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 21 
Abstract: Finite element (FE) based structural health monitoring (SHM) algorithms seek to update 22 
structural damage indices through solving an optimisation problem in which the difference between the 23 
response of the real structure and a corresponding FE model to some excitation force is minimised. These 24 
techniques, therefore, exploit advanced optimisation algorithms to alleviate errors stemming from the lack 25 
of information or the use of highly noisy measured responses. This study proposes an effective approach 26 
for damage detection by using a recently developed novel swarm intelligence algorithm, i.e. the marine 27 
predator algorithm (MPA). In the proposed approach, optimal foraging strategy and marine memory are 28 
employed to improve the learning ability of feedforward neural networks. After training, the hybrid 29 
feedforward neural networks and marine predator algorithm, MPAFNN, produces the best combination of 30 
connection weights and biases. These weights and biases then are re-input to the networks for prediction. 31 
Firstly, the classification capability of the proposed algorithm is investigated in comparison with some well-32 
known optimization algorithms such as particle swarm optimization (PSO), gravitational search algorithm 33 
(GSA), hybrid particle swarm optimization-gravitational search algorithm (PSOGSA), and grey wolf 34 
optimizer (GWO) via four classification benchmark problems. The superior and stable performance of 35 
MPAFNN proves its effectiveness. Then, the proposed method is applied for damage identification of three 36 
numerical models, i.e. a simply supported beam, a two-span continuous beam, and a laboratory free-free 37 
beam by using modal flexibility indices. The obtained results reveal the feasibility of the proposed approach 38 
in damage identification not only for different structures with single damage and multiple damage, but also 39 
considering noise effect.  40 
 41 
Keywords: Hybrid approach, marine predator algorithm-feedforward neural networks (MPAFNN), 42 
vibration experiment, damage detection, modal flexibility index. 43 
 44 
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I. Introduction 45 
Structures under service will inevitably undergo some damage due to their permanent exposure to 46 
operational loads, environmental effects or accidental events. Maintenance and repair of existing bridge 47 
structures have gained more and more attention recently. To achieve an effective, low-cost, and timely 48 
manner SHM, damage detection must be conducted at an early stage. In traditional assessment methods, 49 
visual inspection techniques play a significant role in collecting data on in-service bridges. The collected 50 
data are further processed to assess the health condition of structures. However, there are some limitations 51 
involved with these techniques such as the existence of invisible or inside structural damage or inequalities 52 
of the inspector’s competences.  53 

In order to overcome these shortcomings, many researchers successfully applied a physical model-54 
based method for damage identification. Using the direct changes in natural frequencies or displacement 55 
mode shapes between intact and damaged conditions, they identify the location and the level of damage. 56 
However, this approach can use an optimization algorithm to solve the model updating problem [1-6]. 57 
Therefore, these approaches can become time-consuming in case of the occurrence of multiple damage 58 
scenarios or complex structures. The authors in [7] also used the inverse problem-based approach for 59 
damage detection. A regularized level set method was used to identify defects in a piezoelectric material 60 
via an iterative procedure. The obtained results confirmed that the proposed algorithm could successfully 61 
determine the number, approximate location and shape of defects in the piezoelectric domain. 62 

In contrast, modal-based damage detection methods are another set of techniques that have been 63 
successfully applied to identify defects without iteration. These approaches use damage sensitive indices to 64 
detect, localize and evaluate damage in civil engineering structures. The first and simplest index based on 65 
displacement mode shapes e.g. Modal Assurance Criterion (MAC) or Coordinate Modal Assurance 66 
Criterion (COMAC) was used in studies [8-10]. Although the obtained results indicated the high potential 67 
of these indices in detecting the presence of damage, their capability in localizing damage showed some 68 
limitations. Modal strain energy-based (MSE) methods are another set of modal-based techniques which 69 
have received many positive results in damage detection and localization. Many numerical studies 70 
confirmed high accuracy and reliability of these methods in detecting and locating damage at different noise 71 
levels [11-16]. However, directly extracting modal strain energy indices from measurements is still a 72 
challenge. Modal curvature method (MCM) is another popular mode shape-based approach for damage 73 
identification. Wahab and De Roeck [17] applied modal curvature (MC) and curvature damage factor 74 
(CDF) to both simulated data and a real case, the bridge Z24. They found that MC was more precise when 75 
using the lower modes. Performance of higher modes MC could be guaranteed by increasing the 76 
measurement grid. They emphasized that when severe damage occurred in structures, CDF revealed its 77 
supremacy of damage localization. Authors in [18-20] recommended using modal curvature method 78 
(MCM) for localization of damage. However, this method is not a suitable choice, especially in large sensor 79 
spacing condition or when only higher modes could be extracted. Moreover, the normalization of two-mode 80 
shapes of healthy and damaged states is necessary to guarantee the quality of damage identification.  81 

Modal flexibility method (MFM) combines natural frequencies and displacement mode shapes for 82 
determining damage in structures. One of the advantages of this method is that it can indicate the damage 83 
position based on the first few lower modes. In other words, the flexibility index is sensitive to changes in 84 
stiffness of the structure even when only lower modes are used. Besides, normalization of mode shapes is 85 
unnecessary for increasing the accuracy of defect localization. MFM was applied successfully in [21-23]. 86 
However, the quantification of damage level was not mentioned in these studies. In reality, natural 87 
frequencies/lower-mode is easier to identify than mode shapes/higher-mode. Therefore, the real application 88 
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of this approach is feasible due to its simplicity and low cost. This study, therefore, exploits MFM to 89 
develop a tool for SHM of large-scale structures. The limitation of this approach in damage quantification 90 
is improved by using neural networks (NNs). There are several NNs e.g. recurrent neural network (RNN), 91 
spiking neural network (SNN), Feedforward neural network (FNN), etc. This study focuses on FNN due to 92 
its simplicity in information transfer from inputs to predict outputs. 93 

Machine learning algorithms have shown capability in solving complicated problems, like 94 
classification, regression and clustering, etc. A concerning crucial matter, in all neural networks, is the 95 
learning process. Learning from experience or available data is the key that helps NNs to overcome complex 96 
problems. Especially, in applications where the approach has to deal with big data. This approach uses two 97 
categories of learning techniques: unsupervised and supervised. The former is only based on input data to 98 
interpret and group data. The latter, however, uses both input and output data to develop a predictive model. 99 
While unsupervised learning is used in clustering, supervised learning is used in classification and 100 
regression. For the high performance of a trained neural network (NN), a learning method or trainer is 101 
involved during the learning process of a NN. Stochastic and deterministic methods are two major 102 
categories that can be applied to that purpose. Less computational time and simplicity are strong points of 103 
the deterministic method where a popular gradient-based algorithm, namely back-propagation (BP), serves 104 
as a training method. Reducing computational time is always a target that many researchers aim to. Authors 105 
in [24-25] proposed novel approaches. In these approaches, they did not need to use a classical 106 
discretization such as FEM. After the network has been trained, solutions were obtained extremely fast 107 
based on collocation strategy. They could deal with the forward and inverse/optimization problem in the 108 
same way (Deep neural networks DNN and no FEM at all) and automatically account for uncertainties. 109 
However, the initial values of connection weights, biases, learning rate, and momentum have significant 110 
effects on the convergence. For this reason, the use of the BP algorithm in the training process can result in 111 
a mistaken point or converging to local minima rather than to the global minimum. To reduce the probability 112 
of local optima avoidance, a stochastic trainer based on the optimization strategy for training can be used. 113 
In the second approach, random solutions are generated in the initial iterations, and then they are evolved 114 
as iteration pass. Although the convergence rate of the stochastic approach is slower than that of the 115 
deterministic one, it owns high potential in local solutions’ avoidance. The kernel of the optimization-based 116 
stochastic method is a heuristic optimization algorithm. The well-developed optimization field provides a 117 
strong foundation for the development of this approach. Many well-known algorithms are capable of global 118 
optimal search e.g. genetic algorithm GA, particle swarm optimization (PSO), improved particle swarm 119 
(IPSO) [26], orthogonal diagonalization-improved particle swarm optimization (IPSOOD) [27],  120 
gravitational search algorithm (GSA), simulated annealing (SA), grey wolf optimizer (GWO), water cycle 121 
algorithm (WCA) [28], etc. Water cycle algorithm (WCA), a novel optimization method, is inspired by the 122 
hydrologic cycle process in nature. WCA focuses on the motion of raindrop from the atmosphere to the 123 
streams, then to rivers that flow to the sea or from the atmosphere directly to the sea. Random raindrops 124 
represent candidate solutions. Many good raindrops are considered as a river while the rest of the raindrops 125 
represent streams. All streams and rivers wind up in the sea. The sea indicates the best raindrop (the best 126 
optimal point). Evaporation and raining condition help WCA to overcome the local stagnation. Four 127 
constrained optimization problems and seven engineering problems were used to validate the performance 128 
of WCA. The obtained results confirmed its effectiveness via computational cost and accuracy of solutions. 129 
Some of which were applied successfully in training feedforward neural network (FNN).  130 

