes of laminated composite beams, termed TEO-WT mode712

shapes. The results showed that, since each TEO-WT mode shape exhibited a specific713

sensitivity to damage location, simultaneous detection of multiple damage from a single714

TEO-WT mode shape is not possible. Wu et al. [256] proposed a novel method for715

internal delamination detection in carbon fiber-reinforced plastics by combining deep716

CNN and CWT. The proposed data-driven method can effectively make use of big data717
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without being reliant on complex feature extraction. [257] presented a technique for718

damage localisation and quantification in composites under strong noise background719

based on synchro-squeezing WT and the stack autoencoder algorithm. Some useful720

information about feature extraction and selection in dealing with data can be found in721

[258].722

4.2.2. Empirical Mode Decomposition723

Empirical Mode Decomposition (EMD) is another time-frequency signal process-724

ing technique that can be used to decompose a complex signal into a set of ampli-725

tude/frequency modulated and almost orthogonal components, termed intrinsic mode726

functions (IMFs) [259]. IMFs represent natural oscillation modes that can be deemed as727

the basis functions extracted from the original signal [260]. Therefore, it is a self-adaptive728

signal processing algorithm that can be applied to a nonlinear/non-stationary signal to729

decompose it into its constructive IMFs. It is known that EMD suffers from the mode730

mixing phenomenon, which can compromise the accuracy of damage detection meth-731

ods. Hence, Wu and Huang [261] proposed a new ensemble EMD (EEMD) method to732

tackle the mode mixing problem of EMD. Looney et al. [262] introduced a multivariate733

empirical mode decomposition (MEMD) framework, which is robust to noise, and used734

to produce localised instantaneous frequencies. Leo et al. [263] developed a bi-variate735

EMD and further applied it for damage detection in composite materials.736

Wang et al. [264] proved the equivalence of the computational complexity of EMD737

and fast Fourier transform (FFT). The researchers further optimised the computational738

efficiency of EEMD by 1000 times by proposing a fast Hilbert-Huang Transformation739

(HHT) with an optimized EEMD algorithm. Accordingly, the optimized EEMD method740

can be considered for real-time impact localisation of composite structures. Other than741

its mode-mixing problem, EMD also is limited by its ability to only decompose a sin-742

gle measurement data at a time. As such, a multivariate version of the EMD, termed743

Multivariate EMD (MEMD), was recently proposed, which facilitates the decomposition744

of multi-channel vibration signals [265–267]. Cao et al. [268] developed an ultrasonic745

signal processing method for non-destructive testing of composite structures through746

improving the depth evaluation of phased array ultrasonic waves. The developed al-747

gorithm is based on a combination of EMD, correlation coefficient analysis, a fuzzy748

entropy algorithm, and Hilbert transform and, as such, can be regarded as an improved749

adaptive time-frequency analysis algorithm. Barile et al. [269] used both Wavelet Packet750

Transform (WPT) and EMD to develop a model for decomposing recorded waveforms.751

The proposed model reconstructs the decomposed waveforms after excluding the resid-752

ual signal from the parent waveform and further calculates the energy content of each753

frequency band of the reconstructed signal. Han et al. [270] extracted damage modes of754

composite laminates from acoustic emission (AE) signals utilising EEMD and a decorre-755

lation algorithm.756

4.2.3. Time-frequency Signal Analysis and Processing (TFSAP)757

It is generally desirable to have a time-frequency algorithm that enables the decom-758

position of non-stationary/nonlinear signals contaminated by a high level of noise. This759

is critical for modal parameter identification from highly noisy vibration data. Varia-760

tional Mode Decomposition (VMD) is an adaptive signal decomposition algorithm that761

can be used for the effective decomposition of a non-stationary/nonlinear signal, con-762

taminated by a high level of noise, into a set of mutually independent oscilatory modes763

(IMFs) [271]. The VMD method has been widely used for fault diagnosis of mechanical764

systems, and its superiority over other algorithms, such as EMD and EWT, has been765

proven in several studies [272–274]. However, its application in damage detection of766

composite laminates has yet to be explored.767

A recently proposed accurate adaptive signal decomposition method, termed Em-768

pirical Fourier decomposition (EFD), can overcome several shortcomings of its preceding769
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algorithms [275]. Yet, future work needs to be dedicated to exploring the application of770

this method in damage detection of different structures, such as composite laminates.771

