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Abstract6

This paper explores the advantages of Variational Mode Decomposition (VMD)7

in detecting local damage on beam type structures (bridge) subjected to a sprung8

mass (vehicle). VMD is used to decompose the acceleration time history of the9

bridge at its midspan into its constitutive intrinsic mode functions (IMFs). The in-10

stantaneous frequency (IF) and instantaneous amplitude (IA) of the first IMF show11

irregularities at the damage position. We demonstrate through computer simula-12

tion that VMD is superior for detecting damage when compared to the well-known13

Empirical Mode Decomposition (EMD) method. A new damage sensitive feature14

(DSF) is also introduced that considers synchronisation of peaks between the IA15

and IF signals. The results show that the new DSF can enhance the peak at the16

damage positions while suppressing peaks at other locations.17
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1. Introduction21

There are two types of damage that are addressed in the context of the structural22

health monitoring of bridge structures (simply supported beam model). These are23

(1) local stiffness reduction, such as open or breathing cracks [1, 2, 3] or bolt looseness24

[4] which are, more often, modeled as a massless rotational spring with a stiffness25

equal to the stiffness of the reduced section; and (2) Stiffness reduction of a more26

extensive area of the beam due to fatigue damage [5]. The latter type of damage is27

mostly modeled by multiplying the stiffness matrix of the defective element [6] by28

a scalar constant 1− λ, where λ is a damage index varying between 0 for a healthy29

structure and 1 for a totally defective element. Equivalently, in other research, the30

damage is simply modelled as a reduced cross section [7, 8, 9].31

Having categorised the types of damage, there are generally two classes of tech-32

niques to locate them on bridges. The first category, which is response-based and33

therefore baseline-free, has roots in signal processing [10]. These methods often34

seek a peak at the position of the local damage. To characterise the damage, the35

signal needs to be decomposed into constructive narrow-banded components using36

some signal decomposition algorithms such as wavelet transform (WT) [11], em-37

pirical mode decomposition (EMD) [12, 2, 13], or variational mode decomposition38

(VMD) [14]. Other signal-based techniques include those based on machine learning39

algorithms such as deep-learning [15]. The second category is baseline based damage40

detection techniques [16], in which one compares the response of the defective struc-41

ture against the response of the healthy structure to derive information about the42

damage. This often relies on the finite element (FE) model updating of the intact43

structure. Both the above classes of techniques have been used to locate either local44

crack or fatigue damage on beam structures in the literature.45

A recent review of bridge structure damage identification methods [17] classifies46

bridges as beam, truss, arch, cable-stayed or suspension, and within the beam bridge47

category several techniques are described including acceleration-based time-domain48

damage index waveform analysis. This paper deals with the first type of damage49

(crack damage) and introduces an acceleration response-based damage detection50

technique for local crack damage detection on beam bridge structures. Hence no51
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baseline or FE model of the healthy structure is required for detection purposes.52

A commonly used excitation for response-based techniques on bridges is the53

moving load or mass. It has been shown that the deflection response of the beam54

when using a small and uniform velocity of the moving load is analogous to the55

Influence Line (IL) of the beam [18]. As such, a quasi-static moving load can be56

traversed across the bridge to derive the beam IL. According to the Maxwell-Betti57

principle of reciprocal deflection, the response at some point A on the beam is equal58

to the deflection of the beam at each load point when a static force is applied to A.59

This property has recently been used by Sun et al. [6] to obtain the curvature of the60

beam. Yang et al. [19] had earlier shown that the curvature of the beam is sensitive61

to damage and, therefore, can be considered a good damage indicator.62

The dynamic component of the response has also been shown to contain useful63

information about damage. For example, wavelet transformation has been used to64

separate the dynamic response of the beam for damage detection. He et al. argue65

that the moving load frequency component of the response of the beam is preferred66

for damage localisation. Therefore, a multi-scale discrete wavelet transform is used67

in their paper to separate the moving frequency component from beam frequency68

component for damage localisation [8].69

In terms of innovative signal processing used in response-based techniques, the70

most significant and widely used recent contribution to the field of structural health71

monitoring (SHM) is Empirical Mode Decomposition (EMD), first introduced by72

Huang et al. [20]. This is a technique that interpolates splines between the average73

of the peaks and troughs and recursively subtracts these curves (known as Intrinsic74

Mode functions, or IMFs) from the original signal.75

A key reason for the effectiveness of EMD is that it preserves the nonlinear re-76

sponse of the bridge to the moving mass at the position of the local damage. These77

nonlinear effects are known to be of higher frequency and therefore the higher fre-78

quency bands of the signal (the first intrinsic mode functions, or IMFs) are more79

sensitive to the damage [12]. Meredith et al. proposed a technique based on the80

