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Abstract – This paper presents a neural network with a novel neuron model.  In this 

model, the neuron has two activation functions and exhibits a node-to-node relationship 

in the hidden layer.  This neural network provides a better performance than a 

traditional feed-forward neural network and fewer hidden nodes are needed. The 

parameters of the proposed neural network are tuned by genetic algorithm (GA) with 

arithmetic crossover and non-uniform mutation.  Some applications are given to show 

the merits of the proposed neural network. 

 

Index Terms-Neural network, genetic algorithm, short-term load forecasting  

I. INTRODUCTION 

 Neural networks are widely applied in areas such as prediction [19], system modeling 

and control [18].  Owing to its particular structure, a neural network is good in learning [2] 

using some algorithms such as genetic algorithm (GA) [1] and back propagation [2].  

Traditionally, a feed-forward neural network [24] has 3 layers (input, hidden and output 

layers) of nodes connected in a layer-to-layer manner. 

 GA is widely applied in optimization problems [1-7] where the number of parameters 

is large and the analytical global solutions are difficult to obtain.  It has been applied in 

different areas such as fuzzy control [20], path planning [21], greenhouse climate control [22], 

modeling and classification [23] etc. 

 A novel neural network model is proposed in this paper.  Two activation functions are 

used in the neuron and a node-to-node relationship is proposed in the hidden layer.  This 
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network model is found to be able to give a better performance than the traditional feed-

forward neural network [1-3].  GA with arithmetic crossover and non-uniform mutation can 

help tuning the parameter of the proposed network.  Numerical examples (3-inputs XOR 

problem and sunspot number forecasting) are used to test the proposed network and good 

results are obtained.  Two applications are also given, which are short-term daily load 

forecasting and pattern recognition. 

 This paper is organized as follows.  Section II introduces the proposed neural network.  

Training of the neural network with GA is presented in section III.  Numerical examples will 

be given in section IV.  Applications on short-term daily load forecasting and pattern 

recognition realized by the proposed GA-based neural network will be presented in section V.  

A conclusion will be drawn in section VI. 

II. NEURAL NETWORK MODEL 

 Fig. 1 shows the proposed neuron.  It has two activation functions: static activation 

functions (SAF) and dynamic activation functions (DAF) that govern the input-output 

relationships of the neuron.  For the SAF, the parameters are fixed and its output depends on 

the input of the neuron. For the DAF, the parameters depend on the outputs of other neurons 

and its SAF.  With this proposed neuron, the connection of the proposed neural network is 

shown in Fig. 2, which is a three-layer neural network.  A node-to-node relationship is 

introduced in the hidden layer.  Comparing with the traditional feed-forward neural network 

[24], the proposed neural network can offer a better performance.  The merits of the proposed 

neural network will be shown in the later section. 

A. Proposed neuron model 

 We consider the SAF first.  Let ijv  be the synaptic connection weight from the i-th 

input node ix  to the j-th neuron, the output j of the j-th neuron’s SAF is given by, 
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where inn  denotes the number of input and )(j
snet  is the j-th static activation function. 
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, j  1, 2, …, hn   (2) 

where j

sm and j
s  are the static mean and static standard deviation for the j-th SAF 

respectively.  The parameters ( j

sm  and j
s ) are fixed after the training processing.  By using 

the proposed activation function in (2), the output value is ranged from –1 to 1.  The shape of 

the proposed activation function is shown in Fig. 3.  In Fig. 3a, the effect of the mean value to 

the activation function is shown.  The standard deviation s  of the function is fixed at 0.2, 

and the mean value m  is chosen from –0.4 to 0.4.  In Fig. 3b, the effect of the standard 

deviation to the activation function is shown.  The mean value sm  is fixed at 0, and the 

standard deviation s is chosen from 0.1 to 0.5.  It can be observed from these two figures 

that 1)( fnet s  as f , and 1)( fnet s  as f .   