Recently, a new nature-inspired heuristic optimization algorithm, namely marine predator algorithm 131 
proved its prominent performances over many other well-known algorithms regarding exploration and 132 
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exploitation of engineering problems [29]. Therefore, the authors proposed a new stochastic approach based 133 
on optimization strategy in training FNN, namely marine predator FNN (MPAFNN). The study aims to 134 
evaluate the capability of the proposed approach in escaping from local optimal solutions and improving 135 
the accuracy of prediction in structural engineering problems. The proposed FNN is fed by modal flexibility 136 
index and uses a supervised technique for learning. 137 
 138 
II. Methodology of the proposed approach 139 
2.1 Modal flexibility indices 140 
Modal flexibility matrix is defined as an inverse of the stiffness matrix [30]. The presence of damage in a 141 
structure causes a reduction of stiffness. It results in a rise in the flexibility of structures when a small failure 142 
occurs. In other words, the presence of a defect can cause a more flexible zone in the vicinity of the damage 143 
excepting the particular location such as the fixed end of a cantilever beam. Therefore, these changes in the 144 
observed flexibility of the structure can be used as a damage indication. The indicator can be calculated 145 
using vibration properties such as natural frequency values and mass-normalized displacement mode 146 
shapes. Generally speaking, a comparison between two flexibility matrices extracted from two sets of 147 
dynamic characteristics is the working principle of the method. For instance, at a given location s and 148 
number of considered modes nm, a modal flexibility element MFs of the modal flexibility matrix of a tested 149 
structure can be identified: 150 

2
1

1 .
nm

T
s si si

i i

MF
f=

= Φ Φ∑
 

(1) 

Where i implies mode number, fi denotes natural frequency of mode i, siΦ  are mass-normalized mode 151 

shapes at location s of mode i, superscript T indicates “Transpose”. The interesting point in (1) is the inverse 152 
relationship between the modal flexibility and the square of frequencies. This implies that lower frequencies 153 
have a higher contribution to modal flexibility. It makes modal flexibility efficient when only a few lower 154 
frequencies are identified experimentally. In real applications, the lower modes of a real structure are often 155 
easier to measure compared to the higher ones. Therefore, this index is intrinsically interesting because of 156 
its feasibility for practical applications. 157 

For damage identification, two modal flexibility matrices obtained from healthy and unhealthy 158 
(damaged) states have to be determined. Therefore, a set of modal properties of the intact structure is used 159 
to calculate the flexibility matrix as: 160 
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 161 
Then another set of dynamic characteristics of the damaged structure is determined as: 162 
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 163 
A symmetric matrix of indicators for damage identification can be computed by using the difference 164 

between the two obtained matrices from (2) and (3): 165 
[ ] [ ]D H s D s HMF MF MF MF MF∆ = − = −  (4) 

 166 
Each column in the indicator matrix ∆MF represents the measurement points on the structure. To 167 

identify the points (degrees of freedom, DOFs) on the structure which are influenced by damages, the 168 
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maximum absolute value of each column is determined. Then, these values are used to indicate the presence 169 
and positions of defects. However, for a clearer view of defect location, especially in the case of multiple 170 
damage scenarios, the absolute value of curvatures is calculated using equation (5). The indices are named 171 
modal flexibility-based curvature MFC [31] to distinguish from the damage indices using the flexibility 172 
changes. 173 

1 1
2

2.
( )

i i i
i

MF MF MF
MFC

s
− +∆ − ∆ + ∆

=
∆  

(5) 

Where i indicates the ith DOF, ∆s denotes the distance between DOFs (measurement points) on the 174 
structure. Details of damage identification using MFC are introduced in sections to follow. 175 

There is a challenge in real applications that is the mass-normalized mode shape can be obtained when 176 
an input-output measurement is conducted. For a laboratory beam, the impact hammer is used to generate 177 
excitation at each position of sensor in the vertical direction. In other words, the hammer provides pulse 178 
excitation as inputs, whereas outputs are acceleration obtained by sensors. This study only focuses on 179 
investigating the potential of MFC index in damage detection using the proposed hybrid computational 180 
intelligence approach instead of identifying the measured flexibility. 181 
 182 
2.2 Marine predator algorithm – MPA 183 

Marine predator algorithm (MPA) is a nature-inspired optimization method [29].  The basic idea of 184 
MPA is based on a flexible swap between two foraging strategies, e.g. Brownian and Lévy movements.  185 
This tradeoff aims to reach an optimal foraging strategy for predators. In other words, the combination of 186 
two foraging strategies increases the encounter rate between prey and predator in the marine ecosystem.  187 

Previous studies indicated that, throughout the lifetime, a predator shows an equal percentage between 188 
Lévy and Brownian movement. However, it is very interesting that the speed ratio of prey to predator has 189 
a significant effect on the foraging strategy of the predator. In other words, depending on this ratio of 190 
velocity, the predator can move in Lévy flight or Brownian motion. High-velocity ratio, unit velocity ratio, 191 
and low-velocity ratio are three typical ratios in a marine ecosystem. Therefore, the flexible combination 192 
of these two movements will provide the optimal strategy of movement of a predator. Moreover, predators 193 
sometimes perform sudden, long, and vertical jumps when they face environmental problems such as the 194 
formation of eddy or human’s activities e.g. fish aggregating device (FADs). The observed action may 195 
imply that predators are aiming for high potential in order to find a food-abundant environment. Preserving 196 
the location of successful foraging in their memory also allows predators to survive and thrive.  197 

As the discussion, the main content of the MPA algorithm revolves around the relationship between 198 
predator and preys. However, preys also seek their food. It means that the preys then become predators. 199 
Therefore, the algorithm shows the relationship between the top predator (also known as Elite) and the 200 
prey. To initiate the MPA optimization process two same dimension matrices for Elite and Prey are 201 
constructed based on the population of search agents p, and the number of updating parameters u. Firstly, 202 
a prey matrix is constructed to contain the initial preys.  203 
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 204 
A top predator vector represents the fittest solution obtained from the prey matrix that is identified as: 205 
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1 2 1
...T T T

top u u
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×
 =    (7) 

 206 
Then Elite matrix is built by replicating p times the top predator vector. The Elite matrix is used to 207 

update the better values of the top predator. 208 
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 209 
Same as other optimization algorithms, MPA also focuses on exploration in the initial loops and 210 

exploitation in the last loops. To do this, MPA relies on velocity ratio between predators and preys, the 211 
parameter that significantly affects the movement strategy of the predators, as mentioned above. Therefore, 212 
the ability of MPA in exploration and exploitation is exhibited in three main phases. One-third of the total 213 
number of iterations is used in each phase.  214 

Phase 1: The current iteration max
1

3currentiter Iter≤ , high-velocity ratio, rvelocity ≥ 10, exploration stage. 215 

The prey’s movement is faster than that of a predator. Therefore, the optimal strategy for a predator is 216 
standing still. Meanwhile, the prey can move in Lévy or Brownian, and it moves forward to the predator. 217 
This phase is interpreted in a mathematical model: 218 

( )( , ) ( , )(i, j)( , ) (i, j)Elite PreyB i j B i ji jstep R R= × − ×
    

 (9) 

(i, j) (i, j) (i, j)Prey Prey stepP R= + × ×
  

 (10) 

Where, BR


 denotes Brownian random number vector; subscripts i = 1, 2, …, p and j =1, 2, …, u, are the 219 

number of population and variables, respectively, constant number P=0.5, R∈[0,1] is a uniformly 220 
distributed random number in an interval from 0 to 1. 221 

Phase 2: The current iteration max max
1 2

3 3currentIter iter Iter< ≤ , unit velocity ratio, rvelocity = 1, intermediate 222 

stage, converting from exploration to exploitation. Hence, the population is divided into two halves. One 223 
half is used for exploration while the other for exploitation. In the first half population, the motion in Lévy 224 
of the prey is considered as exploration capability. In the second one, the predator performs the Brownian 225 
motion. A new position of the prey is updated based on the predator’s movement. In other words, 226 
exploitation capability mainly depends on the movement of the predator. The mathematical model of the 227 
second phase is performed via two steps. 228 