EMD to detect multiple damage on a simply supported beam subjected to a moving81

load. However, the effect of the road roughness on damage detection is not con-82

sidered in their work. Obrien et al. [21] used EMD for drive-by bridge damage83
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detection. Although the effect of the road roughness profile is considered in their84

paper, a difference in the acceleration signals on healthy and the corresponding dam-85

aged structures is used, which must be obtained prior to applying EMD. Therefore,86

the technique requires a baseline to be available from an experiment conducted on87

the intact structure. However, He et al. argue that a baseline is not generally useful88

due to the fact that a small fluctuation of the velocity of the moving mass can bring89

about a discrepancy of the velocity profile for the moving mass (in the experiments90

conducted on the intact and damaged beams) [7]. Therefore in this paper we pro-91

pose a baseline-free method which can localise damage on a simply supported beam92

subjected to a moving mass considering the road profile effects.93

Using different instrumentation such as a switch from the bridge to a passing94

vehicle to collect indirect measurements for the bridge responses has been demon-95

strated as a useful technique for bridge damage detection in recent years [1, 22].96

Unmanned Aerial Vehicles (UAVs) has also been used as a new technique for bridge97

inspection recently [23, 24]. More advanced strategy using this new technique has98

been proposed in [25, 26].99

Several authors have used the first (highest frequency) IMF for damage detection.100

For instance, Roveri et al. [2] exploited the EMD algorithm to detect an open crack101

on beams using the instantaneous frequency (IF) of the first IMF of the dynamic102

deflection response of the bridge. In a study conducted by Quek et al., the au-103

thors investigated the feasibility of application of the Hilbert-Huang transformation104

(HHT) in locating any types of anomaly in structures using detected propagating105

wave signals [27]. Pines et al. applied HHT to study damage in some 1D structures106

by decomposing recorded time series to extract the phase, and damping informa-107

tion [28]. These extracted data are then used to determine the underlying incident108

energy propagating through the structure.109

Cheraghi et al. introduced novel damage indices using EMD and Fast Fourier110

Transform (FFT) integration for detecting any change in stiffness of a vibrating111

pipe. The authors studied the first IMF for extracting information about damage.112

A finite element simulation is carried out for both the healthy and damaged pipe.113

The results show that the proposed damage indices are sensitive to the size and114

location of the damage [29].115
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In one of the first studies to apply EMD to VBI data with introduced noise in116

the form of road surface roughness, OBrien et al. apply EMD to decompose the117

acceleration signal of the beam subjected to a moving load into its component [21].118

Then the first IMF is obtained from the decomposed acceleration signal to derive119

information about damage. OBrien et al. define a damage indicator based on the120

difference between the signals obtained from the intact and damage structure. It is121

shown that this subtraction can remove the effects of road profile excitation as well.122

However, in most of these EMD-based studies, either no noise is present, or123

a baseline undamaged structure response is required. Many new advanced signal124

processing techniques have been developed in recent years which can be exploited125

to capture the nonlinear part of a time series [30, 31]. The following section briefly126

describes and compares the HHT and EMD signal processing techniques, outlines127

their shortcomings, and proposes variational mode decomposition (VMD) as an128

alternative to EMD. VMD was first introduced in the 2014 paper of Dragomiretskiy129

and Zosso [30], and has been widely used for fault detection in mechanical and130

electrical applications (see for example [32, 33]).131

The paper presents two key contributions as follows: (1) it demonstrates that132

VMD can be deployed for damage detection on a simply supported beam subjected to133

a moving mass, including the presence of the road roughness profile, and is superior134

to EMD because the decomposition can be better controlled to exclude unwanted135

features; and (2) the instantaneous frequency and amplitude data obtained from136

the first IMF of the acceleration signal using VMD may be fused in order to better137

localise damage, as well as to remove any peaks not related to damage.138

2. Signal decomposition techniques139

2.1. Hilbert transform140

The Hilbert transform was first introduced by David Hilbert (1862–1943) [34].141

In modern signal processing approaches, the Hilbert transform is widely used to142

interpret signals. The basic condition for using the Hilbert transform is causality143

which means that the signal at any time is not dependent on any future events or144

conditions. It follows that the signal for negative time is zero. The general form of145
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the Hilbert transform of a causal signal g(t) is defined as146

ĝ(t) = lim
ε→0

1

π

∫

|τ−t|>ε

g(τ)

t− τ dτ, (1)

where, ĝ(t) represents the Hilbert Transform of the signal g(t), and the limit satisfies147

Cauchy principle value for the integral [35]. It can be shown that the integral of148

Equation 1 converges and consequently the Hilbert transform is well-defined.149

Physically, it is often valuable to define a quantity known as the ‘instantaneous150

frequency’ (IF) when dealing with a non-stationary signal. Accordingly, an analytic151

signal ga(t) is first defined (see Gabor [36]) in which the real and imaginary parts of152

Gabor’s complex signal are the original signal and its Hilbert transform, respectively.153

Therefore one may write154

ga(t) = g(t) + jĝ(t). (2)

The resulting analytical signal ga(t) can be written using Euler’s formula in terms155

of time-variant ‘instantaneous amplitude’ (IA) gm(t) and ‘instantaneous phase’ φ(t)156

as157

ga(t) = gm(t)ejφ(t), (3)

and gm(t) and φ(t) are in turn158

gm(t) =
√
g2(t) + ĝ2(t), (4)

φ(t) = tan−1
(
ĝ(t)

g(t)

)
. (5)

Finally, the instantaneous frequency (IF) can be evaluated by differentiating the159

instantaneous phase with respect to time,160

ω(t) =
dφ(t)

dt
. (6)