5. Artificial Intelligence772

Artificial Intelligence (AI) aims at mimicking human intelligence through develop-773

ing computer programs for solving complex problems. In early applications, AI was774

particularly developed to solve rule-based problems. These sorts of problems, which775

are intellectually difficult for human, were proven straightforward for developed AI-776

based computer programs that are hand-coded by a human expert [276]. Although777

AI-developed programs are based on human knowledge, they have surpassed human778

ability in many cases, such as playing chess [277]. Notwithstanding, knowledge-based AI779

still succumbs to a human capabilities in many “everyday” tasks, such as face recognition,780

object detection, and speech understanding. Since such tasks are naturally performed by781

humans based on informal awareness obtained through several experiences about the782

world, they cannot be explicitly translated to a set of formal rules in a computer program.783

This is regarded as the most confronting challenge experienced by most AI systems thus784

far [278], for which the concept of machine learning (ML) was developed to remedy785

this challenge. An ML algorithm is designed in a way that the program can acquire786

the required information from data to learn how to fulfill a specific task systematically787

[279]. To this end, data are required to be pre-processed for extracting and characterising788

some features in terms of the quality they represent through a procedure termed "feature789

extraction" [280]. The extracted features are then used to train the ML system to learn790

how they discriminate different patterns in the data.791

5.1. Machine Learning792

The primarily two classes of ML algorithms include supervised and unsupervised793

algorithms [281]. Supervised algorithms rely on a human-labeled data for training [282]794

and aim to establish an optimal mapping of the feature space and the space correspond-795

ing to the target values (labels) [283]. Unlike supervised ML algorithms, unsupervised796

algorithms do not require labeled data, instead their objective is to label data based on797

the algorithm’s underlying structure [284]. Figure 6 illustrates the procedure of training798

an ML algorithm. Regression and classification problems are the two types of problems799

solved by ML algorithms. Some of the recent studies on the application of supervised800

and unsupervised ML algorithms for different damage detection problems are listed in801

Table 18.802

5.2. Deep Learning803

As previously discussed, the performance of ML algorithms is mostly reliant on804

the strengths of the extracted features in representing data. It is, however, critical to805

extract optimal features that can properly characterise properties of the input data in806

order to simplify the process of establishing the map between the feature and target807

spaces for ML algorithms [299]. Yet, it is not always practical to manually identify the808

optimal features extracted from the raw data, nor is it very easy to select a proper group809

of features manually for training [300].810

Therefore, Deep learning (DL) methods, such as Deep Neural Networks, have811

been developed to mitigate the reliance of complex ML applications on hand-crafted812

features. DL techniques are, thus, a special type of ML algorithm that can extract optimal813

features directly from raw data without incorporating user intervention. DL systems are814

hardwired to establish a direct map from raw data to targets without requiring extraction815

of features a priori [301]. Therefore, by learning how to extract high-level and abstract816

features hierarchically out of simple and low-level learned features [276], DL is able to817

handle complex problems [302–304].818

Table 19 lists some reviewed recent studies on the application of DL and ML in819

SHM of composite structures.820
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Figure 6. Procedures of training an ML algorithm.
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Figure 7. (a) Smart structures and smart adaptive structures, and (b) implementation of structural
health monitoring.

6. Smart Structures821

One promising technological advancement of the twentieth century in the realm822

of SHM is the possibility of integrating sensors and actuation systems with structures823

(Figure 7a). Similar to the human body, a smart structure is designed to react to exter-824

nal conditions and change its responses accordingly. The structural system is aimed825

to perform damage identification and characterisation (recognition, localization, and826

quantification) as well as to report damage to a control centre for facilitating proper827

response by the system manager (Figure 7b). To this end, smart structural systems are828

comprised of several factors, including a host structural material, actuators, a network of829

sensors, real-time control facilities, and computational appliances. As such, the structure830

can autonomously monitor the health conditions of the host material in an automatic831

and continuous fashion, through the following steps:832

1. The actuator creates vibration in the structure by inducing strain or displacement.833

2. The sensors record the resultant vibration response of the structure.834

3. The data recorded by the sensors are transmitted to the control/processor unit.835

4. The transmitted data are studied via some computational instrument for damage.836

The development of smart structures for damage detection is projected to meet the837