Step 1: A half of population for exploration, i from 1 to p/2 229 

( )( , ) ( , )(i, j)( , ) (i, j)Elite PreyL i j L i ji jstep R R= × − ×
    

 (11) 

(i, j) (i, j) (i, j)Prey Prey stepP rand= + × ×
  

 (12) 

Where rand implies uniform random numbers in a range of 0 to 1, LR


 denotes the Levy random number 230 
vector. This vector represents Lévy movement and is calculated as: 231 

10.05L
aR

b α
= ×


 (13) 

Two normal distribution variables a and b are calculated by using standard deviations σa and σb and 232 

gamma function Γ as follows: 233 
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( )20, aa Normal σ= , with ( ) ( )
( )

1/

1 /2

1 sin / 2
1 2

2

a

α

α

α πα
σ

α α −

 
 Γ + ×
 =

+  Γ × ×    

and α=1.5 (14) 

( )20, bb Normal σ= , with σb=1 (15) 

 234 
Step 2: The other half of population for exploitation, i from p/2 to p 235 

( )( , ) ( , ) (i, j)( , ) (i, j)Elite PreyB i j B i ji jstep R R= × × −
    

 (16) 

(i, j)(i, j) (i, j)Prey stepElite P CF= + × ×
  

 (17) 

The step size for movement of predator is adapted by using factor CF: 236 

max
2

max

1
currentiter

Iter
currentiter

CF
Iter

 
×  

  
= − 

 
 (18) 

Phase 3: The current iteration max max
2

3 currentIter iter Iter< ≤ , low-velocity ratio, rvelocity = 0.1, exploitation 237 

stage. This stage mainly focuses on exploitation. The movement of the predator is simulated in Lévy 238 
strategy. The position of prey is updated based on the predator’s motion.  239 

( )( , ) ( , ) (i, j)( , ) (i, j)Elite PreyL i j L i ji jstep R R= × × −
    

 (19) 

(i, j)(i, j) (i, j)Prey stepElite P CF= + × ×
  

 (20) 

 240 
The summary of the progression of the algorithm through the key parameters, such as the velocity ratio, the 241 
best strategy for predator and prey, and the number of the population associated with the corresponding 242 
phase, is depicted in Fig. 1. 243 

 244 
Fig. 1 Division of the number of iterations and the use of population in three main phases. 245 

 246 
For an increase in the avoidance in local optima, efforts in looking for an abundant environment of the 247 

predator by suddenly taking a long, vertical jump are simulated in the algorithm. In the marine ecosystem, 248 
the formation of eddy or human activities related to fish aggregating devices (FADs) can change the 249 
behavior of the predator. These environmental issues can be considered as local solutions. Therefore, the 250 
sudden jump is an effort to escape from trapping in local minima. The environmental effects are calculated 251 
as: 252 

( )min max minPrey Prey ( )CF X rand p,u X X U = + ⊗ + ⊗ − ⊗ 
     

 if rand ≤ FADs=0.2 (21) 

[ ] ( )1 2Prey Prey (1 ) Prey Preyr rFADs rand rand= + × − + × −
   

 if rand > FADs=0.2 (22) 

 253 
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The binary vector U


is built from the random vector rand, then each value in the vector U


 is compared 254 
with FADs=0.2. The return number equals 0 if the value is greater than 0.2, otherwise 1. The subscripts r1 255 
and r2 are rows chosen randomly from the prey matrix. The symbol ⊗ means entry-wise multiplications. 256 

Two vectors max min,X X
 

 are upper and lower bounds of updating parameters.  257 

For more effective performance in convergence rate, the value of the fitness function should be saved 258 
and used in the next iteration. It represents the abilities of memory saving of the top predator or Elite. 259 
Therefore, in each iteration, the new fitness value is compared with the previous one. The current value is 260 
updated in the Elite matrix if its value is more suited. The step-by-step procedure of MPA are as follows: 261 

1) Generate prey matrix, a random set of agents in search space, Equation (6) 262 
2) Calculate the fitness value based on the obtained prey matrix, identify the top predator matrix using 263 

Equation (7), and replicate the top predator matrix to generate Elite matrix in Equation (8) 264 
3) Implement the exploration and exploitation process based on 3 main phases: 265 

Phase 1: Update prey matrix using equation (10), 266 
Phase 2: Update prey matrix using equations (12) and (17), 267 
Phase 3: Update prey matrix using equation (20). 268 

4) Evaluate fitness value based on newly obtained prey matrix, update Elite matrix, save the marine 269 
memory.  270 

5) Simulate the effect of FADs, update the prey matrix using Equations (21) and (22). 271 
6)  Repeat steps (2) to (5) until the stopping criteria is met. 272 

 273 
In this study, MPA is used in the model updating problem and FNN training. In the first application, 274 

the errors between an FE model of a steel beam and the corresponding experimental model are reduced 275 
throughout the optimization process of MPA. In the second application, MPA is utilized to improve FNN 276 
training as a stochastic trainer based on the optimization strategy. Three case studies are used to evaluate 277 
the effectiveness and feasibility of the training process. In the last step, the updated FE model is utilized to 278 
generate damage database for the training process. The trained networks are employed to predict damage 279 
localization and quantification. Implementation of the updated FE model and the trained networks in 280 
solving an SHM problem is presented in the next section.  281 
 282 
2.3 How effective MPA improves Feedforward Neural networks training, MPAFNN 283 
As discussed in section 2.2, heuristic optimization algorithms have been applied to enhance the learning 284 
process of FNNs. In this approach, the optimization algorithms can be used in several ways. Optimization 285 
algorithms can be used to identify a suitable architecture for an FNN. This means the number of hidden 286 
nodes, number of hidden layers, the proportion of dataset for training, validation, and testing are quantified. 287 
The second use of optimization algorithms is to adapt hyper-parameters e.g. momentum, learning rate for 288 
a good performance of a neural network. Another use is to identify a combination of connection weights 289 
and biases (threshold) in order to minimize errors of the neural network. The last is the objective of this 290 
study because connection weights and biases are extremely important variables in the training process. 291 
Therefore, weights wij and biases θj are treated as particles or agents which are obtained from minimizing 292 
the fitness function in optimization algorithms. A set of weights and biases can be written as updating 293 
parameters in the optimization procedure, particles/agents = (wij, wjk, θj, θk). 294 



   9 

 295 
Fig. 2 Architecture of one hidden layer FNN 296 

 297 
Objective function is another important matter in FNN training. Mean square error (MSE) is a popular 298 

metric and often is used as an objective function.  The MSE with number of outputs Nm, and number of 299 
training samples Ns can be calculated as: 300 

2
k(i) k(i)1 1

(target prediction )Ns Nm

i k

s

MSError
N

= =
−

= ∑ ∑  (23) 

where targetk(i) and  predictionk(i) denote respectively the real and predicted values of output kth when 301 
sample ith is used for training. Considering wij and wjk be respectively connection weights from input node 302 
i to hidden node j, and from hidden node j to output node k as in Fig. 2, the sum of the weights of inputs 303 
can be computed as: 304 

( )1

n
j i j i ji

sum w input θ
=

= × +∑ , with i=1 to n; j=1 to h (24) 

where θj denotes the bias of hidden node j. Then, the outputs of the hidden nodes in the hidden layer 305 
by using the sigmoid activation function can be obtained as: 306 

( )1

1 1( )
1 1

nj
i j i ji

j j sum w input
H sum

e e
θ

σ
=

− − × +
= = =

∑+ +
, with i=1 to 2; j=1 to h (25) 

 307 
The weights sum of hidden layer and outputs of the output layer are determined as: 308 

( )1

n
k i j j ki

sum w H θ
=

= × +∑ , with k=1 to m; j=1 to h (26) 

( )1

1 1( )
1 1

nk
i j j ki

k k ksum w H
O sum prediction

e e
θ

σ
=

− − × +
= = = =

∑+ +
, k=1 to m; j=1 to h (27) 

where θk denotes the bias of output node k, symbols n, m, k represent the number of input nodes, hidden 309 
nodes, and output nodes, respectively. 310 
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 312 
Fig. 3 The schematic training procedure for a feedforward neural network using MPA. 313 