According to this definition, instantaneous frequency is well-defined when ap-161

plied to a mono-component or monotonic signal, which means that at each time the162

signal is not a combination of a number of different signals. Otherwise, the instan-163

taneous frequency for a multi-component signal is meaningless. However, Huang164

et al. introduced the Hilbert-Huang Transform (HHT) using an Empirical Mode165

Decomposition (EMD) method to first separate a multi-component signal into its166

constructive modes, each of which is mono-component (narrow-banded) [20], before167
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applying the Hilbert Transform. The modes thus obtained are termed Intrinsic Mode168

Functions (IMFs), and the original signal can be fully reconstructed by combining169

them. The process through which these modes are obtained is a recursive sifting170

process, described below.171

It is shown that the HHT can be applied to a non-stationary non-linear sig-172

nal, whereas the FFT by definition assumes an energy signal not suitable to non-173

stationary signals, while the wavelet transform can be applied to non-stationary174

linear signals.175

2.2. Empirical mode decomposition (EMD)176

As mentioned in the previous section, the EMD is an empirical decomposition177

algorithm first introduced by Huang et al. in order to decompose a non-stationary178

signal into its oscillation modes or IMFs [20]. Despite the traditional linear modal179

analysis, IMFs extracted from EMD can be non-stationary, i.e. they can be mod-180

ulated in both amplitude and frequency. However, in common with linear modal181

analysis, each IMF is narrow band and approximately involves only one mode of182

oscillation. Hence, the IMF’s characteristics can be summarized as follows:183

1. as each IMF is narrow band, it involves only one mode of oscillation;184

2. each IMF is modulated in both amplitude and frequency;185

3. an IMF can be non-stationary.186

Figure 1 shows the flowchart of the basic EMD algorithm applied to an arbitrary187

signal X(t).188

2.3. Shortcomings of EMD and alternative approaches189

The EMD algorithm has been shown to be very effective in decomposing non-190

stationary and nonlinear signals into its components and, therefore, has been em-191

ployed as an effective method for damage detection and other SHM contexts by192

many researchers [28, 29, 38, 39, 40].193

However, although the HHT is considered a good method for studying non-194

stationary signals, current implementations exhibit some shortcomings rooted in195

the use of EMD to decompose the signal [41].196
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Figure 1: Flowchart for the EMD algorithm [37].
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EMD, being an empirical method, sometimes fails to decompose a signal into197

perfectly narrow-banded components. As a results, the change in instantaneous198

frequency cannot be detected when the extracted IMF covers a wide-band frequency199

range. Hence, several modifications have been introduced by researchers to improve200

the performance of HHT in decomposing a signal into mono-component parts [42,201

43].202

It has also been argued that EMD shows limitations in terms of sensitivity203

to noise and sampling [44] and several researchers have introduced new schemes204

that overcome these limitations. Recently Dragomiretskiy et al. introduced a new205

method, called variational mode decomposition (VMD), for adaptive decomposition206

of a signal into its components [30]. The method is a generalization of the classic207

Wiener filter. Consequently, in contrast to EMD, VMD is entirely non-recursive.208

2.4. Variational mode decomposition (VMD)209

New signal decomposition methods have been proposed to deal with the short-210

comings of EMD. As such, VMD is a newly proposed signal decomposition technique211

that seeks to decompose a real valued signal X(t) into its components. Since the212

criteria for a mode to be considered as an IMF slightly changed [45, 46], VMD de-213

fines an IMF as an Amplitude-Modulated-Frequency-Modulated (AM-FM) sinusoid214

with the following additional characteristics:215

1. the phase corresponding to an IMF is a non-decreasing function;216

2. the envelope of the IMF is non-negative;217

3. both the envelope and the instantaneous frequency corresponding to an IMF218

vary much more slowly than the phase;219

As such, the IMF can be written as220

uk(t) = Ak(t) cos(φk(t)) (7)

where Ak(t) is the instantaneous amplitude and and φk(t) represents represents the221

phase. Note that, from Equation 6, ωk(t) = φ
′
k(t).222

Comparing the new definition of IMF with the original one introduced by Huang223

et al., it is clear that the new definition is slightly more restrictive. As a result, this224
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forces a mode to have a smaller frequency domain support, complying with the225

concept of a mono-component signal.226

The main algorithm of the VMD method can be found in Dragomiretskiy and227

Zosso’s original paper [30], and the Matlab code for implementing the algorithm228

can be found online [47]. Figure 2 shows the general scheme of VMD. In implement-229

ing the algorithm, although two further terms are added to the goal function of the230

optimisation problem, which are (1) a quadratic penalty at finite weight, and (2)231

a Lagrangian multiplier to strictly enforce the constraint (the reader is referred to232

the original paper for further details [30]). The former will further guarantee the233

achievement of convergence in the presence of noise in the signal. As such, three234

main parameters have to be set in the Matlab program as follows:235

1. a quadratic penalty term (α), higher values of which decrease noise in the de-236

composed IMFs. However, increasing α also decreases the bandwidth, which237

decreases the accuracy with which the center frequency of each mode is cap-238

tured. It is noted that the noise thus eliminated does not appear in the IMFs,239

hence a version of the original signal with reduced noise is recovered when all240

the extracted IMFs are summed.241

2. the number of modes into which the signal is chosen to be decomposed (k). In242

contrast to EMD, VMD can decompose the signal into an arbitrary number243

of IMFs. However, a good decision on the optimum number of IMFs depends244

on a knowledge of the physics of the studied system. In EMD, the signal is245

recursively decomposed, therefore the user cannot a priori control the number246

of decomposition steps. This may over-decompose the signal into too many247

IMFs, especially in the presence of noise, hence individual IMFs may have248

missing information.249

3. the convergence tolerance level (ε), which controls the relative error in the250

reconstructed modes. For small values of ε the decomposition is essentially251

independent of the value chosen.252
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Figure 2: Scheme of the VMD.