following goals [313]:838

1. Enable the structure to detect damage as soon as it is incurred by the structure,839

2. Determine the location and severity of the damage,840

3. Predict the remaining service-life of the structure, and841

4. Alert the operator about the extent to which the performance of the structure was842

compromised, so that necessary steps can be followed to handle the situation.843

Some examples of smart materials include composites with surface-attached or844

embedded sensors, electrorheological (ER) materials, and magnetorheological (MR)845

materials [314,315]. Smart structural systems are also common in a range of industries,846

from aerospace, IT, automobile, and space to the military [316]. As a case in point,847

one of the most well-known smart system technologies includes composite materials848

embedded with fiber-optic sensors (FOS) [317], which is utilized in several applications,849

such as safety-related areas in aircrafts.850

6.1. Self-sensing Composites851

The property of a material to sense different factors pertaining to its own conditions,852

like stress, strain, damage, and temperature, is termed a self-diagnosing or self-sensing853

capability. As such, self-sensing composites are capable of sensing their own health854

condition, which makes this sort of material an excellent choice for conducting con-855

tinuous SHM of civil engineering structures. Electrical resistivity enables self-sensing856

composite materials to sense the strain and damage based on the piezoresistivity prin-857

ciple in self-sensing composite materials. To establish piezo-resistivity in composite858
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materials, some conducting elements have to be integrated with the materials. Examples859

of such conducting elements include short and continuous carbon fibers (CFs), carbon860

particles as well as carbon nanomaterials, such as carbon nanofibers (CNFs) and nan-861

otubes (CNTs) [318–320]. Moreover, the electrical resistivity of such elements undergoes862

disruption as soon as the material is subjected to deformation or damage. The results863

are, however, highly dependent on the amount, type, and distribution of the conducting864

component. The design flexibility of self-sensing composites is considered one of their865

main advantages, whereby the type of response can be tailored. Since composites are866

widely used in civil infrastructures as strengthening materials, integrating self-sensing867

capability with such materials can strengthen the health monitoring functions of these868

structures. This will further eliminate the required externally-deployed sensors on such869

structures [320].870

The following list describes different types of self-sensing composite materials that871

are used for the SHM of civil infrastructures:872

• Polymeric composites [321]873

– Short CF Composites874

– Continuous CF Composites875

– CNT/CNF Composites876

• Cementitious composites [322]877

– Short CF Composites878

– Continuous CF Composites879

– CNT/CNF Composites880
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7. Final Remarks881

In this study, several aspects of composite structures were reviewed, including882

the types of composite structures, damage mechanisms that can affect such structures,883

and methods employed for damage detection of composite structures. To this end, 322884

papers have been reviewed, with 203 papers were published from 2015 to present, as885

shown in Figure 8.886

Different aspects of the methods for damage detection of composite structures were887

investigated and include the types of sensing technologies used to this end, the types of888

recorded data, and various data analysis techniques that can be utilised to interpret the889

recorded data for extracting information about the health state of the structure under890

study. This study, thus, provides a comprehensive reference for any researcher who891

wants to begin his academic career in the realm of the SHM of composite structures.892
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8. Conclusion and Future Work893

This review provides a comprehensive research on the different aspects of SHM of894

composite structures. First, different types of composite structures were studied, and895

composite materials were classified based on their compositions. Next, the contribution896

of each component to different properties of such structures was described. Importantly,897

this information helps to provide background knowledge about how damage in such898

structures can progress as these components become defective. Next, different types of899

damage in such structures were studied and classified based on the component in which900

they may occur. Since composite materials are highly sensitive to environmental and901

operational variations (EOV) effects, several environmental effects and their impact on902

composite materials were fully investigated. Understanding the types of damage and903

impact of EOV on composite structures can guide an engineer to select a proper dam-904

age detection strategy for SHM of the structure. We demonstrated that different SHM905

methodologies are effective to unfold a limited range of damage in composites, though906

some methods, such as AE and NI, are more promising and can reveal a wide range of907

defects from micro-scale to macro-scale damage. Next, the properties of different sensors908

employed for the SHM of composite structures were reviewed. As such, it was argued909

that the proper selection of the sensors depends on the type of data to be recorded for910

damage detection and is also a function of various other factors that must be considered911

prior to selecting the type of sensors. Next, different features that can be extracted from912

vibration signals were reviewed. Such features that are mostly in frequency domains913