 314 
Based on the mentioned points, a procedure of training using a heuristic optimization algorithm, Marine 315 

predator algorithm (MPA) for FNN can be calculated as: 316 
(1) Start with random values of initial positions of the preys, representing connection weights and 317 

biases.  318 
(2) Training samples are treated as inputs and outputs. These values are normalized in a range of 0.01 319 

to 0.99. Large inputs can cause a very flat transfer function or a saturate neural network. Therefore, 320 
learning ability can be reduced. Large outputs are not necessary because the sigmoid function 321 
produces only a maximum absolute value approximately up to 1.0. A very small value also affects 322 
the accuracy of the computation. An interval [0, 1] is the common value that is returned by the 323 
sigmoid function. The value is only asymptotic to 0 or 1.  324 

(3) Calculate the mean square error (MSE) of all training samples and use the obtained MSE as the 325 
fitness in MPA. The optimization process of MPA is started and evolves the initial weights and 326 
biases to reduce the MSE. A new set of connection weights and biases is achieved at the end of the 327 
optimization process.  328 

(4) The training process continues until the termination criterion is met, i.e. the maximum iteration. 329 
The best values of weights and biases are used to approach the highest classification in case study 330 
1 and the highest accuracy of prediction in two case studies 2 and 3. The progression of using MPA 331 
in FNN training is shown in Fig. 3.  332 

 333 
III. Case studies: 334 
3.1 Case study 1: Classification benchmark problems 335 
In this section, the effectiveness of the proposed approach in improving feedforward neural network 336 
training is investigated through some classification benchmark problems. Some well-known algorithms 337 
such as particle swarm optimization (PSO), gravitational search algorithm (GSA), hybrid algorithm 338 
PSOGSA, and grey wolf optimizer (GWO) are used for comparison. PSO, GSA are famous optimization 339 
algorithms in the scientific community. The effectiveness of the two algorithms has been confirmed through 340 
vast studies. PSOGSA is an improved version of PSO and GSA. It combined strong points of both 341 
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considered algorithms. A novel GWO confirms that it could obtain very competitive results compared to 342 
prominent algorithms, especially in engineering problems. Application in the engineering field is the main 343 
aim of this study. Therefore, the reliability and efficiency of the proposed approach MPAFNN can be 344 
comprehensively evaluated by comparative studies using these approved algorithms. The average of MSE, 345 
the best MSE, the standard deviation on Equation (28), convergence curves and classification rate are 346 
comparative objectives. The classification rate is calculated based on the best MSE. Each algorithm is run 347 
independently 20 times in order to calculate average values as well as standard deviations of MSE.  348 

( )
2

1

1
1

N

i
i

stdMSE MSE MSE
N =

= −
− ∑  (28) 

Where N=20 is the number of run, MSEi represents the observed values of vector MSE after N runs, 349 

and MSE  indicates the mean value of these observations. 350 
Table 1 Classification datasets 351 

Problem 
Number of 
input nodes 

Number of hidden 
nodes1 

Number of 
classes 

Number of 
training / testing 

Runs 

Balloon 4 4×2+1=9 2 16 / 16 20 
Iris 4 4×2+1=9 3 150 / 150 20 

Breast cancer 9 9×2+1=19 2 599 / 599 20 
Heart 22 22×2+1=45 2 80 / 80 20 

 352 
Four investigated benchmarks are balloon, Iris, breast cancer, and heart dataset (source: 353 

http://www.ics.uci.edu/~mlearn/MLRepo sitory.html). Specifications of all databases are described in 354 
Table 1. For a stable performance, each classification problem is solved in 20 independent runs. The 355 
collected results from these 20 runs are utilized for comparison. 356 
The initial parameters for each problem are set as follows: 357 

- As for balloon problem the population size p=50, maximum iteration itermax=250 because of its 358 
training data is more simple than that of the others.  359 

- Regarding the Iris, breast cancer, and heart problems, the population size p=200 and maximum 360 
iteration itermax=250. 361 

- GSA: coefficient α =10, initial value G0=2 362 
- PSO: cognitive coefficient cc=2, social coefficient cs=2, inertial coefficient wmin=0.5, wmax=0.9, 363 

min max min max( ) /currentw w iter w w Iter= − × −  364 

- PSOGSA: cc=1, cs =1, α =20, G0 =1, min max min max( ) /currentw w iter w w Iter= − × − with wmin=0.5, wmax=0.9. 365 

- GWO: vector max2 (1 ) /currenta iter Iter= × −


 , linearly decreases from 2 to 0. 366 

- MPA: FADs=0.2, P=0.5, α =1.5 367 
- Architectures of FNN for balloon, Iris, breast cancer, and heart are 4-9-1, 4-9,1, 9-19-1, 22-45-1 368 

respectively. During the training process, using random orders of the given dataset in each loop. 369 
- List of stochastic trainers: GSAFNN, PSOFNN, PSOGSAFNN [32-33], GWOFNN [34], and 370 

proposed MPAFNN 371 

                                                           
1 Note that this study doesn’t focus on identifying the number of hidden nodes. The number of hidden nodes is 
suggested to be calculated as: (number of input nodes) × 2 + 1 

http://www.ics.uci.edu/%7Emlearn/MLRepo%20sitory.html
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3.1.1 Benchmark 1: Balloon  372 
From Table 1, the total number of dimensions (or updating parameters), i.e. connection weights and biases, 373 
is 55. It is the simplest dataset among the others in this study (see Table 1). Therefore, it is understandable 374 
when the classification rate of algorithms exceed GSA’s, i.e. 90% (see Table 2). It can be seen that 375 
MPAFNN has an outstanding performance compared with the other algorithms for all criteria e.g. average, 376 
standard deviation, and the best MSE. The best average MSE, as well as std MSE, indicate that MPAFNN 377 
owns the highest capability in local optima avoidance. This shows a good potential of MPAFNN in the 378 
training process. 379 
Table 2 Classification results for balloon dataset 380 

Values GSAFNN PSOFNN PSOGSAFNN GWOFNN MPAFNN 
Average MSE 1.92E-01 1.69E-01 9.58E-07 6.08E-07 4.21E-09 
The best MSE 4.83E-02 1.00E-04 3.54E-08 6.85E-09 3.06E-16 
std MSE 7.94E-02 6.71E-02 2.13E-06 2.09E-06 8.21E-09 
Classification rate (%) 90 100 100 100 100 

 381 

3.1.2 Benchmark 2: Iris 382 
Table 3 Classification results for Iris dataset 383 

Values GSAFNN PSOFNN PSOGSAFNN GWOFNN MPAFNN 
Average MSE 9.23E-02 7.94E-02 4.63E-03 4.99E-03 2.24E-03 
The best MSE 4.00E-02 3.90E-02 3.40E-03 3.29E-03 1.58E-03 
std MSE 6.23E-02 3.09E-02 1.10E-03 1.99E-03 5.05E-04 
Classification rate (%) 33.33 72.67 98 98.67 99.33 

Iris flower classification is a popular problem and often is used as a benchmark example in network training. 384 
The number of variables to be optimized in Iris problem is the same as the balloon. The larger number of 385 
training samples, i.e. 150, affects the accuracy of the prediction regarding all the considered algorithms for 386 
solving this problem. There is a slight decrease in the classification rate of PSOGSAFNN, GWOFNN, and 387 
MPAFNN as can be seen from Table 4. However, the prediction ability of the proposed algorithm is very 388 
impressive with a classification rate of over 98%. As such, MPAFNN continues to outperform the other 389 
algorithms regarding all comparative criteria. 390 
 391 
3.1.3 Benchmark 3: Breast cancer 392 
It is the most difficult dataset that is used for training in this study with 210 updating parameters and 599 393 
training samples. The best MSE and standard deviation MSE belong to PSOGSAFNN and GWOFNN, 394 
respectively. MPAFNN shows its second-best position related to both indexes. Besides, MPAFNN proves 395 
that it is the best algorithm for average MSE over 20 runs and classification rate at 1.79×10−2 and 98% in 396 
Table 4, respectively. The complication in the dataset like a large number of variables and training samples 397 
makes the obtained achievements of the proposed algorithm more meaningful. 398 
Table 4 Classification results for breast cancer dataset  399 