3. Vehicle Bridge Interaction (VBI) simulation considering road rough-253

ness254

In this section, a finite element model of the vehicle bridge interaction is devel-255

oped, taking into account the road roughness (Figure 3). The example studied in256

this paper is identical to the one used in [1]. Accordingly, a sprung mass mv with257

the stiffness kv and damping ratio ζv is considered to travese the bridge (simply258

supported beam) at constant velocity, and the interaction between the mass and the259

bridge is taken into account. Hermite cubic shape function for beam elements are260

used as follows for finite element modeling,261

N1 = 1− 3ζ2 + 2ζ3

N2 = Le
(
ζ − 2ζ2 + ζ3

)

N3 = 3ζ2 − 2ζ3

N4 = Le
(
−ζ2 + ζ3

)
.

(8)

As such, the cubic Hermitian interpolation vector [N ]c evaluated at the contact point262

is constructed and used in the finite element model of the bridge-vehicle interaction263
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as follows [1],264


 mv 0

0 [mb]



{

ÿv

{q̈b}

}
+


 cv −cv{N}τc
−cv{N}c [cb] + cv{N}c{N}τc



{

ẏv

{q̇b}

}

+


 kv −cvV {N ′}τc − kv{N}τc
−kv{N}c [kb] + cvV {N}c{N ′}τc + kv{N}c{N}τc



{

yv

{qb}

}

=

{
cvV r

′
c + kvrc

−cvV r′c{N}c − kvrc{N}c −mvg{N}c

}
(9)

where [mb], [cb], and [kb] represent respectively the mass, damping and stiffness265

matrices of the finite element model of the beam and, as mentioned above, mv, kv,266

and cv represent respectively the moving mass and its suspension system. Note that267

in the above equation τ and ′ represent respectively the transpose of a matrix and268

derivative with respect to the position, and yv and {qb} represent respectively, the269

vertical displacements of the moving mass and the nodal degrees of freedom (vertical270

translations and rotations) of the VBI elements.271

The damping in this equation is modelled as Rayleigh damping, i.e. of the form272

[c] = α[m] + β[k]. The Rayleigh constants α and β were set to achieve the target273

damping ratios specified in Table 1 at the first two natural frequencies, namely 5%274

and 10% for the beam and suspension respectively.275

Finally, rc denotes an artificial road roughness generated by the following equa-276

tion from [48], which in turn is based on ISO 8608,277

rc(x) =
N∑

i=0

2k × 10−3 ×
√

∆n
( n0
i∆n

)
cos (2πi∆nx+ φi) , (10)

where the constant (2k × 10−3) has units m3/2 and ∆n has units m−1, hence rc has278

units m. The constant scalar k depends on the ISO road profile classification and279

takes an integer from 3 to 9, corresponding to the profiles from class A to class H (in280

this paper k = 3), and n0 = 0.1 m−1. Also in Equation 10, x denotes the variable281

abscissa on the road with respect to the reference point, φi is a random phase angle282

within the range of 0 to 2π with a uniform probabilistic distribution, and N = L/B283

and ∆n = 1/L, where L is the length of the road profile and B is the wavelength of284

the shortest spatial component of the roughness profile.285
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The finite element model of Equation 9 can be solved using Newmark constant286

average acceleration method in Matlab with β = 0.25 and γ = 0.5. In order to287

achieve a reasonable initial condition, it is assumed that the mass has been moving288

over the rough road with a length equal to the length of the bridge L before it arrives289

at the left hand side of the bridge, and continues moving over the bridge until it290

reaches the right hand side. Therefore, a road profile for a length of 2L is generated291

and used in simulations.

Figure 3: Moving load with suspension system over a bridge with rough surface.

292

In this paper, the damage is introduced as a zero-length spring located between293

two standard beam elements, with rotational and translational stiffnesses of kr and294

kt, respectively [49, 50]. As such, the stiffness matrix of the crack element is295

kd =




kt 0 −kt 0

0 kr 0 −kr
−kt 0 kt 0

0 −kr 0 kr



. (11)

In the case that both kr and kt are chosen to be sufficiently large, the two section296

of the beam are fully connected and damage does not exist. Since usually only the297

loss of the rotational stiffness is considered (representing an open crack) kt is taken298

to be a large value of 1020 N/m in this paper. In order to calculate kr, the following299

formula is used [51],300

kr =

[
2h

EI

(
α

1− α

)2 (
5.93− 19.69α+ 37.14α2 − 35.84α3 + 13.12α4

)
]−1

(12)

where the damage parameter α = 1 represents no damage (kr = ∞) and α = 0301

indicates a completely defective section (kr = 0).302
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The beam is divided into 35 two-dimensional beam elements with rotational and303

translational degrees of freedom at each node, as shown in Figure 4. Note that the304

crack elements are not shown in this figure, and that the relevant nodes need to be305

duplicated.