 For the DAF, the neuron output jz  of the j-th neuron is defined as, 

)( j
j

dj netz  , j  1, 2, …, hn   (3) 

where )(j
dnet is the j-th DAF, which is given by, 
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where 



4 

1,1   jjj

j

d pm   (5)  

1,1   jjj

j

d p    (6) 

j

dm  and 
j

d  are the dynamic mean and dynamic standard deviation for the j-th DAF;  1j  

and 1j  represent the SAF’s output of the j1-th and j+1-th neurons respectively; jjp ,1  

denotes the weight of the link between the j+1-th node and the j-th node, and jjp ,1  denotes 

the weight of the link between the 1j -th node and the j-th node.  It should be noted from 

Fig. 1 that if 1j , jjp ,1  is equal to jnh
p , , and if hnj  , jjp ,1  is equal to jp ,1 .  Unlike the 

SAF, the DAF is dynamic as its parameters depend on the outputs of the j1-th and j+1-th 

neurons.  Referring to (1-6), the input-output relationship of the proposed neuron is as 

follows: 
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B.  Connection of the proposed neural network 

 The proposed neural network has three layers with inn  nodes in the input layer, 

hn nodes in the hidden layer, and outn  nodes in the output layer.  In the hidden layer, the 

neuron model presented in the previous section is employed.  A node-to-node relationship is 

introduced in the hidden layer.  In the output layer, a static activation function is employed, 

which is given by, 
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where jlw , j = 1, 2, …, hn ; l = 1,2, … outn , denotes the weight of the link between the j-th 

hidden and the l-th output nodes; )(l
onet  denotes the activation function of the output neuron:   
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where l
om and l

o  are the mean and the standard deviation of the output node activation 

function respectively.  The parameters of the proposed neural network can be trained by GA.   

III. TRAINING WITH GENETIC ALGORITHM 

 In this section, the proposed neural network is employed to learn the input-output 

relationship of an application using GA.  This GA is implemented with arithmetic crossover 

and non-uniform mutation [3].  A population of chromosomes P is initialized and then 

evolves.  First, two parents are selected from P by the method of spinning the roulette wheel 

[3].  Then a new offspring is generated from these parents using crossover and mutation 

operations, which are governed by the probabilities of crossover and mutation respectively.  

These probabilities are chosen by trial and error through experiments for good performance.  

The new population thus generated replaces the current population.  The above procedures 

are repeated until a certain termination condition is satisfied.  The termination condition may 

be that the algorithm stops when a predefined number of generations have been processed. 

 Let the input-output relationship of an application be described by, 

 )()( tt dd
xgy  , t = 1, 2, …, dn   (11) 

where  )()()()( 21 tytytyt d
n

ddd

out
y is the desired output corresponding to the input 

 )()()()( 21 txtxtxt d
n

ddd

in
x  of an unknown nonlinear function )(g ; dn  denotes the 

number of input-output data pairs.  The fitness function is defined as, 
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The objective is to maximize the fitness value of (12) using GA by setting the chromosome to 

be ][ ,1,1
l
o

l
ojljjjj

j
s

j
sij mwppmv    for all i, j, l.  In this paper, 

 11,,, ,1,1  jljjjjij wppv ,  5.05.0, l

o

j

s mm  and  5.001.0, l

o

j

s  .  The range of 

the fitness function of (12) is [0, 1].  By using the proposed GA-based neural network, a well-

trained neural network with respect to the fitness value can be obtained. 

IV. EXAMPLES 

 In this section, two examples are given: the XOR problem and the forecasting of 

sunspot number. 

A. XOR Problem 

The three-input XOR function, which is not linearly separable, has the following 

input-output relationship: 
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The three inputs of the proposed neural network are defined as )(txi , i = 1, 2, 3 and )(ty  is 

the network output.  The number of hidden nodes ( hn ) is set at 3.  Referring to (9), the 

proposed neural network used for the three-inputs XOR classification problem is governed by, 
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The fitness function is defined as follows, 
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 GA is employed to tune the parameters of the proposed neural network of (15).  The 

objective is to maximize the fitness function of (16).  The chromosomes used for the GA are 

][ ,1,1 oojjjjj

j

s

j

sij mwppmv    for all i and j.  The initial values of the 

parameters of the neural network are randomly generated.  For comparison purpose, a 

traditional feed-forward neural network (3-input-single-output) trained by GA is also used to 

solve the three-input XOR classification problem.  The number of hidden node of the 

traditional neural network is 5.  (By using 5 hidden nodes for the traditional neural network, 

the number of parameters to be tuned is the same as that of the proposed neural network, 

which is 26).  The population size used for the GA is 10 and the number of iterations to train 

the neural network is 1000 for both networks.  The probabilities of crossover and mutation 

for GA are set at 0.8 and 0.35 respectively, which are chosen by trial and error.  The results 

of the proposed and traditional neural networks are tabulated in Table I and shown in Fig. 4.  