Values GSAFNN PSOFNN PSOGSAFNN GWOFNN MPAFNN 
Average MSE 1.41E-01 1.28E-01 1.89E-02 1.91E-02 1.79E-02 
The best MSE 6.02E-02 7.02E-02 1.44E-02 1.63E-02 1.46E-02 
std MSE 8.21E-02 3.10E-02 2.36E-03 9.41E-04 1.51E-03 
Classification rate (%) 57.51 92.85 96.42 96.85 98 
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3.1.4 Benchmark 4: Heart disease 400 
This classification problem has the largest number of variables to update, 1081. It is also the most complex 401 
model for FNN compared with the others. However, the proposed approach MPAFNN solves this problem 402 
with superior results. Table 5 reveals that MPAFNN occupies the best position for all indicators. The 403 
obtained results continue to confirm the potential in local avoidance and high accuracy of the proposed 404 
algorithm, i.e. MPAFNN, in training a neural network. 405 
Table 5 Classification results for heart dataset 406 

Values GSAFNN PSOFNN PSOGSAFNN GWOFNN MPAFNN 
Average MSE 3.23E-01 2.21E-01 1.07E-01 8.22E-02 3.05E-05 
The best MSE 2.61E-01 1.94E-01 6.76E-02 6.68E-02 3.58E-18 
std MSE 4.37E-02 3.43E-02 2.34E-02 9.36E-03 1.63E-05 
Classification rate (%) 50 71.25 92.5 92.5 100 

 407 
Apart from the statistical results as discussed above, MPAFNN also obtains the best convergence rate 408 

using both average and the best MSE for the balloon, Iris, and especially heart disease problems. For the 409 
most complex dataset, i,e, breast cancer, MPAFNN still shows superior performance compared with 410 
PSOGSAFNN, GWOFNN and much better results than GSAFNN, PSOFNN as depicted in Fig. 4. 411 
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Fig. 4 Convergence curves for FNNs based on averages and the best MSE over N=20 runs. 412 

 413 
From four benchmark problems, the obtained results associated with MSE and convergence study 414 

proves that MPAFNN is the most suitable algorithm for training neural network due to its high stability, 415 
precision and accuracy. 416 
 417 
3.2 Case study 2: Damage detection in structures using numerical data 418 
In this section, two numerical simulated cases are used to investigate the capability of the proposed hybrid 419 
approach in damage detection of beam-like structures. As mentioned in section 2.1, flexibility-based 420 
curvature indices along the considered structures are used to identify damage location and corresponding 421 
severity. Each set of flexibility-based curvature indices is calculated by using modal properties e.g. 422 
frequencies and mode shapes from two intact and damaged states of the structures. Therefore, each stiffness 423 
reduction at a position or several positions of the investigated beam generates a set of flexibility-based 424 
curvature indices along the beams. The inputs are these damage indices while the target outputs are damage 425 
location and severity. The collected dataset then is divided into 80% - 20% for training and test, 426 
respectively. 427 
3.2.1 Training procedure 428 
The proposed algorithm is used to train neural networks for fault assessment in structures. The applicability 429 
of the algorithm to engineering problems was evaluated first by a numerical study before applying it to a 430 
real structure. The training process begins by acquiring the values of flexibility-based curvature at all 431 
measured points along with two considered structures. These indicators are treated as inputs of the FNN. 432 
Due to the supervised learning process, each input dataset has its corresponding target outputs. These target 433 
outputs consist of location and severity of damage that are used initially to simulate the inputs. Depending 434 
on each particular problem, the number of output nodes, mnodes is different. For instance, for localization 435 
and quantification of single damage, the number of output nodes is mnodes=2, one for location, and the other 436 
for severity. In the two damage cases of this study, with the assumption of the same failure levels for all 437 
damage, the number of output nodes is mnodes=3, two for location, and the rest for severity. Choosing the 438 
number of hidden nodes is an important part of the FNN structure. A small number of hidden nodes speeds 439 
up convergence process meanwhile a larger number of hidden nodes increases the accuracy of predicted 440 
results. In this study, the optimal number of hidden nodes is not the main objective. Therefore, the number 441 
of hidden nodes is calculated by Snodes = nnodes×2 + 15, where Snodes and nnodes denote respectively the number 442 

of hidden nodes and input nodes. An architecture of FNN with nnodes – nnodes×2 + 15 – mnodes is used in this 443 
study for damage detection. The training process of FNN is depicted in Fig. 5. 444 
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 445 
Fig. 5 Architecture of FNN, n-S-m for the tested beam. 446 

 447 
3.2.2 Single damage in a two-span continuous beam 448 

a. Training dataset: 449 

 450 
Fig. 6 FE model of the two-span continuous beam with 20 elements. 451 

 452 
Fig. 7 Schematic division of elements, nodes in the beam and boundary conditions. 453 

 454 
A two-span continuous steel beam with a length of 1.28 m, and a rectangle cross-section of 0.07x0.01 (m) 455 
is modelled in ANSYS using SHELL181 elements (see Fig. 6). Details of this element are introduced in 456 
the next section 4.2.2. Material properties used in the simulation are Young’s modulus E=2×1011 N/mm2, 457 

density γ=7820 kg/m3, and Poisson’s ratio ν=0.3. Boundary conditions comprise one fixed support at the 458 
middle and two movable supports at two ends (node 1 and node 19) as in Fig. 7. 459 

Data from single damage scenarios was created for training based on the assumption of the stiffness 460 
decrease (by reducing Young’s modulus) of each defective element. The stiffness of each element was 461 
reduced from 1% to 40% with an interval of 1%. Therefore, 18 elements × 40 cases = 720 scenarios were 462 
used to generate modal properties of the damaged beam. The first five natural frequency values and 463 
displacement mode shapes at nineteen nodes, as labelled in Fig. 7, were collected to calculate the flexibility-464 
based curvature indices. Fig. 8 depictures the flexibility-based damage indices using Equations (4) and (5) 465 
due to damage at element 6 on the beam. It can be seen that the use of curvature for monitoring changes in 466 
flexibility (calculated by Equation (5)) between intact and damaged states can provide a clearer view of the 467 
damaged element (see Fig. 8b). 468 
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a. Using flexibility changes b. Using flexibility-based curvature 

Fig. 8 Comparison of the flexibility-based damage indices associated with the stiffness reductions from 1 469 
to 40 %. 470 

A feedforward neural network (FNN) with a structure 19-53-2, 80% of 720 = 576 samples and 1168 471 
variables e.g. connection weights and biases, are used to localize and quantify damage in the continuous 472 
beam. To ensure the accuracy of predicted results, some initial parameters of marine predator algorithm 473 
(MPA) are preset: FADs=0.2, P=0.5, α=1.5, population = 400, maximum iteration = 15,000.  474 

 475 
b. Testing dataset 476 

The testing dataset includes two sets. The first set was derived from the collected samples by 20% of 720, 477 
i.e. 144 samples. The second one was based on three extra single damage scenarios generated by reducing 478 
the stiffness with 15.5%, 22.5%, 26.5% at elements 5, 8, 9, respectively. The former is used to evaluate the 479 
regression ability of the proposed approach, while the latter is used to perform visual results of damage 480 
prediction using MPAFNN. Modal properties of these scenarios were collected to calculate the flexibility 481 
indices. The trained neural network was used to predict damage location and corresponding severity based 482 
on these obtained flexibility indices.  483 
 484 

c. Results: 485 
After 15,000 iterations, the convergence curve for FNN is plotted in Fig. 9. It can be seen that the 486 
convergence curve includes three major curves related to 3 main phases in the optimization process. The 487 
first curve with iteration ≤1/3 of Itermax, i.e. 5000, shows stepwise behaviour meanwhile the last curve with 488 
iteration from 2/3 of Itermax to Itermax, i.e. from 10,000 to 15,000, is smoother. It is possible to understand 489 
that the first phase only focuses on exploration. All agents try to forage the global optimum point in the 490 
overall search space. The search results are improved slowly during the passage of iterations. The main task 491 
of the last phase is exploitation. Therefore, when iterations pass, the predators and preys try to refine the 492 
solutions as much as possible. In phase 2, a half population continues to explore better solutions while the 493 
other begins to refine the solutions. Nevertheless, its curve is smoother than that of phase 1, and unsmooth 494 
compared with phase 3 (see Fig. 9) 495 
 496 
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Fig. 9 Convergence curves for training process based on the best MSE of objective function. 497 