Figure 4: The beam is divided into 35 beam elements bounded by the nodes shown. In addition, to

simulate damage, crack elements with stiffness given in Equations 11 and 12 are inserted at nodes

10 only, or 10 and 27, according to the scenarios in Table 2.

306

4. Numerical Results and Discussions307

In this section, the finite element model outlined in the previous section is used308

to simulate the traverse of a moving mass across a beam with the properties given309

in Table 1, which give an undamped first natural frequency for the beam alone of310

2.67 Hz and an undamped natural frequency suspended mass (in single degree of311

freedom vibration) of 3.05 Hz. Note that the beam width w does not affect these312

natural frequencies, it essentially only changes the relativity of the moving mass to313

the beam mass, so affects the interaction, in particular the overall magnitude of the314

forcing and response.315

Figure 5 shows the road roughness profile used in the simulations generated using316

Equation 10. Note that, as mentioned above, in order to have realistic and consistent317

initial conditions when the moving mass enters the bridge, the mass travels one full318

bridge length before its arrival on the bridge, thus the actual bridge span is from319

35 m to 70 m in Figure 5.320

Both single and multiple damage scenarios are studied—Table 2 shows the two321

scenarios considered. While the both methods are computationally efficient in terms322

of the time required for decomposing the acceleration signal into its IMFs, the aim is323

to compare the effectiveness of EMD and VMD in detecting these damage scenarios.324

4.1. Using EMD for damage detection325

It is noted that although OBrien et al. [21] detected damage in a cracked beam by326

applying EMD to the VBI acceleration data, they needed to subtract the acceleration327
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Table 1: VBI simulation model constants.

Quantity nomenculture Value

Beam modulus of elasticity E 32.5 GPa

Beam density ρ 2500 kg/m3

Beam damping ratio ζb 5%

Beam length L 35 m

Beam cross-section height h 2 m

Beam cross-section width w 1 m

Moving mass magnitude mv 1500 kg

Moving mass velocity V 5 m/s

Suspension stiffness kv 550 kN

Suspension damping ζv 10%

Sampling frequency Sf 1000 Hz

Table 2: Simulated damage scenarios: node positions are shown in Figure 4 (i.e. Nodes 1 and 36

are the ends of the beam) and severity is the quantity (1 − α) in Equation (12).

Damage scenario Damage position Damage severity

Single (D1) Node 10 50%

Multiple (D2) Nodes 10 & 27 50% & 50%

recorded on the undamaged beam from that of its damaged counterpart to eliminate328

the road roughness effects. However, more often, the acceleration data from the329

undamaged beam is not available, and in any case would require the moving mass330

path and velocity to be absolutely identical in order to experience the same response331

to road roughness.332

In this section therefore, we explore whether an EMD based HHT can detect333

damage using VBI data from only the damaged beam through studying the instan-334

taneous frequency (IF) or instantaneous amplitude (IA) as defined in Section 2.1.335

To that end the following steps are followed:336

1. EMD is used to decompose the acceleration signal measured at the midspan337

of the beam into its IMFs.338
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Figure 5: Road roughness profile used in simulations (see Equation 10). The beam spans from 35 m

to 70 m.

2. the instantaneous frequency (IF) and instantaneous amplitude (IA) of the first339

(i.e. highest frequency) IMF are calculated as outlined in Section 2.1. In order340

to apply Equations 6 in Matlab, the function hilbert is first used to obtain341

Gabor’s complex signal as defined in Equation 2. Then, the command shown342

in Equation 13 is used to obtain the instantaneous frequency of the constructed343

analytical signal from the first IMF of the acceleration signal [2, 21],344

IF = fs/(2*pi)*diff(unwrap(angle(h))); (13)

Figure 6, shows the noise-free simulated acceleration signal at node 19 (the nearest345

node just to the right of the mid-span) for both damage scenarios. Note that the346

damage locations correspond to the moving mass positions at normalised times1347

of 9/35 = 0.257 and 26/35 = 0.743. As is evident in this figure, the acceleration348

amplitude in the multiple damage case (Scenario D2) is smaller than in the single349

damage case (Scenario D1). This is due to the greater relative stiffness reduction of350

the beam in Scenario D2 compared to Scenario D1.351

In the present work, EMD decomposes the acceleration signal into 7 and 8 IMFs352

for damage scenarios D1 and D2 respectively. Figure 7 shows the first (highest353

frequency) of these IMFs for each scenario, and their corresponding IF and IA2. As354

can be seen from this figure, there are no obvious features that can be associated355

1‘Normalised time’ indicates the relative position of the load on the beam, where 0 and 1 corre-

sponds respectively to the load entering and exiting the beam span.
2In order to exclude end effects at both ends of the signal, the first and last 10 samples of IA
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(b) Damage scenario D2 (two cracks)

Figure 6: VBI acceleration data at node 19 for both damage scenario, simulated for a rough road

surface but with no added signal noise.