It can be seen that the performance of the proposed neural network is better. 

B. Forecasting the Sunspot Number 

 The sunspot numbers from 1700 to 1980 exhibit non-linear, non-stationary, and non-

Gaussian cycles that are difficult to model and predict.  We use the proposed neural network 

(3-input-single-output) for the sunspot number forecasting.  The inputs,  ix , of the 

proposed neural network are defined as )1()( 11  tytx d , )2()( 12  tytx d  and 

)3()( 13  tytx d , where t denotes the year and )(1 tyd  is the sunspot numbers at the year t.  

The sunspot numbers of the first 180 years (i.e. 18841705  t ) are used to train the 

proposed neural network.  Referring to (9), the proposed neural network used for the sunspot 

forecasting is governed by,  
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The fitness function is defined as follows, 
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 GA is employed to tune the parameters of the proposed neural network of (18).  The 

result is again compared with that from a traditional 3-input-single-output neural network.  

The numbers of hidden nodes of the proposed network and the traditional network are 3 and 9 

respectively, which are chosen by trial and error through experiments for good performance.  

The population size used for the GA is 10 and the number of iterations to train the neural 

network is 1000.  The probability of crossover is set at 0.8 for both networks.  The probability 

of mutation is set at 0.3 and 0.25 for the proposed and the traditional networks respectively.  

The tuned neural networks are used to forecast the sunspot number of the years 1885-1979.  

The fitness value, training error (governed by (20)) and the forecasting error (governed by 




1980

1885

11

96

)()(

t

d tyty
) are tabulated in Table II.  The proposed neural network once again 

gives a better performance.   

V. APPLICATIONS 

In this section, two application examples are given, which are short-term daily home 

electric load forecasting and pattern recognition. 

A. Short-Term Daily Home Electric Load Forecasting 

 In the intelligent home system [8], the AC power line network is used not only for 

supplying power, but also serving as the data communication channel for electrical 

appliances.  With this AC power line data network, a short-term load forecasting can be 

realized.  An accurate load forecasting can bring the following benefits: 1) increasing the 

reliability [4] of the AC power line data network, and 2) optimizing electric load scheduling.  

Artificial neural network have been considered as a very promising tool to short-term electric 
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load forecasting [9-17].  However, the gradient-descent (GD) algorithms for parameters 

training of the feed-forward neural networks suffer from the common problems of 

convergence to local minima and sensitivity to initial values of the parameters. Global search 

techniques such as GA may solve these problems.   

 The idea of the daily electric load forecasting is to construct seven multi-input multi-

output neural network, one for each day in a week.  Each network has 24 outputs representing 

the expected hourly load for a day.  One important job in designing the forecasting system is 

the selection of the input variables.  In this electric load forecasting system, we have three 

main kinds of input variables:  1) Historical data of loads: hourly loads of the previous day 

were collected and used as historical load inputs.  These data reflect the family habit of 

consuming power. 2) Temperature inputs: the average temperature of the previous day and 

the present day are used as two inputs in this forecasting system. 3) Rainfall index inputs: the 

average rainfall indexes of the previous day and the present day are used as two inputs in this 

forecasting system.  The range of the rainfall index is from 0 (no rain) to 1 (heavy rain). 

One network serves one day-type (from Monday to Sunday).  Each neural network 

has 28 inputs and 24 outputs.  The first 24 input nodes ( 1x , …, 24x ) represent the previous 24 

hourly loads and are denoted by ix = )1( tLd
i ,where i = 1,2,…,24.  Node 25 ( 25x ) and node 

26 ( 26x ) represent the average temperatures of the previous day and present day respectively.  