 498 
The set of connection weights and biases obtained from the training process is used to predict damage 499 
scenarios based on the testing datasets. The targets and the corresponding predicted outputs for training, 500 
test and all sets are used to build regression plots. In general, network performance is assessed based on the 501 
angle of the fit line in the regression plot as well as R values. From Fig. 10, the data almost locates along a 502 
45-degree line. This confirms the accuracy of the predicted values by MPAFNN. Besides, high R values 503 
(over 0.99) are clear proof of a good agreement for all data sets.  504 
  505 

   
a. Training regression b. Test regression c. Overall regression 

Fig. 10 The regression graphs using MPAFNN for the two-span continuous beam 506 
 507 

Results of the three extra damage scenarios are plotted in Fig. 11. The proposed algorithm localizes the 508 
exact damage position for all scenarios. The errors associated with these predictions are 0.2%, 0.2%, and 509 
0% at element 5, 8, and 9 respectively. For the first case, therefore, the proposed approach shows its 510 
potential for real applications.  511 
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Damaged element: 5th Damaged element: 8th 

 
Damaged element: 9th 

Fig. 11 Single damage scenarios 512 
 513 
3.2.3 Different damage scenarios in a simply supported beam problem. 514 

a. Training dataset: 515 
In this section, SHELL181 elements are employed to model a one-meter simply supported steel beam (see 516 
Fig. 12). The dimension of cross-section and material properties are the same as the continuous beam of 517 
the previous section. The structure has two supports, one movable support and one fixed support at nodes 518 
1 and 15 respectively. Details of the element number, nodes and boundary conditions are shown in Fig. 13. 519 

 520 
Fig. 12 FE model of the simply supported beam with 16 elements 521 

 522 

 523 
Fig. 13 Schematic division of elements, nodes on the beam and boundary conditions. 524 

 525 
In each damage scenario, the stiffness of two elements is reduced by a factor in an interval from 1 to 526 

30% with an interval of 1%. The aim of this step is to evaluate the feasibility of the proposed approach for 527 
multiple damage detection regarding the considered structure. Therefore, to facilitate collecting data and 528 
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reducing the computational time, only 7 successive elements from 5th to 11th are used to generate data from 529 
the damaged beam. Number of damage scenarios Ndata can be, therefore, calculated as the number of 530 
damage levels multiplied by the number of combination of 7 elements chosen 2 at a time, i.e. 531 

2
730 30 21 630.dataN C= × = × =  532 

Thirty damage scenarios with defective elements 6 and 9 are used to plot the change of curvature in the 533 
modal flexibility (Fig. 14b). Although two damage locations can be revealed at elements 6 and 9 based on 534 
sudden slope shifts in the curve of flexibility changes in Fig. 14a, the localizations of defects are much 535 
better in Fig. 14b. 536 
 537 

  
a. Using flexibility changes b. Using flexibility-based curvature 

Fig. 14 Comparison of the flexibility-based damage indices associated with the stiffness reductions from 538 
1 to 30 % 539 

 540 
Both damages are identified by using an architecture 15-45-3, 80% of 630= 504 samples and 858 541 

variables. The same values of the initial parameters for MPAFNN in the first numerical study are employed 542 
to solve this case. 543 

 544 
b. Testing the dataset 545 

Likewise to section 3.2.2.b, two datasets were generated for test 20% of 630, i.e. 126 samples were used 546 
for regression capacity. For visual results, four multiple damage scenarios are considered regarding 4 pairs 547 
of elements 7&10, 8&9, 5&9, 8&10 with damage severities 15.5%, 20.5%, 9.5%, and 12.5%, respectively. 548 
The first five frequencies and displacement mode shapes at fifteen equidistant points were then used as 549 
testing data.  550 
 551 

c. Results: 552 
Fig. 15 shows a similar trend of convergence rate in three phases as discussed in section 3.2.2.c. Three 553 
separate curves represent three phases for the exploration and exploitation of MPA. The refinement of the 554 
best solution continues to be present in the last phase by a smoother curve compared with the others. 555 
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Fig. 15 Convergence curves for training process based on the best MSE of the objective function. 556 
 557 
The task of MPAFNN in the second scenario is more difficult than the first one. The proposed algorithm 558 

has to localize two positions and the corresponding extent of the damage. The predicted values of 126 test 559 
samples were compared with the given ones. Superior fits continue to be shown via regression plots for 560 
training, test and all data as in Fig. 16. It can be seen that a 45-degree line is obtained and all R values are 561 
larger than 0.997.  562 
 563 

   
a. Training regression b. Test regression c. Overall regression 

Fig. 16 The regression graphs using MPAFNN for the simply supported beam 564 
 565 

Predicted results successfully identify damage at 7&10, 8&9, 5&11, 8&10 in complete agreement with 566 
real damaged elements (see Fig. 17). Differences in damage severity between target and prediction are 567 
0.2%, 0.5%, -0.1%, and 0.3% as in Fig. 17a, b, c, and d respectively.  568 
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a. Damages at elements: 7 & 10 b. Damages at elements: 8 & 9 

  
c. Damages at elements: 5 & 11 d. Damages at elements: 8 & 10 

Fig. 17 Identification of multiple damages 569 
From obtained results in the numerical study, it can be said that the application of MPAFNN in damage 570 

identification is feasible. For this reason, MPAFNN is used to identify damage in a real structure using 571 
experimental vibration data. Flexibility-based curvature index continues to be used as input for FNN. 572 

 573 
3.3 Case study 3: Damage detection in a laboratory beam with noise effect: 574 
Another important goal of this study is to use the marine predator algorithm for model updating based on 575 
experimental modal properties of a laboratory beam. Then the proposed hybrid method is used to identify 576 
structural damage of the updated FE model under different noise levels. Likewise to the previous section, 577 
differences between flexibility-based curvature of the healthy and damaged states are employed to identify 578 
damage location as well as severity. However, training of the neural network is only efficient when the 579 
dataset for training is large enough and well distributed. Therefore, a measurement campaign on an intact 580 
laboratory beam was carried out to determine the modal characteristics. A baseline finite element model 581 
(FEM) of the tested intact beam is built using the experimental data. The FE model updating process is a 582 
crucial problem that can determine the quality of the updated model, especially when it is used for the 583 
detection of structural damage. The better agreement between the experimental and simulated model, the 584 
more accuracy of data training for damage prediction is guaranteed. Collected data from the baseline model 585 
serves as training data. The white Gaussian noise level of 2% was added to the modal properties e.g. 586 
frequencies and mode shapes in intact and damaged states to consider noise effect on data training. 587 
 588 
3.3.1 Steel beam measurement campaign: 589 

a. Experiment description: 590 
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The studied example is a one-meter intact steel plate with a rectangular cross-section dimension of 70×10 591 
(mm2). Unidentified forces induced by an impact hammer were used to generate a free vibration of the 592 
intact beam in the laboratory. Under this excitation, this kind of tested structure will create high amplitude 593 
vibration levels. Therefore, sensors with lower mass (msensor=5.8g) and sensitivity are chosen. In this 594 
experiment, the sensitivity range of accelerometers was in an interval (10.13 – 10.50) mV/m⋅s–2. This 595 
guarantees that the frequency range of interest from 0.5 to 10,000 Hz can be obtained and clipping of the 596 
response is avoided when vibration is not inside the accelerometers’ range. Besides, the lower weight of 597 
the sensor can also generate insignificant effects on the vibrational properties of the tested structure. To 598 
facilitate installing and removing accelerometers, accessories such as mounting bases or adapters were used 599 
to mount the sensors to the beam surface. The sensors were stud mounted to the bases or adapters after 600 
these accessories were directly glued to the beam surface. Fifteen accelerometers were placed at 15 601 
equidistant points along the beam to obtain dynamic responses. By means of numerical studies, the mode 602 
shape obtained from 15 equidistant points is smooth enough for damage detection when the first five modes 603 
are used. The effects of sensor weight and wire on the vibration of the beam were considered in the FE 604 
model. A steel frame was manufactured to hang the tested beam on two 0.8 mm steel wire at two points 4 605 
and 12. Since the experiment was conducted in the laboratory, the effects of environmental factors, such as 606 
humidity and temperature, on measured data can be significantly reduced. Schematic sensor placements 607 
including several sensors and the location of each sensor for the intact beam are shown in Fig. 18. One 608 
striking impact was used and data acquisition time was around 5 minutes at a sampling rate of 2651Hz. 609 
Data acquisition system, placement of accelerometers in the laboratory are shown in Fig. 19. 610 