with damage in either the IMF or its IF or IA. The remaining (lower frequency)356

IMFs were also investigated and similarly found to present no features that could357

be associated with the cracks.358

As such, EMD fails to detect damage on a rough cracked beam subjected to a359

moving load using data measured only on the damaged beam. In contrast, we show360

in the next section that VMD is able to detect damage without the baseline state,361

even with additional noise introduced to the simulated acceleration signals.362

4.2. Using VMD for damage detection: noiseless case363

A similar procedure to the one discussed in Section 4.1 is followed for damage364

detection, but using VMD as the decomposition method. However, as discussed in365

Section 2.4, unlike EMD, the user must make some choices when using VMD. For366

example, one can specify the number of IMFs into which the signal is decomposed.367

This is a very important feature of VMD, which helps to manage information in368

IMFs according to some knowledge about the physics of the system. In the present369

work, we expect the main responses to be due to the road surface roughness and to370

the resonant responses of the VBI system, so we choose k = 3. Larger values of k371

lead to duplication of qualitatively similar IMFs, which is not physically meaningful.372

and IF are deleted throughout this paper (as recommended in [52, 53]), representing approximately

0.00143 units of normalised time from each end.
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Figure 7: First (highest frequency) IMFs of VBI mid-span acceleration data, decomposed using

EMD, and their corresponding IF and IA for damage scenarios D1 (a, c, and e) and D2 (b, d, and

f).
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In this section the same acceleration data are used for the damage detection as373

were used in Section 4.1, i.e. VBI mid-span acceleration for a rough road surface, with374

no added signal noise. The case of added noise will be investigated in Section 4.2,375

but for the no added noise case the number of IMFs is set to three (k = 3 in the376

VMD).377

Figure 8 shows results using VMD for both damage scenarios. Note that in this378

case, since there is no noise present in the signal the quadratic penalty term α may379

be selected as a relative small number of 10000, thereby increasing the accuracy of380

the center frequency of the modes, while the convergence tolerance level is set to381

ε = 10−7. We explore the use of both the IA and IF of the first (highest frequency)3382

IMFs for damage detection.383

Figure 9 shows the IA of the first (highest frequency) IMF for each damage384

scenario. It is seen that the peaks in the IA plots give a good indication of the385

location of the damage (at normalised times of 0.26 for D1, and 0.26 and 0.74 for386

D2). Note that the IA also shows a peak at normalised time of zero—this is not387

actually damage, but reflects the fact that the beam is simply supported and so may388

rotate relative to the approaching road, which is the same behaviour as would be389

produced by a crack.390

Next, in Figure 10, we show that the IF may also be used to detect damage. In391

this case a higher value of α is selected to minimise the high frequency noise-like392

disturbances caused by the road roughness since the IF requires differentiation of393

the instantaneous phase angle for its evaluation (Equation 6); we use α = 90000394

for scenario D1 and 18000 for scenario D2. As such, the IMFs obtained are not the395

same as those in Figure 8, for which α = 10000. As is evident in Figure 10, the396

large value of α suppresses noise significantly, hence a much lower center frequency397

is obtained for the first IMF to the extent that this IMF looks much like the second398

or third IMF of Figure 8.399

3Note that the numbering sequence of IMFs for EMD is from highest frequency to lowest since

they are extracted recursively in that order. However, for VMD they are extracted simultaneously

so the numbering is arbitrary. Dragomiretskiy and Zosso number the highest frequency IMF last

[30], but to minimise confusion we have kept the same ordering as for EMD.
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Figure 8: IMFs of VBI mid-span acceleration of Figure 6, decomposed using VMD with k = 3,

α = 10000 and ε = 10−7.
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Figure 9: IA of the first IMFs from VMD of the mid-span acceleration with k = 3, α = 10000 and

ε = 10−7. The corresponding IMFs are shown in Figures 8a and 8b respectively. The acceleration

signal was simulated for a rough road surface but with no added signal noise.
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Figure 10: First (highest average frequency) IMFs and their IFs from VMD of the mid-span VBI

acceleration with k = 3 and ε = 10−7, α = 90000 for damage scenario D1 (a and c) and α = 18000

for scenario D2 (b and d).
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4.3. Using VMD for damage detection: Noisy scenario400

In this section, the simulated acceleration data are assumed to be contaminated401

by noise. To that end, a formula introduce in [18] is used as follows,402

δ̂ = δ +
κ

100
nnoise σ(δ), (14)

where δ̂ represents the vector of noisy measured translational DOF data, δ is the403

corresponding noise-free vector with standard deviation σ(δ), κ is the noise level in404

percent (= 10 in the present work) and nnoise is a vector with the same length as δ405

of random independent variables following a standard normal distribution.406

In this section, the number of IMFs into which the signal is decomposed is407

maintained at k = 3, as in the previous section. Accordingly, one may expect that408

the noise must therefore be distributed amongst those three IMFs. However, as409

discussed above, one needs to minimise the effect of the noise in the resulted IMFs410

when using IF as a damage locator. This is mainly due to the fact that calculation411

of the IF requires numerical differentiation of the phase angle, which will amplify412

any noise.413

As mentioned, using a larger value of α will decrease the effect of the noise on each414

extracted IMF as the effect of Lagrange multiplier in the optimisation goal function415

is reduced, which can subsequently lead to some of the IMFs being qualitatively416

similar. In Figure 11, relatively large values of α has been used for both single and417

double damage scenario. In the case of single damage, since the distortion in the418

signal is less severe, a very large value of α = 90000 may be used to increase the419

detactability of the damage, while for the case of a more distorted signal from the420

double damage scenario a value of 29000 for α is sufficient for detecting damage.421