Node 27 ( 27x ) and node 28 ( 28x ) represent the average rainfall indexes of the previous day 

and present day respectively.  The output layer consists of 24 output nodes that represent the 

forecasted 24 hourly loads of a day and are denoted by yl(t) = )(tLl , l = 1,2,…,24.  Data of 12 

weeks (week 1 to week 12) for learning and data of 2 weeks (week 13 to week 14) for testing 

are prepared.  Referring to (9), the proposed neural network used for the daily electric load 

forecasting is governed by, 
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The number of hidden node ( hn ) is changed from 3 to 9 in order to test the learning 

performance.  GA is employed to tune the parameters of the neural network of (21).  The 

fitness function is defined as follows, 
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The value of err indicates the mean absolute percentage error (MAPE) of the forecasting 

result.  The population size is 10.  The number of the iterations to train the proposed neural 

network is 2000.  The results are tabulated in Table III and Table IV for Wednesday and 

Sunday respectively.  The fitness value and the number of parameters of the network are 

shown.  We can observe that the performance of the proposed neural network is better than 

the traditional one.  Table V and Table VI show the average training error from week 1 to 

week 12 in term of MAPE and the average forecasting error from week 13 to week 14 in term 

of MAPE on Wednesday and Sunday respectively.  The best training errors are 1.7829 and 

2.0776 for Wednesday and Sunday respectively.  These imply 24.0% and 32% improvements 

respectively over the traditional neural network.  The best forecasting errors are 1.9365 and 

1.9120 for Wednesday and Sunday respectively.  These imply 31.6% and 30.9% 

improvements.  Fig. 5 shows the results of the daily electric load forecasting on Sunday 

(week 13).  We can see that the forecasting result using the proposed neural network is better 

and a good forecasting is obtained. 

B. Pattern Recognition 

An application on pattern recognition by the proposed neural network will be 

presented in this section.  Every point on a two-dimensional plane is characterized by a 
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number.  A 10-input-3-output neural network is used.  The ten inputs nodes, ix , i = 1, 

2, … ,10, are the numbers corresponding to 10 uniformly sampled points of the input pattern.  

Three patterns are to be recognized: rectangle, triangle and straight line.  We use 300 sets of 

10 samples points for each pattern to train the neural network.  Hence, we have 900 ( 3300 ) 

sets of data for training.  The three outputs, )(tyl , l = 1, 2, 3 are the output value of each 

pattern.  A larger value of )(tyl implies that the input pattern matches more closely to the 

defined class.  For example, a larger )(1 ty  implies that the input pattern more likely to be a 

rectangle.  Referring to (9), the proposed neural network used for the pattern recognition is 

governed by, 
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 GA is employed to tune the parameters of the proposed neural network of (24).  The 

fitness function is defined as follows, 
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The value of err indicates the mean square error (MSE) of the recognition system.  The initial 

values of the neural network parameters are randomly generated.  For comparison, a 

traditional feed-forward neural network (10-inputs-3-outputs) trained by GA is also used to 

recognize the patterns.  The number of hidden node of the proposed network (nh) and the 

traditional network are 7 and 16 respectively, which are chosen by trial and error through 

experiments for good performance.  The population size is 10 and the number of iterations to 

train the neural network is 2000.  The probability of crossover for GA is set at 0.8 for both 
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networks. The probabilities of mutation are set at 0.1 and 0.06 for the proposed and the 

traditional neural networks respectively.  After training, we use 600 ( 3200 ) sets of data for 

testing.  The results are tabulate in Table VII.  From this Table, it can be seen that the training 

error and forecasting error of the proposed neural network are smaller.  The recognition 

accuracy of the proposed network is also better.  When 7 hidden nodes for the proposed 

neural network and 16 hidden nodes for the traditional neural network are used, the numbers 

of parameters to be tuned are 125 and 227 respectively.  The proposed neural network has 

only 55% of the number of parameters of the traditional neural network.  Hence, the 

performance of proposed neural network is better and fewer hidden nodes are needed. 

VI. CONCLUSION 

 A novel GA-based neural network has been proposed.  Its parameters can be tuned by 

GA with arithmetic crossover and non-uniform mutation.  A novel neuron model with two 

activation functions has been introduced.  By employing this neuron model in the hidden 

layer, the performance of the neural network is found to be better than that of the traditional 

feed forward neural network.  Examples of multi-input XOR problem, sunspot forecasting, 

short-term daily home electric load forecasting and pattern recognition have been given.  The 

performance of the proposed neural network in these examples is good. 
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Fig. 1. Model of the proposed neuron.  
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Fig. 2. Connection of the proposed neural network 
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Fig. 3.  Sample activation functions of the proposed neuron: (a) s  = 0.2, (b) 0sm . 
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Fig. 4. Results of the XOR problem: a) Fitness values obtained from the proposed (solid line) 

and the traditional neural networks (dotted line) for 1000 iterations; b) The output patterns 

obtained by the proposed (dotted line with ‘’ marks) and the traditional neural networks 