 611 
Fig. 18 Sensor placement at 15 equidistant points and element division of the intact beam 612 

  
a. Data acquisition system (DAS) b. Steel frame and tested beam 

Fig. 19 Overview of sensor placement on the beam surface and data acquisition system 613 
 614 

b. Data processing and results of system identification: 615 
In this section, the experimentally measured data are processed to determine modal parameters. For the 616 
output-only modal analysis, covariance-driven stochastic subspace identification algorithm (SSI-COV) is 617 
used, showing clear advantages in computational time as well as accuracy [35-36]. A stabilization diagram 618 
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was used to distinguish spurious and physical modes. Some strict stabilization criteria are pre-set as follows 619 
[37-38]: 620 
 621 

1( ) 100 / 1%p p pf f f+− × <   for frequency (29) 

, 1(1 ) 1%p pMAC +− <   for modal vector (30) 

1( ) 100 / 5%p p pξ ξ ξ+− × <   for damping factor (31) 

 622 
where, MAC is modal assurance criterion, used to perform the correlation between two modal vectors 623 

p and p+1. Vertical lines in the stabilization diagram are plotted in an interval (0 – 800) Hz. For a clear 624 
vision, the frequency response of the beam is also displayed in the stabilization diagram. Five peaks in 625 
frequency response reveal obtained modes from system identification. The first five natural frequencies and 626 
the corresponding mode shapes of the intact beam are shown in Fig. 21. Natural frequencies of both 627 
damaged and undamaged beams are shown in Table 6. 628 

 629 

 630 
Fig. 20 Stabilization diagram. 631 

 632 
Table 6 Summary of natural frequencies for the healthy beam 633 

Mode Frequency Type of mode 

1 50.83 1st vertical bending mode 
2 140.40 2nd vertical bending mode 
3 274.74 3rd vertical bending mode 
4 456.94 4th vertical bending mode 
5 678.90 5th vertical bending mode 
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 635 
Fig. 21 The first five vertical bending modes of the intact beam obtained from the experiment. 636 

 637 
3.3.2 Initial simulation of free-free beam:  638 
In machine learning, the larger the training set the more effective a neural network is trained. Nevertheless, 639 
collecting data from experiments requires a significant amount of cost and time. A useful and common 640 
alternative solution is to use a baseline FE model of the tested beam. The role of the FE model is to generate 641 
a training dataset based on many damage scenarios.  642 
In a comparative study [39], three types of beam element, shell element, and solid element were used to 643 
investigate the convergence associated with variations of mesh sizes. The study indicates that the 2D model 644 
(using SHELL181 elements) showed better performance due to its simplicity, accuracy, and fast 645 
computation compared with other models. Therefore, the shell element is used in this study to build an 646 
initial finite element model (FEM) of the tested beam. The assumed initial values of material properties are 647 
Young’s modulus E=1.98×1011 N/mm2, weight density γ = 7850 kg/m3, and Poisson’s ratio ν=0.3. 648 
SHELL181 element in ANSYS is used to model the beam with 16 elements. This element has four nodes 649 
each of which consists of six degrees of freedom (DOFs), i.e. three translations and three rotations about 650 
each axis (see Fig. 22b). Fig. 22a shows the constructed FE model of the beam in ANSYS.  651 

 
 

a. FE model of the tested beam b. SHELL181 element 
Fig. 22 Using shell 181 elements in simulation. 652 
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Two FE models were built for a preliminary comparison in order to choose a suitable simulation for model 653 
updating (see Fig. 23). The former used flexible springs, COMBIN14 element with a spring constant2, 654 
kvertical = 105 N/m, to simulate the steel wires. The latter was a free-free boundary condition model in 655 
ANSYS. The free-free boundary condition model had better agreement than the flexible spring model. The 656 
error between calculated and measured frequencies was smaller than that of the flexible-spring model (or 657 
cable-supported at two points 4 and 12). Besides, the higher MAC values in Equation (32) implied that the 658 
mode shapes of the free-free boundary condition model fitted the experimental ones. Therefore, the 659 
boundary conditions were considered free-free. The sensor weight was simulated by MASS21 element. 660 
Fifteen values of 0.0058kg, were placed at the corresponding sensor location along the tested beam. Block 661 
Lanczos method was employed for modal analysis [40]. 662 
 663 

 

 
 
 

 
a. Flexible-spring model b. Free-free boundary condition model 

Fig. 23 Two comparative models for the experimental beam. 664 
 665 

Values of natural frequencies as well as deviations in frequencies of the intact beam between simulation 666 
and measurement are shown in Table 7. The differences in the frequency values of the first five modes are 667 
under 0.45%. It means that the simulated data from the FE model matches the measured data very well.  668 

In addition, for a more comprehensive evaluation, the similarity between two sets of mode shapes 669 
should be checked. A good correlation of the pairs of mode shapes guarantees the agreement between 670 
measurement and simulation. A common index, namely modal assurance criterion (MAC), is suggested for 671 
correlation checks. The computation of MAC values follows: 672 
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 (32) 

where i=1 to nn with nn representing the number of degree of freedoms or measured points, T means 674 

transposition, j implies the considered mode, , ,
measured calculated
i j i jandφ φ represent respectively the simulated and 675 

experimental displacement mode shapes. From equation (32), MAC value equal to 1 indicates that the 676 
calculated mode shapes completely agree with the measured ones. In contrast, the unfitting between two 677 
mode shapes results in a value close to 0.  678 

Diagonal MAC values of Table 7 show a superior agreement between calculated and measured 679 
displacement mode shapes because all values are over 0.9982. In other words, the vibration behavior of the 680 
initial FE model is close to the real one, although there are certain errors in natural frequency values. These 681 
discrepancies can be caused by the manufacturing of the beam, the mounting bases that are introduced in 682 
next section. 683 

                                                           
2 The value of spring constant, kvertical, was optimized based on the agreement with frequencies and mode shapes 
obtained from the measurement via an optimization process. 
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Table 7 Differences in frequency values and diagonal MAC values 684 

Mode 
Measured frequency Calculated frequency Error(*) MAC 

(Hz) (Hz) (%) Measurement - Calculation 
1 50.83        51.06  0.45 0.9995 
2 140.4     140.76  0.26 0.9987 
3 274.74     275.96  0.44 0.9991 
4 456.94     456.18  -0.17 0.9986 
5 678.9     681.38  0.36 0.9982 

Note: Error(*) = (fcalculated – fmeasured)×100/fmeasured 685 
 686 
3.3.3 Model updating 687 
As mentioned in subsection 3.3.2, the FE model is used to generate data for training process. The accuracy 688 
of predicted outputs using experimental data depends significantly on this model. Although the initial FE 689 
modal results show a reasonable match to measured values, the errors need to be further reduced. To that 690 
end, updating of the initial FE model is applied to meet a good agreement between the calculated and 691 
measured modal parameters. FE model updating is a procedure of ensuring that the analysis results of the 692 
updated FE model are better reflections of the measured data compared to the initial model. In other words, 693 
this is a part of the verification and validation of the numerical model by varying some uncertain parameters 694 
that can affect the outputs of the FE model. The choice of the right updating parameters is crucial in this 695 
kind of problems. In general, uncertainties in material properties or boundary conditions can cause 696 
differences in natural frequencies. Regarding the boundary conditions, MAC values close to 1 indicate that 697 
the use of free-free boundary conditions in simulation is completely suitable. Therefore, the uncertainties 698 
in material properties are further considered in the process of model updating. These uncertainties are the 699 
value of Young’s modulus and weight density of the steel beam. Moreover, to consider the imperfection 700 
due to the manufacture such as irregular cross-section, the mounting bases, beam segments were assigned 701 
different weights. The considered beam comprises 16 segments, therefore, there are sixteen parameters of 702 
weight density. Details of the updating parameters and ranges of changes are shown in Table 8. 703 
 704 
Table 8 Updating parameters of the tested beam 705 

No Updating parameters Initial value Lower bound Upper bound 

1 Young's Modulus, E (N/mm2) 2.0×1011 1.9×1011 2.1×1011 
2 Weight density,  γi , i = 1 to 16 (kg/m3) 7850 7750 8050 

 706 
Another issue in model updating is the choice of objective (fitness) function. In this case, the differences 707 

in frequency values and displacement mode shapes are considered as the objective function of the marine 708 
predator algorithm (MPA). In other words, the objective of this step is to look for the minimum errors in 709 
frequencies and mode shapes between simulation and measurement. The optimization process using MPA 710 
is sketched in Fig. 24. From the flowchart, the process starts with random initial values of updating 711 
parameters. Then, these values are varied until the termination criteria are met. In this study, a maximum 712 
given iteration is the stopping criterion of the optimization process. In each iteration, the value of the 713 
objective function is recalculated as: 714 
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 715 