Again, the damage locations (at normalised times of 0.26 for D1, and 0.26 and 0.74422

for D2) are clearly evident in Figure 11.423

In contrast to using IF for damage detection, IA does not need such a large value424

of α to be set due to the fact that there is no differentiation in the formula of IA425

(Equation 4) and therefore, the effect of noise is not amplified. Figure 12, shows426

the result obtained from VMD and IA by choosing a considerably smaller value of427

9000 for both damage scenarios, and again the single and multiple damage sites are428

clearly detected.429
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Figure 11: First (highest frequency) IMFs and their IFs from VMD of the mid-span VBI acceleration

with k = 3 and ε = 10−5: damage scenarios D1 (a and c, α = 90000) and D2 (b and d, α = 29, 000)

with 10% added noise.
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Figure 12: First (highest frequency) IMFs and their IAs from VMD of the mid-span VBI acceleration

with k = 3 and ε = 10−5: damage scenarios D1 (a and b, α = 9000) and D2 (c and d, α = 9000)

with 10% added noise.
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4.4. A new damage sensitive feature430

In this section a new damage sensitive feature (DSF) based on the synchroni-431

sation of peaks in both IA and IF signals is introduced. To that end, we propose432

multiplication of two signals IA and IF as a new DSF. The intuitive idea behind433

the proposed DSF comes from the fact that both IF and IA must show a peak at434

the position of the damage, however, while peaks not associated with damage may435

occur at other locations in one of the signals it is less likely to be seen in the other436

one at the same position. Therefore, by multiplying the two signals element-wise,437

one obtains a new signal with an enhanced peak at the damage position and sup-438

pressed peaks at other locations. For instance, it is evident from Figure 10c that439

the obtained IF also shows a peak not associated with damage at a normalised time440

(i.e. position) of around 0.11, and several smaller peaks. However, this is not the441

case for the corresponding IA signal shown in Figure 9a.442

As such, the proposed DSF is obtained by first normalising the absolute value of443

both IA and IF with respect to their maximum values, then multiplying the results444

as follows,445

DSF =
|IA| � |IF |

max(|IA|)×max(|IF |) , (15)

where in Equation 15, � represents the element-wise multiplication of the absolute446

value of two signals IA and IF. The DSF obtained thus for the two damage scenarios447

without signal noise is shown in Figure 13, while Figure 14 shows the DSF for both448

damage scenarios when IA and IF are obtained from noisy acceleration signal as449

discussed in Section 4.3. We see now that (excluding end effects) the peaks of the450

new SDF are confined just to the damage locations.451

4.5. Rationale behind the proposed techniques452

In this section, the reasons why the obtained results are achieved are discussed.453

At first, we provide some examples in the literature in which VMD outperforms454

EMD and related methods, and then we discuss possible reasons reasons why that455

is the case in the present work.456

The superiority of VMD over EMD has been reported in other area of research.457

For instance, in speech recognition related work, it has been reported that VMD458

outperforms EMD due to its self-optimisation algorithm and using the Weiner filter459
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Figure 13: Obtained DSF for the noiseless first damage scenarios.
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Figure 14: Obtained DSF for the noisy damage scenarios.

26



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency  (  rad/sample)

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/(
ra

d
/s

a
m

p
le

))

(a) D1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency  (  rad/sample)

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/(
ra

d
/s

a
m

p
le

))

(b) D2

Figure 15: PSD corresponding to the noise-free acceleration signals measured at node 19 for different

damage scenarios.

adaptively [54]. In other work related to the forecasting of carbon price using Spiking460

Neural Networks (SNNs), it has been shown that a VMD-SNN forecasting model461

outperforms EMD-SNN due to the fact that VMD decomposes the price signal more462

accurately [55]. The superiority of VMD over modified versions of EMD in damage463

diagnosis has also been mentioned by others. For instance, it has been reported that464

a VMD based notch filter approach outperforms the EEMD (Ensemble Empirical465

Mode Decomposition [56]) algorithm [57].466

In terms of the present results, Figure 15 shows the power spectral density (PSD)467

of the noise-free acceleration signal of the VBI experiment measured at node 19. It468

is noted that most of the signal energy is concentrated in a low frequency range of469

2–4 Hz. EMD and VMD are further used to decompose the signal and the PSD470

corresponding to each mode is extracted.471

Figure 16 shows the one-sided PSD corresponding to the IMFs extracted using472

EMD (16a and 16b) and VMD (16c and 16d) algorithms, applied to the acceleration473

signals of the VBI experiment measured at node 19. Note that VMD decomposition474

has been performed using α = 90000 and α = 29000 for D1 and D2, respectively,475

keeping it in line with the previous sections. Neglecting energy levels less than476

−80 dB, it is apparent from these figures that EMD suffers from the commonly477

reported mode mixing problem, especially in the few first IMFs (i.e. in the IMFs478

that show higher energy level for larger normalised frequencies). However, in the479
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case of VMD it can be seen that the energy of the different frequency bands is well480

separated. This advantage is achieved due to the control over the number of IMFs481

into which the signal is chosen to be decomposed.482

The second phenomenon that is evident from the PSD corresponding to modes483

of EMD is that the noise is distributed among different modes, which itself interferes484

with proper separation of modes. In contrast, using VMD, one can deal with this485

problem by setting α to an appropriate value. As such, VMD can repress the effect486

of noise in the IMFs better than EMD.487
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Figure 16: PSD of the IMFs obtained from VMD and EMD decomposition.