(dotted line with ‘’ marks), as compared with the desired output (solid line with ‘’ marks). 
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Fig. 5. Daily electric load forecast results on Sunday (Week13) obtained by the proposed 

neural network (dotted line) and the traditional neural network (dashed line), as compared 

with the actual load (solid line). 

 

Fitness Value MAE 

Proposed Neural 

Network 
0.999988 0.002533 

Traditional Neural 

Network 
0.880901 0.135201 

Table I.  Results of the proposed neural network and the traditional neural network for 3-

inputs XOR classification problem after 1000 iterations. 

 Fitness Value Training error 

(MAE) 

Forecasting 

(MAE) 

Proposed Neural 

Network 
0.9546 9.51 13.18 

Traditional Neural 

Network 
0.9429 12.12 14.31 

Table II.  Results of the proposed neural network and the traditional neural network for 

forecasting of the sunspot number after 1000 iterations. 

 Proposed Neural Network Traditional Neural Network 

hn  Fitness 

Value 

Number of 

parameters 

Fitness 

Value 

Number of 

parameters 

3 0.977358 216 0.944286 183 

4 0.978133 272 0.974208 236 

5 0.977819 328 0.977089 289 

6 0.981248 384 0.967182 342 

7 0.977091 440 0.972413 395 

8 0.982483 496 0.967235 448 

9 0.981188 552 0.950723 501 

Table III.  Results of the proposed neural network and the traditional neural network for daily 

electric load forecasting for Wednesday. 

 Proposed Neural Network Traditional Neural Network 

hn  Fitness 

Value 

Number of 

parameters 

Fitness 

Value 

Number of 

parameters 

3 0.979647 216 0.945921 183 

4 0.979552 272 0.965002 236 

5 0.977991 328 0.967021 289 

6 0.977371 384 0.968254 342 

7 0.975546 440 0.970349 395 

8 0.976570 496 0.964480 448 

9 0.977074 552 0.966030 501 

Table IV.  Results of the proposed neural network and the traditional neural network for daily 

electric load forecasting for Sunday. 
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 Proposed Neural Network Traditional Neural Network 

hn  Training error 

(MAPE) 

Forecasting error 

(MAPE) 

Training error 

(MAPE) 

Forecasting error 

(MAPE) 

3 2.3167 2.8466 5.9002 5.4427 

4 2.2356 2.4853 2.6474 3.6954 

5 2.2684 2.8813 2.3448 2.8316 

6 1.9110 2.0443 3.3932 3.8580 

7 2.3446 2.7791 2.8370 2.8964 

8 1.7829 1.9365 3.3874 3.4152 

9 1.9173 1.9898 5.1831 4.3619 

Table V.  Training and forecasting errors in term of MAPE for daily electric load forecasting 

for Wednesday 

 Proposed Neural Network Traditional Neural Network 
 hn  Training error 

(MAPE) 

Forecasting error 

(MAPE) 
Training error (MAPE) 

Forecasting error 

(MAPE) 

3 2.0776 2.3054 5.7170 5.2094 

4 2.0875 1.9120 3.6268 4.0758 

5 2.2504 2.5362 3.4104 3.3927 

6 2.3153 2.5324 3.2786 3.2126 

7 2.5067 2.6807 3.0556 2.7665 

8 2.3992 2.3987 3.6828 4.1690 

9 2.3464 2.2005 3.5164 4.1102 

Table VI.  Training and forecasting errors in term of MAPE for daily electric load forecasting 

for Sunday. 

 Fitness 

value 

No. of 

parameters (nh) 

Training 

error (MSE) 

Forecasting 

error (MSE) 

Recognition 

accuracy 

Proposed 

neural network 
0.9887 125 0.0114 0.0238 96.00% 

Traditional 

neural network 
0.9717 227 0.0291 0.0411 93.33% 

Table VII.  Results of the proposed neural network and the traditional neural network for 

pattern recognition. 