 716 
Fig. 24 Flowchart of the process of model updating using MPA. 717 

 718 
There are some assumptions for MPA, namely distribution index for a stable process of Lévy, α=1.5, 719 

an index for FADs’ effect or effect of Eddy formation on escapable ability from stagnancy in local optima, 720 
FADs=0.2, and a constant number for updating prey’s position in the three main phases, P=0.5. In order to 721 
ensure the accuracy of optimized values, the population size of MPA is 50 and the maximum iteration 722 
equals 70. Fig. 25 shows the convergence curve of the best value of the objective function found in each 723 
iteration.  724 
 725 

 726 
Fig. 25 Convergence curve of the best fitness function of marine predator algorithm 727 

 728 
By inputting the new values of parameters in Table 10 to the initial model, Table 9 shows the modal 729 
properties of the updated FE model. It can be seen that all discrepancies in frequencies are significantly 730 
improved. The maximum error in frequency at the 4th mode is 0.13% while the error in the others is lower 731 
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than 0.06%. The similarity between the two sets of mode shapes also performs a slight increase compared 732 
with the initial model. Therefore, the updated model can serve as a baseline model in the further step, 733 
damage identification.   734 
 735 
Table 9 Comparison of frequency values before and after updating the FE model 736 

Mode 
Initial model Errorini

(*) Updated model Errorup
(*) 

MACupdated 
Measurement 

(Hz) (%) (Hz) (%) (Hz) 
1        51.06  0.45 50.84 0.02 0.9995 50.83 
2     140.76  0.26 140.38 -0.01 0.9989 140.4 
3     275.96  0.44 274.83 0.03 0.9991 274.74 
4     456.18  -0.17 456.35 -0.13 0.9987 456.94 
5     681.38  0.36 679.32 0.06 0.9984 678.9 

Note: Error(*) = (fcalculated – fmeasured)×100/fmeasured 737 
 738 
Table 10 Values of 17 uncertain parameters in initial FE model after updating 739 

E γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 

1.986×1011 
7830 8050 7750 7751 8035 7995 7750 7933 

γ9 γ10 γ11 γ12 γ13 γ14 γ15 γ16 
8023 7970 7777 8050 7834 8050 7873 7758 

 740 
3.3.4 Application of MPAFNN in damage localization and quantification 741 

a. Training procedure 742 
The main advantage of using modal flexibility is to be able to directly localize damages based on the change 743 
of flexibility matrix between the healthy and damaged state of the structure [30]. The flexibility-based 744 
curvature MFC is calculated, using the obtained experimental modal properties of the intact and damaged 745 
beam, from Equation (5). In the free-free condition structure, for a clearer view of damage position, a 746 

modification is proposed: min( ,0)MFC MFC=  as depicted in Fig. 26. The figure indicates the location of 747 

the defect at nodes 6 and 9 with different damage extent. The maximum noise of 2% was added in the 748 
modal characteristics in both intact and damaged states to identify the MFC index.  749 

   
a. Using flexibility changes b. Using modified flexibility-based curvature 

Fig. 26 Damage localization using flexibility changes and the modified MFC index. 750 
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The modified flexibility-based curvature index can successfully indicate damage location in the free-751 
free boundary condition beam. For an investigation purpose and reduction of computational time, eight 752 
elements within two nodes 4 and 12 (at two hanging positions of the beam) were chosen to generate damage 753 
scenarios. The stiffness variation, in this case, is from 1% to 50% with an interval of 1%. Changes in modal 754 
properties were used to compute the modified MFC index which is considered inputs of the FNN. The 755 
outputs of the FNN were label from 5 to 12 with their corresponding failure level. Therefore, to evaluate 756 

the effectiveness of the proposed method, there is a total of 2
850 50 28 1400dataN C= × = × =  samples. An 757 

FNN with the architecture 15-45-3 is trained with 80% of 1400 = 1120 samples and 858 predictors. The 758 
inputs of the FNN are the modified MFC indices while the outputs are two labels showing damaged element 759 
and a value indicating damage level. The same parameters of MPA are used as for this example, namely 760 
FADs=0.2, P=0.5, α=1.5. A population of 500 is chosen. A maximum 20,000 iterations are set in settings 761 
to solve the damage detection problem. 762 

b. Testing the dataset 763 
The regression ability of MPAFNN was verified by using one-fifth of 1400 = 280 samples. Other four pairs 764 
of elements 6&7, 7&9, 7&11, 8&11, with various distributions in damage severities 35.5%, 40.3%, 32.5%, 765 
and 22.6%, were used to visually demonstrate the effectiveness of the proposed approach. The different 766 
noise levels created disturbances in the training data. 767 
 768 

c. Results of damage identification 769 
After 20,000 iterations, the obtained convergence curve of the FNN using MPA is plotted in Fig. 27. As its 770 
mission, the third phase continues to refine the search results. Regression plots based on the predictions and 771 
targets are performed in Fig. 28. They all perform superior results of fitting line, almost 45-angle line, as 772 
well as regression values, over 0.997. Therefore, it confirms the accuracy and reliability of MPAFNN in 773 
predicting values using its “learning ability”.  774 
 775 

 
Fig. 27 Convergence curves for training process based on the best MSE of the objective function. 776 

 777 
Based on the obtained weights and biases from the training process, the four damage cases were identified 778 
as in Fig. 29. The proposed method successfully determine all the damage location as well as corresponding 779 
extent even the training data was contaminated by different noise levels. However, it can be seen that the 780 
noise affected the accuracy of the severity prediction of MPAFNN. Excepting the first scenario, the others 781 
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showed deviation between the real and predicted extent from 0.5% to 0.9%. The discrepancies are higher 782 
compared with the two previous cases without noise. 783 
 784 

   
a. Training regression b. Test regression c. Overall regression 

Fig. 28 The regression graphs using MPAFNN for the free-free beam 785 
 786 
It has been noted that the results of damage identification have significantly improved using MPAFNN 787 
compared with using MFC indices alone confirming the fact that these indices are only useful in damage 788 
localization, and not for determining the extent of failure. 789 
 790 

  
a. Damages at elements: 6 & 7 b. Damages at elements: 7 & 9 

  
c. Damages at elements: 7 & 11 d. Damages at elements: 8 & 11 

Fig. 29 Identification of multiple damages 791 
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IV. Conclusions  794 
A stochastic approach based on an optimization strategy is used to improve the learning ability of 795 
feedforward neural networks. The core of this approach is the nature-based optimization algorithm MPA. 796 
This algorithm is based on the foraging strategy, efforts in looking for the abundant environment and the 797 
marine memory of predator to find the optimal solution. The proposed combination of MPA and FNN, 798 
namely MPAFNN, has achieved some remarkable results in the prediction of both damage location and 799 
severity based on the training dataset: 800 

- MPAFNN has superior performance regarding stability, reliability, precision and accuracy 801 
compared with GSAFNN, PSOFNN, PSOGSAFNN, GWOFNN. Results of average MSE, standard 802 
deviation MSE, and the best of MSE obtained from solving four classification benchmarks confirm 803 
the outstanding characteristics of MPAFNN. 804 

- MPA is successful in solving the model updating problems based on measured data. The 805 
discrepancies between the natural frequencies of the first five modes obtained from the FE model 806 
and experiment are reduced significantly from 0.43% to 0.13% at the mode 4th while the others are 807 
less than 0.06%. 808 

- The main objective of MPAFNN, in this study, is to train a neural network to perform structural 809 
damage detection using measured experimental data. The obtained results demonstrate that 810 
MPAFNN can be used successfully for damage detection of various structures, i.e. simply 811 
supported beam, continuous beam, and free-free condition beam. MPAFNN successfully performs 812 
its prediction capability by mean of the regression plots. The good agreement between predicted 813 
and expected values from the training dataset, test dataset, and all dataset. Damage localization 814 
cases of single and multiple damage scenarios have been thoroughly handled by MPAFNN using 815 
either with or without noise in simulation data. The failure extent of the defective elements has 816 
been successfully updated over a series of damage cases. The maximum real error of all test cases 817 
in the numerical study is 0.9%.  818 

Successful application of the proposed MPAFNN algorithm combining with MFC indices opens 819 
opportunities for using other modal damage indices for failure identification. We have shown that these 820 
indices can be further used for failure quantification. 821 
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