were fully studied along with their advantages and disadvantages. Subsequently, it was914

demonstrated that advanced damage detection algorithms developed for composite915

structures seek nonlinear interaction between a transmitted acoustic signals and mechan-916

ical vibration of the structure. As a following argument, these techniques benefit vastly917

from the development of time-frequency signal processing algorithms. Accordingly,918

more advanced time frequency features can be extracted for damage detection using919

these techniques. With the development of ML and DP algorithms, more advanced920

damage detection methods have bee proposed for composite structures. Therefore, some921

recent developments made in this area of research were reviewed in this study. Overall,922

this study provides a comprehensive review on the various aspects of SHM of composite923

structures and can be referred by any researcher who wants to start his research in this924

exciting area.925
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Table 18: Some studies on the application of supervised/unsupervised ML algorithms
in structural damage detection problems.

Methods Advantage Disadvantage Input–Output
Supervised
learning - Commonly ML al-

gorithms
- Identify Level 1 to
3

- Needs features
obtained from both
undamaged and
damaged states of
the structure
- The performance
depends on the
model accuracy

- Frequencies and mode
shapes–Stiffness reduc-
tion [285]
- FRF–Structural condition
monitoring [286]
- Dynamic displacement–
Joint connection damage
[287]
- Frequencies–damage in a
steel-girder bridge model
[288]
- Acceleration under ran-
dom excitation–Damage
in a steel girder-bridge
model [289]
- Fourier amplitude spec-
trum of wind-induced
acceleration–Damage as
loosening its connection
bolts [290]
- Image vectors con-
verted from acceleration–
Damage detection in
hanger cables [291]
- Wavelet energy
spectrum–Multi-pattern
anomalies [292]
- AR coefficients and resid-
ual errors of the statistical
parameters–Structural
condition monitoring
[293]

Unsupervised
learning - Needs features of

the intact state of a
structure
- Employed for
generating class-
information about
different modes of
failures

- Limited to Level
1 damage identifica-
tion

- Time-series displace-
ments and rotations–
Structural condition
monitoring [294]
- Accelerations from
passing vehicle–
Detecting small stiffness
reductions[295]
- Frequency domain of am-
bient vibration–Condition
monitoring of a railway
bridge [296]
- Crest factor and T-
continues WT extracted–
Structural condition
monitoring [297]
- Random acceleration
responses–Novelty detec-
tion [298]
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Table 19: Some reviewed papers on the application of DL and ML in SHM of composite
structures.

Refs Method Description Model
[305] Deep Learn-

ing
- A basalt fiber-reinforced poly-
mer (BFRP) pipeline system was
analysed.
- Long-gauge distributed fiber
Bragg grating (FBG) sensors
were used to collect data

Fiber-reinforced
polymer (FRP)
composite pipeline

[306] Deep Learn-
ing

- A damage-assessment algo-
rithm for composite sandwich
structures was developed
- The full-field vibration mode
shapes and deep learning were
employed to this end

Composite Sand-
wich Structures

[307] Deep Learn-
ing

- Deep learning was exploited for
quantitative assessment of visual
detectability of different types of
damage in in-service laminated
composite structures

Laminated compos-
ite structures such
as aircraft and wind
turbine blades

[308] Deep Learn-
ing

- Labeled damaged data was gen-
erated through FE models for a
pin-joint composite truss struc-
ture
- A model-based approach for
the data acquisition problem was
employed

A pin-joint compos-
ite truss structure

[309] Artificial
Neural Net-
work (ANN)

- The fast convergence speed
of gradient descent (GD) tech-
niques of ANN and the global
search capacity of evolutionary
algorithms (EAs) were exploited
for network training

Laminated compos-
ite structures

[310] Artificial
Neural Net-
work (ANN)

- A new modified damage indi-
cator combined with ANN was
proposed
- Local Frequency Response
Ratio (LFCR) was improved
through a transmissibility tech-
nique

Laminated compos-
ite structures

[311] Machine
learning

- The possibility of damage detec-
tion through monitoring acous-
tic emission (AE) signals gener-
ated in minicomposites with elas-
tically similar constituents was
demonstrated

Unidirectional
SiC/SiC compos-
ites

[312] Deep autoen-
coder

- Ultrasonic Lamb waves data
were used to develop a robust fa-
tigue damage detection method
via deep autoencoder (DAE)

Composite struc-
tures
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