As for the proposed damage sensitive feature, we assume that α can be properly488

set so that the probability of obtaining a peak at the damage location for both IF489

and IA equals 1. On the other hand, this probability is significantly less than one490

in at least one of IF and IA for a peak to appear at a point not associated with491

damage. Since the IF and IA can be assumed to behave as two independent random492
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variables, due to the fact that two different procedures are followed to calculate IF493

and IA mathematically, the probability of the the existence of a peak is equal to the494

multiplication of two probabilities. The probability of detecting spurious peaks is495

therefore low, corresponding to the probability of such a peak occurring simultaneous496

in both signals, while the probability remains close to unity for a point genuinely497

associated with damage.498

5. Conclusions499

In this paper we compared two main techniques for decomposing the acceleration500

signal of a VBI model into its IMFs for the purposes of damage detection: EMD501

and VDM. In accordance with previous studies [21, 12] the first (highest frequency)502

IMF was then used for damage detection when crack damage was present on the503

beam. To that end, two main damage detector, i.e. IA and IF, are applied to the504

derived/extracted IMF to find the damage-induced local change to the signal that505

was acquired when the vehicle passed over the defective section. The acceleration506

signal of the VBI model is simulated through a Matlab code as suggested by [1]507

and two damage scenarios are considered.508

The present study sought to overcome problems that arise when the beam surface509

roughness is taken into account, which has been shown to interfere with damage510

detection when using EMD as a decomposition technique. Accordingly, the following511

novelties were introduced in this study:512

1. We showed that, in both damage scenarios, EMD was not able to detect dam-513

age using either IF or IA when no baseline from the undamaged beam exist.514

Some researchers, however, have shown that by subtracting the acceleration515

data from damaged and undamaged beams, it is possible to detect damage in516

the presence of road roughness using EMD [21].517

2. We showed that VMD can be used successfully to decompose the acceleration518

signal obtained only on the damaged rough beam subjected to a sprung mass519

for damage detection. Accordingly two different damage indicators, i.e. IA and520

IF, can both be used for damage detection without reference to the baseline521

(undamaged) case.522
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3. We showed that Both IA and IF are quite successful in detecting damage even523

in the presence of additional random signal noise.524

4. We showed that in the case of using IA for damage detection, one may use a525

small value of α in the VMD algorithm and, therefore, allow more noise into526

the decomposed IMF. This is due to the fact that IA will not amplify the effect527

of noise.528

5. We showed that in case of using IF, a relatively large value for α is preferable.529

This is due to the fact that IF can increase the effect of the noise as its530

extraction requires differentiation. The large value of α in VMD reduces the531

effect of noise in the decomposed IMFs, which itself makes the detectability of532

the damage possible.533

Finally a new damage sensitive feature based on synchronisation of peaks be-534

tween IA and IF derived from the acceleration signal using VMD is proposed. The535

new DSF shows enhanced peaks at the location of damage while the peaks occur-536

ing in other locations are suppressed. While the principle has been demonstrated,537

further investigation on the application of state-of-the-art signal processing tech-538

niques associated with signal synchronisation (for instance based on [58]) could be539

the subject of future work.540

In summary, we conclude that VMD can be used successfully along with IA or541

IF for damage detection on bridge structures with a surface roughness subjected to542

a moving vehicle. It is also recommended that both damage indicators IA and IF543

be used together to increase the reliability and precision in the damage detection544

using the proposed DSF. However, further study is suggested in order to conclu-545

sively establish the applicability of the proposed damage detection strategy of using546

synchronisation of the IF and IA peaks of the IMF with highest centre frequency547

obtained using VMD. Furthermore, the applicability to bridges consisting of inter-548

connected beams is also recommended as the subject of future work.549
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decomposition to drive-by bridge damage detection, European Journal of619

Mechanics-A/Solids 61 (2017) 151–163.620

[22] A. ElHattab, N. Uddin, E. OBrien, Drive-by bridge damage detection using621

non-specialized instrumented vehicle, Bridge Structures 12 (3-4) (2017) 73–84.622

[23] D. Erdenebat, D. Waldmann, Application of the DAD method for damage local-623

isation on an existing bridge structure using close-range UAV photogrammetry,624

Engineering Structures 218 (2020) 110727.625

[24] S. Chen, D. F. Laefer, E. Mangina, S. I. Zolanvari, J. Byrne, UAV bridge626

inspection through evaluated 3d reconstructions, Journal of Bridge Engineering627

24 (4) (2019) 05019001.628
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